

UiO *** Fysisk institutt**

Det matematisk-naturvitenskapelige fakultet

Lecture 4

This week

- Monday: Symmetries of systems (Section 2.3)
- Wednesday: Energy conservation, velocity dependent potentials. (Sections 2.3 and 2.4)
- **Problem session:** Problem set 2 (main topic: finding the e.o.m. from Lagrange's equation)

Recap

• The essence of Lagrange-Hamilton formalism is

• The Lagrange equation dealing with part 3 is $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0, \quad j = 1, 2, ..., d$ where the Lagrangian *L* is given by $L(q, \dot{q}, t) = K(q, \dot{q}, t) - V(q, t)$

Plan for today

- Symmetries of systems (Section 2.3)
 - Conserved quantities (constants of motion)
 - Noether's theorem
 - Cyclic coordinates
 - Generalized momentum/conjugate momentum
 - More general symmetries of the Lagrangian
 - A proof of conservation of angular momentum! (If we have time)

Summary

- Cyclic coordinates are generalized coordinates q_i that do not appear in the Lagrangian
- The corresponding conjugate momentum p_i is conserved

$$p_i \equiv \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

• If Q is the parameter of a transformation leaving the Lagrangian invariant the conserved quantity K is $K = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} Q_{i}$