

Radioactivity

• Number of decay events *dN* occurring during *dt* is proportional to number of atoms N:

$$\frac{dN}{dt} \propto -N$$

• Decay constant λ introduced:

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\lambda N$$

• Simple differential equation with solution:

 $N = N_0 e^{-\lambda t}$

UIO : Department of Physics University of Oslo

Radioactivity cont'd

• The total activity is then

 $\lambda N = N \sum \lambda_i$

- Partial activity for i'th mode of disintegration: $\lambda_i N = \lambda_i N_0 e^{-\lambda t}$
- Activity given in units of Becquerel [Bq] = s^{-1}
- Earlier: 1 Ci = 3.7×10^{10} Bq

UiO : Department of Physics

Oslo University Hosp

Radioactivity

- λ is characteristic of each nuclide; decay probability per unit time per atom
- Rate of decay; activity is given by:

$$\left|\frac{dN}{dt}\right| = \left|\frac{d}{dt} \left(N_0 e^{-\lambda t}\right)\right| = \lambda N$$

• If nucleus has several modes of disintegration:

$$\lambda = \lambda_{\rm\scriptscriptstyle A} + \lambda_{\rm\scriptscriptstyle B} + \dots = \sum_{\rm\scriptscriptstyle i} \lambda_{\rm\scriptscriptstyle i}$$

UIO : Department of Physics

٠

•

Radioactivity cont'd • Time needed to decay to 1/e of original number of nuclei: $\frac{N}{N_{o}} = \frac{1}{e} = e^{-\lambda \tau} \implies \tau = \frac{1}{\lambda}$ τ : mean life, average lifetime of a nucleus. Probability of nucleus not having decayed: $p(t) = C \exp^{-\lambda t} \implies \int_{0}^{\infty} p(t) dt \stackrel{!}{=} 1 \implies C = \frac{1}{\lambda}$ • Mean lifetime: $\tau = \int_{0}^{\infty} tp(t) dt = \frac{1}{\lambda} \int_{0}^{\infty} te^{-\lambda t} dt = \frac{1}{\lambda}$ UIO : Department of Physics

Absorbed dose in radioactive media

- Dose from α -particles: D = n × T
- Dose from β 's: $D \approx n \times \overline{T}$
- Dose from γ 's; two limiting cases:
- 1. In a *small* radioactive object V, CPE is obtained at least a distance d=<t> from the boundary of V. The dose is given by KERMA.
- 2. In a large radioactive object (>> $1/\mu$), the dose will be given by the sum of the kinetic energies emitted.

UIO S Department of Physics University of Oslo

Oslo University Hospit

