
Slides from FYS4411 Lectures

Morten Hjorth-Jensen & Gustav R. Jansen

1Department of Physics and Center of Mathematics for Applications
University of Oslo, N-0316 Oslo, Norway

Spring 2012

1 / 87



Topics for Week 8, February 20. - 24.

Parallelization, onebody densities and blocking

◮ Repetition from last week
◮ MPI programming and access to titan.uio.no
◮ Onebody densities
◮ Statistical analysis and blocking

Project work this week: finalize 1a and 1b. Start implementing
importance sampling and exercise 1c.
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Importance sampling, what we want to do
We need to replace the brute force Metropolis algorithm with a walk in coordinate
space biased by the trial wave function. This approach is based on the Fokker-Planck
equation and the Langevin equation for generating a trajectory in coordinate space.
This is explained later.
For a diffusion process characterized by a time-dependent probability density P(x, t) in
one dimension the Fokker-Planck equation reads (for one particle/walker)

∂P

∂t
= D

∂

∂x

„

∂

∂x
− F

«

P(x, t),

where F is a drift term and D is the diffusion coefficient.
The new positions in coordinate space are given as the solutions of the Langevin
equation using Euler’s method, namely, we go from the Langevin equation

∂x(t)

∂t
= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ,

where ξ is gaussian random variable and ∆t is a chosen time step.
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Importance sampling, what we want to do

The process of isotropic diffusion characterized by a time-dependent probability
density P(x , t) obeys (as an approximation) the so-called Fokker-Planck equation
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where Fi is the i th component of the drift term (drift velocity) caused by an external
potential, and D is the diffusion coefficient. The convergence to a stationary probability
density can be obtained by setting the left hand side to zero. The resulting equation will
be satisfied if and only if all the terms of the sum are equal zero,
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Importance sampling, what we want to do

The drift vector should be of the form F = g(x)∂P
∂x . Then,

∂2P

∂xi
2

= P
∂g

∂P

„

∂P

∂xi

«2

+ Pg
∂2P

∂xi
2

+ g
„

∂P

∂xi

«2

.

The condition of stationary density means that the left hand side equals zero. In other
words, the terms containing first and second derivatives have to cancel each other. It is
possible only if g = 1

P , which yields

F = 2
1

ΨT
∇ΨT , (1)

which is known as the so-called quantum force. This term is responsible for pushing

the walker towards regions of configuration space where the trial wave function is large,

increasing the efficiency of the simulation in contrast to the Metropolis algorithm where

the walker has the same probability of moving in every direction.
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Importance Sampling

The Fokker-Planck equation yields a (the solution to the equation) transition probability
given by the Green’s function

G(y , x, ∆t) =
1

(4πD∆t)3N/2
exp

“

−(y − x − D∆tF (x))2/4D∆t
”

which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x, y , ∆t)|ΨT (y)|2

G(y , x, ∆t)|ΨT (x)|2

See program vmc importance.cpp for example.
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Importance sampling, new positions, see code
vmc importance.cpp under the programs link

for ( v a r i a t e =1; v a r i a t e <= max var ia t ions ; v a r i a t e
++){
/ / i n i t i a l i s a t i o n s of v a r i a t i o n a l parameters

and energies
beta += 0 . 1 ;
energy = energy2 = d e l t a e = 0 . 0 ;
/ / i n i t i a l t r i a l pos i t i on , note c a l l i n g wi th

beta
for ( i = 0 ; i < number par t ic les ; i ++) {

for ( j =0; j < dimension ; j ++) {
r o l d [ i ] [ j ] = gauss ian dev ia te (&idum ) ∗ s q r t (

t imestep ) ;
}

}
wfold = wave func t ion ( r o l d , beta ) ;
quantum force ( r o l d , q fo r ce o ld , beta , wfo ld ) ;
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Importance sampling, new positions in function
vmc importance.cpp

/ / loop over monte c a r l o cyc les
for ( cyc les = 1; cyc les <= number cycles ;

cyc les ++){
/ / new p o s i t i o n
for ( i = 0 ; i < number par t ic les ; i ++) {

for ( j =0; j < dimension ; j ++) {
/ / gaussian dev ia te to compute new

p o s i t i o n s using a given t imestep
r new [ i ] [ j ] = r o l d [ i ] [ j ] +

gauss ian dev ia te (&idum ) ∗ s q r t ( t imestep
) + q f o r c e o l d [ i ] [ j ]∗ t imestep ∗D;
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Importance sampling, new positions in function
vmc importance.cpp

/ / we move only one p a r t i c l e a t the t ime
for ( k = 0; k < number par t ic les ; k++) {

i f ( k != i ) {
for ( j =0; j < dimension ; j ++) {

r new [ k ] [ j ] = r o l d [ k ] [ j ] ;
}

}
}
/ / wave function onemove ( r new ,

qforce new , &wfnew , beta ) ;
wfnew = wave func t ion ( r new , beta ) ;
quantum force ( r new , qforce new , beta ,

wfnew ) ;
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Importance sampling, new positions in function
vmc importance.cpp

/ / we compute the log of the r a t i o o f the
greens f u n c t i o n s to be used i n the

/ / Met ropo l is−Hastings a lgo r i t hm
greens func t ion = 0 . 0 ;
for ( j =0; j < dimension ; j ++) {

greens func t ion += 0 .5∗ ( q f o r c e o l d [ i ] [ j ]+
qforce new [ i ] [ j ] ) ∗

(D∗ t imestep ∗0.5∗ ( q f o r c e o l d [ i ] [ j ]−
qforce new [ i ] [ j ] )−r new [ i ] [ j ]+ r o l d
[ i ] [ j ] ) ;

}
greens func t ion = exp ( greens func t ion ) ;
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Importance sampling, new positions in function
vmc importance.cpp

/ / The Met ropo l is t e s t i s performed by
moving one p a r t i c l e a t the t ime

i f ( ran2 (&idum ) <= greens func t ion ∗wfnew∗
wfnew / wfold / wfo ld ) {

for ( j =0; j < dimension ; j ++) {
r o l d [ i ] [ j ] = r new [ i ] [ j ] ;
q f o r c e o l d [ i ] [ j ] = qforce new [ i ] [ j ] ;

}
wfold = wfnew ;
. . . . .

11 / 87



Importance sampling, Quantum force in function
vmc importance.cpp

void quantum force ( double ∗∗ r , double ∗∗qforce ,
double beta , double wf )

{
i n t i , j ;
double wfminus , wfp lus ;
double ∗∗ r p lus , ∗∗ r minus ;

r p l u s = ( double ∗∗ ) mat r ix ( number par t ic les ,
dimension , sizeof ( double ) ) ;

r minus = ( double ∗∗ ) mat r ix ( number par t ic les ,
dimension , sizeof ( double ) ) ;

for ( i = 0 ; i < number par t ic les ; i ++) {
for ( j =0; j < dimension ; j ++) {

r p l u s [ i ] [ j ] = r minus [ i ] [ j ] = r [ i ] [ j ] ;
}

}
. . .

12 / 87



Importance sampling, Quantum force in function
vmc importance.cpp, brute force derivative

/ / compute the f i r s t d e r i v a t i v e
for ( i = 0 ; i < number par t ic les ; i ++) {

for ( j = 0 ; j < dimension ; j ++) {
r p l u s [ i ] [ j ] = r [ i ] [ j ]+h ;
r minus [ i ] [ j ] = r [ i ] [ j ]−h ;
wfminus = wave func t ion ( r minus , beta ) ;
wfp lus = wave func t ion ( r p lus , beta ) ;
q force [ i ] [ j ] = ( wfplus−wfminus ) ∗2 . 0 / wf / ( 2∗ h ) ;
r p l u s [ i ] [ j ] = r [ i ] [ j ] ;
r minus [ i ] [ j ] = r [ i ] [ j ] ;

}
}

} / / end of quantum force f u n c t i o n
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Going Parallel with MPI

You will need to parallelize the codes you develop.
Task parallelism: the work of a global problem can be divided
into a number of independent tasks, which rarely need to
synchronize. Monte Carlo simulation or integrations are
examples of this. It is almost embarrassingly trivial to parallelize
Monte Carlo codes.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME
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What is Message Passing Interface (MPI)? Yet
another library!

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C or Fortran programs, and the classes and methods that
make up the MPI C++ library. The programs that users write in
Fortran, C or C++ are compiled with ordinary compilers and
linked with the MPI library.
MPI is a specification, not a particular implementation. MPI
programs should be able to run on all possible machines and
run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.
See chapter 4.7 of lecture notes for more details.
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MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

◮ independent of hardware;
◮ not a language or compiler specification;
◮ not a specific implementation or product.

A message passing standard for portability and ease-of-use.
Designed for high performance.
Insert communication and synchronization functions where
necessary.
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Demands from the HPC community

In the field of scientific computing, there is an ever-lasting wish
to do larger simulations using shorter computer time.
Development of the capacity for single-processor computers
can hardly keep up with the pace of scientific computing:

◮ processor speed
◮ memory size/speed

Solution: parallel computing!
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The basic ideas of parallel computing

◮ Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.

◮ Multiple processors are involved to solve a global problem.
◮ The essence is to divide the entire computation evenly

among collaborative processors. Divide and conquer.
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A rough classification of hardware models

◮ Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.

◮ SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.

◮ Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.
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Shared memory and distributed memory

◮ One way of categorizing modern parallel computers is to
look at the memory configuration.

◮ In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.

◮ In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.
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Different parallel programming paradigms

◮ Task parallelism Â the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. Integration is another. However this paradigm is
of limited use.

◮ Data parallelism Â use of multiple threads (e.g. one
thread per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.
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Today’s situation of parallel computing

◮ Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel processing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.

◮ Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily used for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.
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Overhead present in parallel computing

◮ Uneven load balance: not all the processors can perform
useful work at all time.

◮ Overhead of synchronization.
◮ Overhead of communication.
◮ Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized we may not achieve an optimal
parallelization.
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Parallelizing a sequential algorithm

◮ Identify the part(s) of a sequential algorithm that can be
executed in parallel. This is the difficult part,

◮ Distribute the global work and data among P processors.
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Process and processor

◮ We refer to process as a logical unit which executes its
own code, in an MIMD style.

◮ The processor is a physical device on which one or several
processes are executed.

◮ The MPI standard uses the concept process consistently
throughout its documentation.
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Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME

The discussion in these slides focuses on the C++ binding.
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Communicator

◮ A group of MPI processes with a name (context).
◮ Any process is identified by its rank. The rank is only

meaningful within a particular communicator.
◮ By default communicator MPI COMM WORLD contains all

the MPI processes.
◮ Mechanism to identify subset of processes.
◮ Promotes modular design of parallel libraries.
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Some of the most important MPI routines

◮ MPI Init - initiate an MPI computation
◮ MPI Finalize - terminate the MPI computation and clean up
◮ MPI Comm size - how many processes participate in a

given MPI communicator?
◮ MPI Comm rank - which one am I? (A number between 0

and size-1.)
◮ MPI Send - send a message to a particular process within

an MPI communicator
◮ MPI Recv - receive a message from a particular process

within an MPI communicator
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The first MPI C/C++ program

Let every process write ”Hello world” on the standard output.
This is program2.cpp under MPI/chapter07.

using namespace s td ;
#include <mpi . h>

#include <iostream>

i n t main ( i n t nargs , char∗ args [ ] )
{
i n t numprocs , my rank ;
/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args ) ;
MPI Comm size (MPI COMM WORLD, &numprocs ) ;
MPI Comm rank (MPI COMM WORLD, &my rank ) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;

/ / End MPI
MPI F ina l ize ( ) ;
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The Fortran program

PROGRAM h e l l o
INCLUDE "mpif.h"
INTEGER : : size , my rank , i e r r

CALL MPI INIT ( i e r r )
CALL MPI COMM SIZE (MPI COMM WORLD, size , i e r r )
CALL MPI COMM RANK(MPI COMM WORLD, my rank , i e r r )
WRITE ( ∗ , ∗ )"Hello world, I’ve rank " , my rank ," out

of " , size
CALL MPI FINALIZE ( i e r r )

END PROGRAM h e l l o
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Note 1

The output to screen is not ordered since all processes are
trying to write to screen simultaneously. It is then the operating
system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite
our program as in the next example (program3.cpp), see again
chapter 4.7 of lecture notes.
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Ordered output with MPI Barrier

i n t main ( i n t nargs , char∗ args [ ] )
{

i n t numprocs , my rank , i ;
M P I I n i t (&nargs , &args ) ;
MPI Comm size (MPI COMM WORLD, &numprocs ) ;
MPI Comm rank (MPI COMM WORLD, &my rank ) ;
for ( i = 0 ; i < numprocs ; i ++) {
MPI Bar r ie r (MPI COMM WORLD) ;
i f ( i == my rank ) {
cout << "Hello world, I have rank " << my rank <<

" out of " << numprocs << endl ;}
MPI F ina l ize ( ) ;

}
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Note 2

Here we have used the MPI Barrier function to ensure that that
every process has completed its set of instructions in a
particular order. A barrier is a special collective operation that
does not allow the processes to continue until all processes in
the communicator (here MPI COMM WORLD have called
MPI Barrier . The barriers make sure that all processes have
reached the same point in the code. Many of the collective
operations like MPI ALLREDUCE to be discussed later, have
the same property; viz. no process can exit the operation until
all processes have started. However, this is slightly more
time-consuming since the processes synchronize between
themselves as many times as there are processes. In the next
Hello world example we use the send and receive functions in
order to a have a synchronized action.
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Ordered output with MPI Recv and MPI Send

. . . . .
i n t numprocs , my rank , f l a g ;
MPI Status status ;
M P I I n i t (&nargs , &args ) ;
MPI Comm size (MPI COMM WORLD, &numprocs ) ;
MPI Comm rank (MPI COMM WORLD, &my rank ) ;
i f ( my rank > 0)
MPI Recv (& f lag , 1 , MPI INT , my rank−1, 100 ,

MPI COMM WORLD, &status ) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;
i f ( my rank < numprocs−1)
MPI Send (&my rank , 1 , MPI INT , my rank+1 ,

100 , MPI COMM WORLD) ;
MPI F ina l ize ( ) ;
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Note 3

The basic sending of messages is given by the function
MPI SEND, which in C/C++ is defined as

i n t MPI Send ( void ∗buf , i n t count ,
MPI Datatype datatype ,
i n t dest , i n t tag , MPI Comm comm) }

This single command allows the passing of any kind of variable,
even a large array, to any group of tasks. The variable buf is
the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value,
this should be 1. If we transfer an array, it is the overall size of
the array. For example, if we want to send a 10 by 10 array,
count would be 10 × 10 = 100 since we are actually passing
100 values.
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Note 4
Once you have sent a message, you must receive it on another
task. The function MPI RECV is similar to the send call.

i n t MPI Recv ( void ∗buf , i n t count , MPI Datatype
datatype ,

i n t source ,
i n t tag , MPI Comm comm, MPI Status ∗

status )

The arguments that are different from those in MPI SEND are
buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the
send command. This is the return ID of the sender.
Finally, we have used MPI Status status; where one can
check if the receive was completed.
The output of this code is the same as the previous example,
but now process 0 sends a message to process 1, which
forwards it further to process 2, and so forth.
Armed with this wisdom, performed all hello world greetings,
we are now ready for serious work.
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Strategies

◮ Develop codes locally, run with some few processes and
test your codes. Do benchmarking, timing and so forth on
local nodes, for example your laptop. You can install
MPICH2 on your laptop (most new laptos come with dual
cores). You can test with one node at the lab.

◮ When you are convinced that your codes run correctly, you
start your production runs on available supercomputers, in
our case titan.uio.no.
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How do I run MPI on the machines at the lab
(MPICH2)

The machines at the lab are all quad-cores
◮ Compile with mpicxx or mpic++
◮ Set up collaboration between processes and run

mpd −−ncpus=4 &
# run code wi th
mpiexec −n 4 . / nameofprog

Here we declare that we will use 4 processes via the
−ncpus option and via −n4 when running.

◮ End with

mpda l lex i t
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Can I do it on my own PC/laptop?

Of course:
◮ go to
http://www.mcs.anl.gov/research/projects/mpich2/

◮ or go to http://www.open-mpi.org/

◮ follow the instructions and install it on your own PC/laptop

I don’t have windows as operating system and need dearly your
feedback.
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Integration algos

The trapezoidal rule (example6.cpp)

I =

Z b

a
f (x)dx = h (f (a)/2 + f (a + h) + f (a + 2h) + · · · + f (b − h) + fb/2) .

Another very simple approach is the so-called midpoint or rectangle method. In this
case the integration area is split in a given number of rectangles with length h and
heigth given by the mid-point value of the function. This gives the following simple rule
for approximating an integral

I =

Z b

a
f (x)dx ≈ h

N
X

i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given rectangle. This is used in

program5.cpp.
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Dissection of example program5.cpp

1 / / Reactangle r u l e and numer ical i n t e g r a t i o n
2 using namespace s td ;
3 # include <mpi . h>

4 # include <iostream>

5 i n t main ( i n t nargs , char∗ args [ ] )
6 {
7 i n t numprocs , my rank , i , n = 1000;
8 double local sum , rectangle sum , x , h ;
9 / / MPI i n i t i a l i z a t i o n s
10 M P I I n i t (&nargs , &args ) ;
11 MPI Comm size (MPI COMM WORLD, &numprocs ) ;
12 MPI Comm rank (MPI COMM WORLD, &my rank ) ;
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Dissection of example program5.cpp

13 / / Read from screen a poss ib le new vaue of
n

14 i f ( my rank == 0 && nargs > 1) {
15 n = a t o i ( args [ 1 ] ) ;
16 }
17 h = 1 . 0 / n ;
18 / / Broadcast n and h to a l l processes
19 MPI Bcast (&n , 1 , MPI INT , 0 , MPI COMM WORLD

) ;
20 MPI Bcast (&h , 1 , MPI DOUBLE , 0 ,

MPI COMM WORLD) ;
21 / / Every process sets up i t s c o n t r i b u t i o n

to the i n t e g r a l
22 local sum = 0 . ;
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Dissection of example program5.cpp

After the standard initializations with MPI such as MPI Init, MPI Comm size and
MPI Comm rank, MPI COMM WORLD contains now the number of processes defined
by using for example

mpiexec −np 10 . / prog . x

In line 4 we check if we have read in from screen the number of mesh points n. Note
that in line 7 we fix n = 1000, however we have the possibility to run the code with a
different number of mesh points as well. If my rank equals zero, which correponds to
the master node, then we read a new value of n if the number of arguments is larger
than two. This can be done as follows when we run the code

mpiexec −np 10 . / prog . x 10000
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Dissection of example program5.cpp

The MPI routine MPI Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

MPI Bcast (&n , 1 , MPI INT , 0 , MPI COMM WORLD) ; .
MPI Bcast (&h , 1 , MPI DOUBLE, 0 , MPI COMM WORLD) ;

in a case of a double. The general structure of this function is

MPI Bcast ( void ∗buf , i n t count , MPI Datatype
datatype , i n t root , MPI Comm comm) .

All processes call this function, both the process sending the data (with rank zero) and
all the other processes in MPI COMM WORLD. Every process has now copies of n
and h, the number of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of

data sent. In case of a one-dimensional array, one needs to transfer the number of

array elements. If you have an n × m matrix, you must transfer n × m. We need also to

specify whether the variable type we transfer is a non-numerical such as a logical or

character variable or numerical of the integer, real or complex type.
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Dissection of example program5.cpp

23 for ( i = my rank ; i < n ; i += numprocs ) {
24 x = ( i +0 .5) ∗h ;
25 local sum += 4 . 0 / ( 1 . 0 + x∗x ) ;
26 }
27 local sum ∗= h ;

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast

function MPI Bcast. We use this particular function because we want data on one

processor (our master node) to be shared with all other processors. The broadcast

function sends data to a group of processes.
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Dissection of example program5.cpp

28 i f ( my rank == 0) {
29 MPI Status status ;
30 rectangle sum = local sum ;
31 for ( i =1; i < numprocs ; i ++) {
32 MPI Recv(& local sum ,1 ,MPI DOUBLE ,

MPI ANY SOURCE,500 ,
MPI COMM WORLD,& status ) ;

33 rectangle sum += local sum ;
34 }
35 cout << "Result: " << rec tangle sum <<

endl ;
36 } else
37 MPI Send(& local sum ,1 ,MPI DOUBLE,0 ,500 ,

MPI COMM WORLD) ;
38 / / End MPI
39 MPI F ina l ize ( ) ;
40 return 0;
41 }

46 / 87



Dissection of example program5.cpp

In lines 23-27, every process sums its own part of the final sum used by the rectangle
rule. The receive statement collects the sums from all other processes in case
my rank == 0, else an MPI send is performed. If we are not the master node, we
send the results, else they are received and the local results are added to final sum.
The above can be rewritten using the MPI allreduce, as discussed in the next example.

The above function is not very elegant. Furthermore, the MPI instructions can be

simplified by using the functions MPI Reduce or MPI Allreduce. The first function takes

information from all processes and sends the result of the MPI operation to one process

only, typically the master node. If we use MPI Allreduce, the result is sent back to all

processes, a feature which is useful when all nodes need the value of a joint operation.

We limit ourselves to MPI Reduce since it is only one process which will print out the

final number of our calculation, The arguments to MPI Allreduce are the same.
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MPI reduce
Call as

MPI reduce ( void ∗senddata , void∗ r esu l tda ta , i n t
count ,

MPI Datatype datatype , MPI Op , i n t root ,
MPI Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one
sends the address of the variable or the first element of an array. If they are arrays they
need to have the same size. The variable count represents the total dimensionality, 1
in case of just one variable, while MPI Datatype defines the type of variable which is
sent and received.
The new feature is MPI Op. It defines the type of operation we want to do. In our case,
since we are summing the rectangle contributions from every process we define
MPI Op = MPI SUM. If we have an array or matrix we can search for the largest og
smallest element by sending either MPI MAX or MPI MIN. If we want the location as
well (which array element) we simply transfer MPI MAXLOC or MPI MINOC. If we want
the product we write MPI PROD.
MPI Allreduce is defined as

MPI Alreduce ( void ∗senddata , void∗ r esu l tda ta , i n t
count ,

MPI Datatype datatype , MPI Op , MPI Comm
comm) } .
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Dissection of example program6.cpp
/ / T rapezo ida l r u l e and numer ical i n t e g r a t i o n

usign MPI , example program6 . cpp
using namespace s td ;
#include <mpi . h>

#include <iostream>

/ / Here we def ine var ious f u n c t i o n s c a l l e d by
the main program

double i n t f u n c t i o n ( double ) ;
double t r a p e z o i d a l r u l e ( double , double , i n t ,

double ( ∗ ) ( double ) ) ;

/ / Main f u n c t i o n begins here
i n t main ( i n t nargs , char∗ args [ ] )
{

i n t n , loca l n , numprocs , my rank ;
double a , b , h , loca l a , loca l b , to ta l sum ,

local sum ;
double t i m e s t a r t , t ime end , t o t a l t i m e ;
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Dissection of example program6.cpp

/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args ) ;
MPI Comm size (MPI COMM WORLD, &numprocs ) ;
MPI Comm rank (MPI COMM WORLD, &my rank ) ;
t i m e s t a r t = MPI Wtime ( ) ;
/ / Fixed values f o r a , b and n
a = 0.0 ; b = 1 . 0 ; n = 1000;
h = ( b−a ) / n ; / / h i s the same f o r a l l

processes
l o c a l n = n / numprocs ;
/ / make sure n > numprocs , e lse i n t e g e r d i v i s i o n

gives zero
/ / Length of each process ’ i n t e r v a l o f
/ / i n t e g r a t i o n = l o c a l n ∗h .
l o c a l a = a + my rank∗ l o c a l n ∗h ;
l o c a l b = l o c a l a + l o c a l n ∗h ;
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Dissection of example program6.cpp
to ta l sum = 0 . 0 ;
local sum = t r a p e z o i d a l r u l e ( loca l a , loca l b ,

loca l n ,
& i n t f u n c t i o n ) ;

MPI Reduce(& local sum , &to ta l sum , 1 , MPI DOUBLE,
MPI SUM, 0 , MPI COMM WORLD) ;

t ime end = MPI Wtime ( ) ;
t o t a l t i m e = time end−t i m e s t a r t ;
i f ( my rank == 0) {

cout << "Trapezoidal rule = " << to ta l sum <<

endl ;
cout << "Time = " << t o t a l t i m e

<< " on number of processors: " <<

numprocs << endl ;
}
/ / End MPI
MPI F ina l ize ( ) ;
return 0;

} / / end of main program
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Dissection of example program6.cpp

We use MPI reduce to collect data from each process. Note also the use of the
function MPI Wtime. The final functions are

/ / t h i s f u n c t i o n def ines the f u n c t i o n to i n t e g r a t e
double i n t f u n c t i o n ( double x )
{

double value = 4 . / ( 1 . + x∗x ) ;
return value ;

} / / end of f u n c t i o n to evaluate
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Dissection of example program6.cpp
Implementation of the trapezoidal rule.

/ / t h i s f u n c t i o n def ines the t r a p e z o i d a l r u l e
double t r a p e z o i d a l r u l e ( double a , double b , i n t n ,

double (∗ func ) ( double ) )
{

double trapez sum ;
double fa , fb , x , step ;
i n t j ;
s tep =(b−a ) / ( ( double ) n ) ;
fa =(∗ func ) ( a ) / 2 . ;
fb =(∗ func ) ( b ) / 2 . ;
trapez sum =0 . ;
for ( j =1; j <= n−1; j ++){

x= j ∗ step+a ;
trapez sum +=(∗ func ) ( x ) ;

}
trapez sum =( trapez sum+ fb+ fa ) ∗ step ;
return trapez sum ;

} / / end t r a p e z o i d a l r u l e
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How do I use the titan.uio.no cluster?

hpc@usit.uio.no

◮ Computational Physics requires High Performance
Computing (HPC) resources

◮ USIT and the Research Computing Services (RCS)
provides HPC resources and HPC support

◮ Resources: titan.uio.no
◮ Support: 14 people
◮ Contact: hpc@usit.uio.no
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Titan

https://wiki.uio.no/usit/suf/vd/hpc/index.php/TITAN
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Getting started
Batch systems

◮ A batch system controls the use of the cluster resources
◮ Submits the job to the right resource
◮ Monitors the job while executing
◮ Restarts the job in case of failure
◮ Takes care of priorities and queues to control execution

order of unrelated jobs

Sun Grid Engine

◮ SGE is the batch system used on Titan
◮ Jobs are executed either interactively or through job scripts
◮ Useful commands: showq, qlogin, sbatch
◮

http://hpc.uio.no/index.php/Titan_User_Guide
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Getting started

Modules

◮ Different compilers, MPI-versions and applications need
different sets of user environment variables

◮ The modules package lets you load and remove the
different variable sets

◮ Useful commands:
◮ List available modules: module avail
◮ Load module: module load <environment>
◮ Unload module: module unload <environment>
◮ Currently loaded: module list

◮

http://hpc.uio.no/index.php/Titan_User_Guide
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Example

Interactively
# l o g i n to t i t a n
$ ssh t i t a n . u io . no
# ask for 4 cpus
$ q l o g i n −−account=fys3150 −−ntasks=4
# s t a r t a job setup , note the punktum !
$ source / s i t e / b in / jobse tup
# we want to use the i n t e l module
$ module load i n t e l
$ module load openmpi / 1 . 2 . 8 . i n t e l
$ mkdir −p fys3150 / mpiexample /
$ cd fys3150 / mpiexample /
# Use program6 . cpp from the course pages , see chapter 4
# compi le the program
$ mpic++ −O3 −o program6 . x program6 . cpp
# and execute i t
$ mpirun . / program6 . x
$ Trapezo ida l r u l e = 3.14159
$ Time = 0.000378132 on number o f processors : 4
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The job script

job.sge
# ! / b in / sh
# Cal l this f i l e j ob . s lurm
# 4 cpus wi th mpi ( or o ther communication )
#SBATCH −ntasks=4
# 10 mins o f w a l l t i me
#SBATCH −−t ime =0:10:00
# p r o j e c t fys3150
#SBATCH −−account=fys3150
# we need 2000 MB of memory per process
#SBATCH −−mem−per−cpu=2000M
# name o f job
#SBATCH −−job−name=program5

source / s i t e / b in / jobse tup

# load the module used when we compiled the program
module load scampi

# s t a r t program
mpirun . / program5 . x

#END OF SCRIPT
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Example

Submitting

# l o g i n to t i t a n
$ ssh t i t a n . u io . no
# we want to use the module scampi
$ module load scampi
$ cd fys3150 / mpiexample /
# compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
# and submit i t
$ sbatch job . s lurm
$ ex i t
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Example

Checking execution
# check i f j ob i s running :
$ showq −u mhjensen
ACTIVE JOBS−−−−−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC REMAINING STARTTIME

883129 mhjensen Running 4 10:31:17 F r i Oct 2 13:59:25

1 Act ive Job 2692 o f 4252 Processors Ac t ive (63.31%)
482 o f 602 Nodes Act ive (80.07%)

IDLE JOBS−−−−−−−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

0 I d l e Jobs

BLOCKED JOBS−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

Tota l Jobs : 1 Ac t ive Jobs : 1 I d l e Jobs : 0 Blocked Jobs : 0
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Tips and admonitions

Tips

◮ Titan FAQ: http://www.hpc.uio.no/index.php/FAQ
◮ man-pages, e.g. man sbatch

◮ Ask us

Admonitions

◮ Remember to exit from qlogin-sessions; the resource is
reserved for you untill you exit

◮ Don’t run jobs on login-nodes; these are only for compiling
and editing files
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Definition of onebody density, needed in 1d

The harmonic oscillator-like functions for so-called nx = ny = 0 waves are rather
simple.
This means that if we use just the harmonic oscillator-like wave functions, our ground
state for the two electron dot is

Φ(r1, r2) = C exp
“

−ω(r2
1 + r2

2 )/2
”

.

and the onebody density is defined as

ρ(r1) =

Z

dr2

˛

˛

˛C exp
“

−ω(r2
1 + r2

2 )/2
”˛

˛

˛

2
,

if we use just the Harmonic oscillator wave functions. Remember that these are

eigenfunctions of the unperturbed problem.
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Definition of onebody density, needed in 1d

With the onebody density defined as

ρ(r1) =

Z

dr2

˛

˛

˛
C exp

“

−ω(r2
1 + r2

2 )/2
”˛

˛

˛

2
,

your tasks are to find the constant C and then calculate the density for only a harmonic

oscillator state. Plot it as a function of x and y for the ground state.
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Definition of onebody density, needed in 1d

In the next step the pure harmonic oscillator wave function is replaced by the optimal
trial wave function from our Monte Carlo calculations, namely ΨT . This gives a new
density given by

ρ(r1) =

Z

dr2 |ΨT (r1, r2))|
2 .

Your task then is to compute the density for the ground state with the correlations baked

in and compare the result with the one obtained with the pure harmonic oscillator. You

have to compare this for different values of ω in order to study the role of correlations.
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Why blocking?

Statistical analysis, see chapter 11.2 of lecture notes

◮ Monte Carlo simulations have to be treated as computer
experiments

◮ The results can be analysed with the same statistical tools
as we would use when analyzing experimental data.

◮ As in all experiments, we are looking for expectation values
and an estimate of how accurate they are, i.e., possible
sources for errors.
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Why blocking?

Statistical analysis

◮ As in other experiments, Monte Carlo experiments have
two classes of errors:

◮ Statistical errors
◮ Systematical errors

◮ Statistical errors can be estimated using standard tools
from statistics

◮ Systematical errors are method specific and must be
treated differently from case to case. (In VMC a common
source is the step length or time step in importance
sampling)
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What is blocking?

Blocking

◮ Blocking is a cheap (in terms of CPU expenditure) way of estimating statistical
errors

◮ Say that we have a set of samples from a Monte Carlo experiment

◮ Assuming (wrongly) that our samples are uncorrelated our best estimate of the
standard deviation of the mean 〈M〉 is given by

σ =

r

1

n

`

〈M2〉 − 〈M〉2
´

◮ If the samples are correlated we can rewrite our results to show that

σ =

r

1 + 2τ/∆t

n

`

〈M2〉 − 〈M〉2
´

where τ is the correlation time (the time between a sample and the next
uncorrelated sample) and ∆t is time between each sample
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What is blocking?

Blocking

◮ If ∆t ≫ τ our first estimate of σ still holds
◮ Much more common that ∆t < τ

◮ In the method of data blocking we divide the sequence of
samples into blocks

◮ We then take the mean 〈Mi〉 of block i = 1 . . . nblocks to
calculate the total mean and variance

◮ The size of each block must be so large that sample j of
block i is not correlated with sample j of block i + 1

◮ The correlation time τ would be a good choice
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What is blocking?

Blocking

◮ Problem: We don’t know τ or it is too expensive to compute
◮ Solution: Make a plot of std. dev. as a function of block size
◮ The estimate of std. dev. of correlated data is too low →

the error will increase with increasing block size until the
blocks are uncorrelated, where we reach a plateau

◮ When the std. dev. stops increasing the blocks are
uncorrelated
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Implementation

Main ideas

◮ Do a parallel Monte Carlo simulation, storing all samples to
files (one per process)

◮ Do the statistical analysis on these files, independently of
your Monte Carlo program

◮ Read the files into an array
◮ Loop over various block sizes
◮ For each block size nb, loop over the array in steps of nb

taking the mean of elements inb, . . . , (i + 1)nb

◮ Take the mean and variance of the resulting array
◮ Write the results for each block size to file for later analysis
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Implementation

Parallel file output

◮ The total number of samples from all processes may get
very large

◮ Hence, storing all samples on the master node is not a
scalable solution

◮ Instead we store the samples from each process in
separate files

◮ Must make sure these files have different names

String handling

os t r ings t ream os t ;
os t << "blocks_rank" << my rank << ".dat" ;
b l o c k o f i l e . open ( os t . s t r ( ) . c s t r ( ) , i os : : out | i os : :

b inary ) ;
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Implementation

Parallel file output

◮ Having separated the filenames it’s just a matter of taking
the samples and store them to file

◮ Note that there is no need for communication between the
processes in this procedure

File dumping

a l l e n e r g i e s = new double [ number cycles +1 ] ;
mc sampling ( max var ia t ions , number cycles ,

cumulat ive e , cumulat ive e2 ,
a l l e n e r g i e s ) ;

b l o c k o f i l e . write ( ( char ∗ ) ( a l l e n e r g i e s +1) ,
number cycles∗sizeof ( double ) ) ;

b l o c k o f i l e . close ( ) ;
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Implementation

Reading the files

◮ Reading the files is only about mirroring the output
◮ To make life easier for ourselves we find the filesize, and

hence the number of samples by using the C function stat

File loading
st ruct s ta t resul t ;
i f ( sta t ("blocks_rank0.dat" , &resul t ) == 0){

l o c a l n = resul t . s t s i z e / sizeof ( double ) ;
n = l o c a l n∗n procs ;

}

double∗ mc resu l ts = new double [ n ] ;
for ( i n t i =0; i<n procs ; i ++){

os t r ings t ream ost ;
os t << "blocks_rank" << i << ".dat" ;
i f s t r e a m i n f i l e ;
i n f i l e . open ( os t . s t r ( ) . c s t r ( ) , i o s : : in | i o s : : b ina ry ) ;
i n f i l e . read ( ( char∗)&( mc resu l ts [ i∗ l o c a l n ] ) , resul t . s t s i z e ) ;
i n f i l e . close ( ) ;

}
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Implementation

Blocking

◮ Loop over block sizes inb, . . . , (i + 1)nb

Loop over block sizes

for ( i n t i =0; i <n block samples ; i ++){
b l o c k s i z e = min b lock s ize+ i ∗ b l o c k s t e p l e n g t h ;
b lock ing ( mc resul ts , n , b lock s ize , res ) ;
mean = res [ 0 ] ;
sigma = res [ 1 ] ;
o u t f i l e << b l o c k s i z e << "\t" << mean << "\t"

<< s q r t ( sigma / ( ( n / b l o c k s i z e ) −1.0) )
<< endl ;

}
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Implementation
Blocking

◮ The blocking itself is now just a matter of finding the
number of blocks (note the integer division) and taking the
mean of each block

◮ Note the pointer aritmetic: Adding a number i to an array
pointer moves the pointer to element i in the array

Blocking function

void b lock ing ( double ∗ vals , i n t n vals , i n t
b lock s ize , double ∗ res ) {

i n t n b locks = n va ls / b l o c k s i z e ;
double∗ b l o c k v a l s = new double [ n b locks ] ;
for ( i n t i =0; i <n b locks ; i ++)

b l o c k v a l s [ i ] = mean( va ls+ i ∗ b lock s ize ,
b l o c k s i z e ) ;

meanvar ( b lock va ls , n blocks , res ) ;
}
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