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Introduction

The technique of intensity interferometry has its origins in astrophysics,
but it has seen significant theoretical theoretical development and
widespread application in subatomic physics.

Intensity interferometry was developed by Hanbury-Brown and Twiss in
the 1950s, as a means of determining the dimension of distant
astronomical objects.

The method involves the construction of a two-particle correlation
function from the distribution of particles radiated from a hot, spatially
localized source.

In the original astrophysics applications of the technique, the source was
a distant radio-wave emitter. In applications involving the collision of
nuclei or particles, the source is the reaction region.



Introduction

* A finite size source emits
indistinguishable particles (e.g.,
from positions S and $,) and the
particles are later observed at
positions ”: and 7, . Both emission
points contribute to both observation
points.

® The HBT correlation function is

proportional to the intensity of the
particles at ¥+ and #. .In a classic
amplitude interferometry, the two
detecting points, can be used as 2
slits to produce interference patterns
which lead to the measurement of
relative phase of the 2 particles.
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Theoretical basics

To understand the origin of the correlations, we need a description of the state
of the particles (e.g. pions) at the moment of their production at the source
points, and of their propagation from the source points to the detection points.

x —x~(klk°)(t —1)

The amplitude for a particle to go from point x to point X', using Feynman path
integral method leads to:
A[(x, [)_><x ' 1 ')]Etll(k.‘x—UC l): Z eiS(Path)
all paths

where S(path) is the action of the pion particles.

iS(classical path,k:x—x"')

~elt) S (classical path, k:x—x')~k(x—x")



Theory basics

* The production probability amplitude for producing a pion with
momentum k at X by a magnitude A(k,x) and a phase d(x). A(k,x) can
be taken to be real and nonnegative.

* The behaviour of the production phase ®(x) at different source points
describes the degree of coherence or chaoticity of the pion production
process.

* The complete probability amplitude for a pion of momentum k to be
produced from the source point x, to propagate along the classical
trajectory, and to arrive at X is:

¥ (k:x—x)=A(k,x)e "y (k:x—x)



Theory basics

* The total amplitude for the detection of a pion at x' is the sum of the
probability amplitudes from all source points:

¥ (k :{all x points|—x ) ZA k,x) 't (lj(k X_UC):Z A(k’x)ew(x)eik(x—x')

(] X

* The single particle momentum distribution, P(k), 1s the absolute square
of the total probability amplitude

P(k)=|¥ (k:{all x points)—x")'=|D_ Ak, x)e'*™ " ©) —|ZA k,x)e'*™ lkx|



Theory basics

Expanding the momentum distribution like

P(k)=> A%(k,x)+> Ak, x)A(k,y)e* e )

XFYy

and 1f we take into account the randomness of the phases of the source at
different points, we are left with:

P(k)=2, A'(k,x)

P(k)=[ dxp(x)A*(k,x)



Theory basics

* Let's find out now the 2-particle distribution function. The probability
amplitude for particle 1 with momentumk, to go from+x, to x,’, in
coincidence with particle 2 (k,) going from x, to x," is the following:

. @k :x —x " )wlk,:x,—x,')

* Using the same formalism as for 1 particle distribution, the amplitude

becomes

, , ik (x —x") ik/(x,—x)')
@k :x —x wlk,:x,—x')=e e



Theory basics

The probability amplitude for the two pions to be produced at the source points,
to propagate from the source points, and to arrive at the detection point is

ig(x ig(x,)

Ak ,x )e A(k x,)e Tylk x —x ylk,:x,—x,')

idp(x,) ip(x,) ik (x,—x') ik, (x,—x)')
Alk ,x)e  "Alk,x)e e e

Because of the indistinguishability of the pions and the Bose-Einstein statistics
of identical bosons, the probability amplitude must be symmetrical with respect
to the interchange of the labels of the pions. So, we get an additional cross

term.

1 i ip(x ik (x —x i '

1 plx ,.x,)e D) i 5=k )

% x e A(
+1 ip(x ip(x,) ik (x,—x ") ik, (x—x,') — i¢(x1) i¢(x2) . ' '
ﬁ{A(kvxz) Alk,,x)e e e | =e e @(klkz.xlxz—wcl X, )



P(k,

k)= dx p(x A%k, x) [ dx p(x)A%(k,,x )+ [ dx p(x ) Ak, x)A(k,, x )e

Theory basics

Summing over all points

lqb

) ¥ (k, k,:{all x x, pointsj—x 'x, Z P Dk k,:x x,—>x 'x)')

1 . Pt
P(kl,kz)=;|‘l’(klkz:{allxlxzpomts}—wc1 X, )|

For a chaotic source, we again make use of the random nature of the phases and
expand the above formula:

Pk k)= |®(k k:x x —x x ')

P(kl,k2)=f dx dx,p(x )p(x,)|P(k k :x x,—x ’362’)|2

i(k‘_kz)x‘xf dx p(x,) Ak, x)A(k, xz)e' ’

Pk k)=P(k)P(k )+ [ dxe"“ ™ p(x) Ak, x)Alk,, x)[

1’772



Theory basics

Now we can use an effective density like this:

P(k k)=

P(k)P(k)(1+| [ dxe™

k)
P

xik, k)

p(x:k k) =p(x)A(k,,x) Ak, x)I\P(k )Pk

eff

p gk k) fdxeiqxpeﬁ(x;klkz)

The distribution function becomes

P(k, k)=

P(k,)P(k,)(1+|5 (q:k,k,))




Theory basics

Now we can define our correlation function like
P (kl, k 2)
P(k )P(k,)

1 2

C (k k)=

2V 2

Thus, for an extended chaotic source, the two pion correlation function is
directly related to the Fourier transform of the effective density.

_ ~ (. 2
Cz(kl’kz)_1+|peﬁc<Q’ k1k2)|



Model sources for particle emission



Static Gaussian source

Is the most extensively used parametrization and corresponds to
particle emission from a Gaussian source that may move with
respect to the laboratory frame but does not otherwise evolve

with time.
1

p(r)Z\/ ——— 6exp—[(x/ax)z—l-(y/ay)z—l-(z/czz)z]/Rz,
a.a at R

where a, 's are dimensionless constants that allow for non-

spherical sources.
If the two body wave functions are plane waves, the correlation
function 1s given by the square of the Fourier transform of the

source distribution:
. 2 2 27 1?2
C,(k, k)=1+exp{—2[(q a ) +(q a)+(qa)]|R



Two gaussian source

This type of source 1s a refinement of the static single-gaussian
source model

ul
(pl-R2)3/2

1

p(r)= exp(—rlef)+ exp(—rlez)

(piR2>3/2

2

where u,+u,=1 . One of the length scales could refer to direct
pion production, while the second could refer to pions
produced through resonance decays. The corresponding
correlation function 1s

C,(k,, kz)zulexp[—(kl—kz)zRf/2]—|—uzexp[—(kl—kz)zR§/2]



Finite source lifetime Gaussian-source model

This 1s a further refinement of the Gaussian-source model.

1

7TI"OT

p(r,t)= exp{—rzlr(z)—tzl‘rz}

The corresponding correlation function 1s, in the plane wave limit

C,(k . k)=1+exp(—[(k —k,)r /2]-[(E —E,) T'/2]]



Lorentz invariant Gaussian-source model

A further time dependence of the source distribution 1s the translation of
the source in the laboratory frame. The effect of this motion lead to the
following Lorentz invariant form of the Gaussian source:

1

2.3
7TI’0T

—_ 2
p(x")= exp[—Bl(xuS“) —I—Bzxux”]

where B1 and B2 are source parameters and S 1s the total four-
momentum of the source system. For a choice of the parameters

22 2 . U
Bl—(rO +T )/s,Bz—r0 ,wheres—SuS

we get the following correlation function:

_ 2 2 2 _
C,(k,, k,)=1+exp|—2B r,T (quS“) +2quq“/Bz],whereq“—(k’;—k’;)/Z



Kopylov-Podgoretskil model

Kopylov and Podgoretskii propose a more complicated model for the pion emitting
source. Basically, they consider a two step approach to pion production. In the first step,
an oscillator 1s excited. In the second step i1t deexcites by emitting a pion. The decay 1s
assumed to take place statistically. Two models are considered for the spatial region
where the oscillators are produced. In the first model, the oscillators are uniformly
distributed inside an ellipsoidal region, while in the second model, the oscillators are

distributed only on the surface of an ellipsoid.
In their model, the probability of detecting two particles is

P o~ exp(i4) N exp(—iA) N1+<1+§a§B>COSA+<§a_§3)SinA

C 205 i), ) 2(8, +i)(E,—) (1+8,)(1+E))

)

where

A=k r +kor —kr, —kr _<E1_E2>(to<_tﬁ>

2 B2 1 B1 2 «?2

gcxus):[El_Ez_vaw)(kl_kz)]/ra(ﬁ)



Kopylov-Podgoretskii model

The first source region 1s a uniform ellipsoid and the correlation function is:
C,(k ,k)=1 —I—[3j1(K)/K]2/(1—I—§2),
where J, (k) is a spherical Bessel function and

A )2]1/2

< <

k=2[(q,A)+(q,A ) +(q

The A, parameters are the semiaxes of the ellipsoid.
As a second source distribution, Kopylov and Podgoretskii consider
emission from an ellipsoidal surface. This gives the result:

Cz(kl,k2)=1—|—[Jl(K)/K]2/(1—|—§2),

where J 1(K) 1s a cylindrical Bessel function.



Time evolving sources

Pratt (1984) has developed a correlation function formalism based on Wigner functions,
which he applies to particle emission from a spherically expanding shell. Pion emission is

treated from a source whose Wigner function has the form
g(x, k)=6(r—R0)exp(—tz/Tz)eXp[—E "(k,r)IT],

where the pion is emitted at space-time coordinates (Ro n,t ) from a spherical shell
characterized by a radius RO, lifetime parameter T , and temperature T. The unit vector
normal to the sphere surface is denoted by n. In a frame co-moving with the shell at

velocity vn, the pions energy is E'(k, l’)=(Ep—v nk)(1 _VZ)—1/2
The correlation function has a form in which the apparent source size depends on the

total momenta of the pion pair.

R (K)=R |(ztanh z) ' =sinh?z]'"?,

S

where K=k +k,  and z=Kyv/(2T)



Final state interactions

Coulomb interaction is corrected by using the Gamow factor.
[C2<q>]theory+Coulomb: W <p1 ’ p2) C2<Q)

The strong interaction is believed to distort the correlation factor as well. Unfortunately,
there 1s considerable uncertainty in the measured phase shifts introduced by the strong
interaction, so that the magnitude of the strong interaction effects is not well determined.
Different authors agree that strong interactions may suppress the correlation function at
g=0 by as much as 20%.



Recent experimental results
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Apparent source size measured by STAR as a function of multiplicity. The data is
compared with results at lower energies also. The scaling between source size, fitted from
the experimental correlation function, and multiplicity can be observed.
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to collective expansion of the source

The chaoticity parameter increases with increasing transverse mass of the pair, meaning that lower pt
particles come from a more coherent source. The observed radius size is dropping with increasing
transverse mass leading to the conclusion that high pt particles are created in a central hot core, while
low pt particles come from a more extended source.



STAR Preliminary
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Comparison between pion-pion
correlations and kaon-kaon
correlation results from STAR in
AuAu at 62.4 GeV collisions. Within
statistical errors, at the same
transverse mass, the kaon correlations
give about the same source size as the
pion correlations.



