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Quantum dots
What are they?

◮ Electrons confined in an external potential.
◮ What happens in semiconductors?
◮ Coloumb effects and the Pauli principle keeps an excited

electron-hole pair bound.
◮ Modelled by a free particle with an effective mass in an

external potential. Can disregard the crystal lattice.
◮ Have the same properties as atoms, only larger size. Are

discussed as artificial atoms.
◮ Discrete energy levels.
◮ Selfbound.
◮ Relatively long lifetimes.
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Quantum dots
Properties

◮ Energylevels depends on the size of the crystal. (Typically
nanometer scale)

◮ Smaller crystals have larger energy gaps.
◮ Effective mass depends on type of semiconductor and

size.
◮ Effective mass much smaller than me.
◮ Large de Broglie wavelength - λ = h

γmov
◮ Quantum effects visible at larger scales.

◮ Emits light when electron recombines with hole. Frequency
depends on energy gap.

◮ There are indications that the shape of the crystal also
affect energy gap.

◮ Can be modelled as particles in a well.
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Quantum dots
Usage

◮ Quantum laboratory.
◮ Improved transistors.
◮ Quantum computers
◮ QLED (light emitting diode) and lasers.

◮ Smaller sizes

◮ Medical imaging techniques and realtime tracking of
molecules/cells.

◮ Improved solar panel efficiency.
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Quantum dots, the case of our project

We consider a system of electrons confined in a pure isotropic harmonic oscillator
potential V (r) = m∗ω2

0r2/2, where m∗ is the effective mass of the electrons in the host
semiconductor, ω0 is the oscillator frequency of the confining potential, and
r = (x , y , z) denotes the position of the particle.
The Hamiltonian of a single particle trapped in this harmonic oscillator potential simply
reads

Ĥ =
p2

2m∗

+
1

2
m∗ω2

0r2

where p is the canonical momentum of the particle.
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Quantum dots

When considering several particles trapped in the same quantum dot, the Coulomb
repulsion between those electrons has to be added to the single particle Hamiltonian
which gives

Ĥ =

Ne
X

i=1

„

pi
2

2m∗

+
1

2
m∗ω2

0ri
2
«

+
e2

4πǫ0ǫr

X

i<j

1

ri − rj
,

where Ne is the number of electrons, −e (e > 0) is the charge of the electron, ǫ0 and
ǫr are respectively the free space permitivity and the relative permitivity of the host
material (also called dielectric constant), and the index i labels the electrons.
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Quantum dots

We assume that the magnetic field
−→
B is static and along the z axis. At first we ignore

the spin-dependent terms. The Hamiltonian of these electrons in a magnetic field now
reads

Ĥ =

Ne
X

i=1

„

(pi + eA)2

2m∗

+
1

2
m∗ω2

0ri
2
«

+
e2

4πǫ0ǫr

X

i<j

1

ri − rj
, (1)

=

Ne
X

i=1

„

pi
2

2m∗

+
e

2m∗

(A · pi + pi · A) +
e2

2m∗

A2 +
1

2
m∗ω2

0ri
2
«

(2)

+
e2

4πǫ0ǫr

X

i<j

1

ri − rj
, (3)

where A is the vector potential defined by B = ∇× A.
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Quantum dots

In coordinate space, pi is the operator −i~∇i and by applying the Hamiltonian on the
total wave function Ψ(r) in the Schrödinger equation, we obtain the following operator
acting on Ψ(r)

A · pi + pi · A = −i~(A · ∇i + ∇i · A) Ψ (4)

= −i~(A · (∇iΨ) + ∇i · (AΨ)) (5)
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Quantum dots

We note that if we use the product rule and the Coulomb gauge ∇ · A = 0 (by choosing
the vector potential as A = 1

2 B × r), pi and ∇i commute and we obtain

∇i · (AΨ) = A · (∇iΨ) + (∇i · A)
| {z }

0

Ψ = A · (∇iΨ)

23 / 38



Quantum dots

This leads us to the following Hamiltonian:

Ĥ =

Ne
X

i=1

„

−
~

2

2m∗

∇2
i − i~

e

m∗

A · ∇i +
e2

2m∗

A2 +
1

2
m∗ω2

0ri
2
«

+
e2

4πǫ0ǫr

X

i<j

1

ri − rj
,
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Quantum dots

The linear term in A becomes, in terms of B:

−i~e

m∗

A · ∇i = −
i~e

2m∗

(B × ri) · ∇i (6)

=
−i~e

2m∗

B · (ri ×∇i ) (7)

=
e

2m∗

B · L (8)

where L = −i~(ri ×∇i ) is the orbital angular momentum operator of the electron i .
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Quantum dots

If we assume that the electrons are confined in the xy -plane, the quadratic term in A
can be written as

e2

2m∗

A2 =
e2

8m∗

(B × r)2 =
e2

8m∗

B2r2
i
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Quantum dots

Until this point we have neglected the intrinsic magnetic moment of the electrons which
is due to the electron spin in the host material. We will now add its effect to the
Hamiltonian. This intrinsic magnetic moment is given by Ms = −g∗s (eS)/(2m∗),
where S is the spin operator of the electron and g∗s its effective spin gyromagnetic ratio
(or effective g-factor in the host material).We see that the spin magnetic moment Ms
gives rise to an additional interaction energy linear in the magnetic field,

Ĥs = −Ms · B = g∗s
e

2m∗

BŜz = g∗s
ωc

2
Ŝz

where ωc = eB/m∗ is known as the cyclotron frequency.
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Quantum dots

The final Hamiltonian reads

Ĥ =

Ne
X

i=1

„

−~
2

2m∗

∇2
i +

Harmonic ocscillator
potential

z }| {

1

2
m∗ω2

0ri
2

«

+

Coulomb
interactions

z }| {

e2

4πǫ0ǫr

X

i<j

1

|ri − rj|

+

Ne
X

i=1

„

1

2
m∗

“ ωc

2

”2
ri

2 +
1

2
ωc L̂(i)

z +
1

2
g∗s ωc Ŝ(i)

z

«

| {z }

single particle interactions
with the magnetic field

, (9)
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Quantum dots

In order to simplify the computation, the Hamiltonian can be rewritten on dimensionless
form. For this purpose, we introduce the following constants:

◮ the oscillator frequency ω = ω0

q

1 + ω2
c /(4ω2

0),

◮ a new energy unit ~ω,

◮ a new length unit, the oscillator length defined by l =
p

~/(m∗ω), also called the
characteristic length unit.

We rewrite the Hamiltonian in dimensionless units using:

r −→
r
l
, ∇ −→ l ∇ and L̂z −→ L̂z
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Quantum dots

It leads to the following Hamiltonian:

Ĥ =

Ne
X

i=1

„

−
1

2
∇2

i +
1

2
r2
i

«

+

Dimensionless
confinement
strength (λ)

z }| {

e2

4πǫ0ǫr

1

~ωl

X

i<j

1

rij

+

Ne
X

i=1

„

1

2

ωc

~ω
L̂(i)

z +
1

2
g∗s

ωc

~ω
Ŝ(i)

z

«

, (10)

Lengths are now measured in units of l =
p

~/(m∗ω), and energies in units of ~ω.
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Quantum dots

A new dimensionless parameter λ = l/a∗0 (where a∗0 = 4πǫ0ǫr ~
2/(e2m∗) is the

effective Bohr radius) describes the strength of the electron-electron interaction. Large
λ implies strong interaction and/or large quantum dot.

Since both L̂z and Ŝz commute with the Hamiltonian we can perform the calculations

separately in subspaces of given quantum numbers Lz and Sz .
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Quantum dots

The simplified dimensionless Hamiltonian becomes

Ĥ =

Ne
X

i=1

»

−
1

2
∇2

i +
1

2
r2
i

–

+ λ
X

i<j

1

rij
+

Ne
X

i=1

„

1

2

ωc

~ω
L(i)

z +
1

2
g∗s

ωc

~ω
S(i)

z

«

,
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Quantum dots

The last sum which is proportional to the magnetic field involves only the quantum
numbers Lz and Sz and not the operators themselves. Therefore these terms can be
put aside during the resolution, the squizzing effect of the magnetic field being included
simply in the parameter λ. The contribution of these terms will be added when the other
part has been solved. This brings us to the simple and general form of the Hamiltonian:

Ĥ =

Ne
X

i=1

„

−
1

2
∇2

i +
1

2
r2
i

«

+ λ
X

i<j

1

rij
.
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Quantum dots

The form

Ĥ =

Ne
X

i=1

„

−
1

2
∇2

i +
1

2
r2
i

«

+ λ
X

i<j

1

rij
,

is however not so practical since the interaction carries a strength λ. Why?

34 / 38



Quantum dots

We rewrite it as a one-body part

Ĥ0 =

Ne
X

i=1

„

−
1

2
∇2

i +
ω2

2
r2
i

«

,

and interacting part

V̂ =

Ne
X

i<j

1

|ri − rj |
.

Your task till next week is to show this. The unperturbed part of the Hamiltonian yields
the single-particle energies

ǫi = ω (2n + |m| + 1) , (11)

where n = 0, 1, 2, 3, .. and m = 0,±1,±2, ... The index i runs from 0, 1, 2, . . . .
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Harmonic oscillator in 2D with cartesian coordinates

Hamilton operator

Ĥ0 =
N∑

i=1

(
−1

2
∇2

i +
1
2
ω2r2

i

)

Eigenvalues and eigenfunctions

φnx ,ny (x , y) = AHnx (
√

ωx)Hny (
√

ωy) exp (−ω(x2 + y2)/2

E = ω(nx + ny + 1)

Leads to a shell structure, similar to atomic and nuclear
systems.
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Hermite polynomials
The Hermite polynomials are the solutions of the following differential
equation

d2H(x)

dx2 − 2x
dH(x)

dx
+ (λ − 1)H(x) = 0. (12)

The first few polynomials are

H0(x) = 1,

H1(x) = 2x ,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12,

and
H4(x) = 16x4 − 48x2 + 12.

They fulfil the orthogonality relation
∫

∞

−∞

e−x2
Hn(x)2dx = 2nn!

√
π,

and the recursion relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x).
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Tasks for next week

◮ Set up the harmonic oscillator wave function in cartesian coordinates for an
electron with nx = ny = 0 and find the oscillator energy.

◮ Use this result to find the unperturbed energy

Z

Φ∗Ĥ0Φdτ =
N

X

µ=1

〈µ|h|µ〉.

for two electrons with the same quantum numbers. Is that possible?

◮ Repeat for six electrons (find the relevant harmonic oscillator quantum numbers)

◮ Read chapter 5 of Lars Eivind Lervåg’s thesis, it deals with quantum dots and
gives a good introduction to the physics of quantum dots.

◮ For the project, finish parts 1a and 1b, including analytical derivatives and the
profile analysis.
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