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Abstract
Over the last 50 years, diagnostic imaging has grown from a state of infancy to
a high level of maturity. Many new imaging modalities have been developed.
However, modern medical imaging includes not only image production but
also image processing, computer-aided diagnosis (CAD), image recording and
storage, and image transmission, most of which are included in a picture
archiving and communication system (PACS). The content of this paper
includes a short review of research and development in medical imaging science
and technology, which covers (a) diagnostic imaging in the 1950s, (b) the
importance of image quality and diagnostic performance, (c) MTF, Wiener
spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems,
(f) digital imaging systems, (g) image processing, (h) computer-aided
diagnosis, (i) PACS, ( j) 3D imaging and (k) future directions. Although some
of the modalities are already very sophisticated, further improvements will
be made in image quality for MRI, ultrasound and molecular imaging. The
infrastructure of PACS is likely to be improved further in terms of its reliability,
speed and capacity. However, CAD is currently still in its infancy, and is likely
to be a subject of research for a long time.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of x-rays by W C Roentgen in 1895, medical imaging has contributed
significantly to progress in medicine. The various imaging modalities developed over the
last 50 years include radionuclide imaging, ultrasonography, computed tomography (CT),
magnetic resonance imaging (MRI) and digital radiography. Therefore, diagnostic imaging
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Figure 1. Major components in modern diagnostic imaging.

has grown during the last 50 years from a state of infancy to a high level of maturity. It is
very clear that medical imaging has become established as having an important role in patient
management, and especially radiologic diagnosis.

From the standpoint of viewing of clinical images, the major achievement in medical
imaging might seem to lie in the production of many different types of images. However,
modern medical imaging includes not only image production, but also image processing, image
display, image recording and storage, and image transmission, most of which are included in
a picture archiving and communication system (PACS). Thus, image production is only one
of many aspects of modern imaging science and technology.

After medical images have been produced by various modalities, they are presented to
a physician (usually a radiologist) for interpretation and a subsequent diagnosis as to the
medical condition of a patient. The diagnosis is the result of a decision-making process
by the radiologist, who has specialized medical knowledge and experience. Thus, from
a physician’s standpoint, image interpretation and decision making have been considered
as the most important processes in diagnostic radiology. For assisting radiologists’ image
interpretation, computerized analysis of medical images has recently been implemented
clinically for detection of abnormalities such as breast lesions in mammograms; this is
generally known as computer-aided diagnosis (CAD).

Major components of modern diagnostic imaging may be illustrated schematically in
figure 1. The concepts of these components are applicable to all of the different imaging
modalities which may, in some cases, be integrated into a large PACS (Huang 2004). Specific
subjects concerning mammography, CT, MRI, MR spectroscopy, ultrasound imaging, SPECT
and PET will be discussed in separate articles in this issue of Physics in Medicine and Biology
(PMB), but some of the major events during the last five decades are summarized in table 1.
The content of this review is based primarily on conventional projection x-ray film images
and digital images. However, some of the concepts and methods described here will also be
applicable to many different types of images obtained with various imaging modalities.

2. Diagnostic imaging in the 1950s

At the time when the first issue of PMB was published, most diagnostic images were obtained
by use of screen–film systems and a high-voltage x-ray generator for conventional projection
x-ray imaging (Rosenbusch et al 1994). Most radiographs were obtained by manual processing
of films in darkrooms (Haus and Gullinan 1989), but some of the major hospitals began to use
automated film processors. The first automated film processor, shown in figure 2, was a large
mechanical system with film hangers, which was designed to replace the manual operation of
film development; it was very bulky, requiring a large space, and took about 40 min to process
a film.
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Figure 2. Automated film processor used in the 1950s (permission from Rosenbusch et al (1994)).

Table 1. Major events in diagnostic imaging over the last five decades.

1950s Utilization of an image-intensifier TV system for fluoroscopy
Development of a gamma camera for radionuclide imaging

1960s Development of a 90 s automated film processor
Basic research on image quality, MTFs, Wiener spectra and quantum mottle

1970s Development of rare-earth screen–film systems, digital subtraction angiography (DSA),
computed tomography (CT), ultrasound imaging with electronic scan
Initial research on ROC analysis, MRI, PET, SPECT, PACS and electronic imaging

1980s Development of computed radiography (CR), magnetic resonance imaging (MRI),
colour Doppler ultrasound imaging
Initial research on computer-aided diagnosis (CAD)

1990s Commercialization and clinical use of a CAD system, flat-panel detector (FPD)
systems, multi-detector computed tomography (MDCT), magnetic resonance
angiography (MRA), ultrafast MRI, PET and ultrasound harmonic/contrast imaging

2000s Development and clinical use of real-time 3D ultrasound imaging, cone-beam CT,
parallel MRI, PET/CT, full-field digital mammography (FFDM), MDCT with 256
detectors, molecular imaging and PACS

A major new event at that time was the development of image intensifiers (I.I.s) for
fluoroscopy, which were intended to replace ‘dark’ fluorescent screens (Deutschberger 1955).
The input size of an early image intensifier was only 5 inches, which caused difficulty in
viewing of large areas in patients. The input size of the image intensifier was increased
gradually over the years, and the image intensifier was combined with a TV camera to
provide video images by an I.I.–TV system, which is still used in many hospitals today.
Figure 3 shows one of the I.I. systems applied to fluoroscopic examination (Rosenbusch et al
1994).
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Figure 3. Image intensifier with two optics system for two people in fluoroscopy in the 1950s
(permission from Rosenbusch et al (1994)).

Garland (1949, 1959) and Yerushalmy (1955) carried out a number of observer studies
for detection of pulmonary abnormalities on chest images made by different systems, which
included high-quality screen–film images and low-quality minified photofluoroscopic images.
They found that radiologists missed on average approximately 30% of actual lesions, and that
the size of the recording medium (35 mm or 14′′ ×17′′ film) was less important than the degree
of variation among observers. These observations provided the motivation for further studies,
over the subsequent years, on understanding a radiologic diagnosis in terms of detection of
abnormalities in medical images, and also eventually for the development of computer-aided
diagnosis. Many other studies, some of which were carried out more recently, have confirmed
that radiologists and physicians tend to miss many different types of lesions, including breast
lesions in mammograms (Schmidt et al 1994) and lung nodules in CT images (Li et al 2002,
2005a, Armato et al 2002) at a rate which is comparable to the rates reported earlier (Garland
1949, 1959, Yerushalmy 1955).

3. Importance of image quality and observer performance

It has generally been believed that diagnostic accuracy, which corresponds to the outcome of
radiologic examinations, is related to image quality and other factors (Rossmann and Wiley
1970). However, image quality was a rather vague and difficult concept for quantitation and
measurement in the 1950s. Rossmann (1963, 1964, 1966) demonstrated the complexity and
importance of the effects of spatial resolution and image noise on simple phantom images by
using two different screen–film systems. Figure 4 shows two images obtained with different
screen–film systems: system A consists of slow screens with fast film, and system B includes
fast screens with slow film. The image with system A is sharp but noisy, and that with system
B is smooth but blurred. The two systems have the same overall speed and thus result in the
same patient exposure. Test objects included needles and plastic beads, which were used to
simulate one-dimensional high-contrast patterns such as blood vessels in angiography and two-
dimensional low-contrast patterns such as gallstones, respectively. It is apparent in figure 4
that with system A the needle is visualized clearly, but plastic beads are not seen well, whereas
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Figure 4. Bead and needle images obtained with two screen–film systems.
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Figure 5. Comparison of blood vessels in angiograms obtained with two screen–film systems.

with system B the needle is blurred but the plastic beads are clearly seen. Therefore, system
A is better for visualization of the needle, but system B is better for detection and recognition
of the plastic beads. This result implies that a given imaging system would not be suited for
all types of objects, and thus a proper imaging system needs to be selected by consideration
of specific objects or lesions of clinical interest together with the imaging properties of the
system used (Rossmann 1966).

Rossmann applied his findings on these phantom images to practical clinical situations
and succeeded in improving clinical images (Doi et al 1977), as shown in figures 5 and 6. The
comparison of angiograms in figure 5 indicates that small vessel images produced by system
A were clearer than those by system B, which had been used in Rossmann’s department, and
thus was replaced by system A as a result of this demonstration. Similar results illustrated
in figure 6 showed that gallstones in a cholecystogram from system B were visualized better
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Figure 6. Comparison of gallstones in cholecystograms obtained with two screen–film systems.

than those from system A, which also had been used in his department, and thus was replaced
by system B.

Kundel and Nodine (1975), Kundel et al (1978) and Carmody et al (1980) carried out
extensive investigations on radiologists’ performance in the detection of lung nodules in chest
radiographs, and then analysed in detail why some lesions were missed. By studying eye
movements, they found that 30% of missed nodules were caused by failure of the radiologist
to look at the territory of the lesion (search error). In 25% of missed nodules, the eyes looked
at the territory of the lesion, but failed to dwell on it (recognition error). Finally, when the eyes
dwell on a possible lesion, the radiologist may decide that it is not a lesion (decision-making
error); this accounts for 45% of false negative errors. Furthermore, Kundel and Revesz (1976)
and Kundel et al (1979) found that film reader errors were affected by the adjacent normal
background structures, including ribs and vessels, which tend to camouflage nodules in chest
images, and thus they called this background structured noise.

Kundel and colleagues also attempted to quantify the conspicuity (Kundel and Revesz
1976, Kundel et al 1979), which would indicate the salience or visibility of a lesion affected
by structured noise, based on a concept similar to the signal-to-noise ratio. Although the
results obtained from the empirical formulation of conspicuity were not successful in relating
quantitatively to the performance of observers (Seeley et al 1984, Revesz 1985), the concepts
of structured noise and conspicuity are still widely considered to be important and useful for
understanding the visual detection of abnormalities in medical images.

4. MTF, Wiener spectrum, NEQ and DQE

The three main factors affecting image quality are now generally considered to be contrast,
sharpness (spatial resolution) and noise. These basic imaging properties in radiographic
images can be evaluated or characterized by the gradient of the H&D curve, the modulation
transfer function (MTF) and the Wiener spectrum (ICRU 1986, 1996, 2003). The MTF can
be obtained from the one-dimensional Fourier transform of the line spread function (LSF) or
from the two-dimensional Fourier transform of the point spread function (PSF) of an imaging
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Figure 7. Pinhole images illustrating the PSFs of three screen–film systems.
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Figure 8. MTF of three screen–film systems.

system (Rossmann 1963, 1969, Morgan et al 1964, Metz and Doi 1979, Doi et al 1982a, 1986).
The MTF represents the spatial frequency response of an imaging system such as a screen–
film system and the geometric unsharpness due to the focal spot of an x-ray tube. Figure 7
shows pinhole images obtained with three different screen–film systems, which illustrate the
difference in the degrees of sharpness of these systems for an extremely narrow x-ray beam
(10 µm square) incident on these screens. The PSF can be obtained from pinhole images.
The MTFs of the three screen–film systems are shown in figure 8, where the high-resolution
property of a mammographic system is indicated by the high level of the MTF compared with
those of the other systems.

The Wiener spectrum represents the spatial frequency content of image noise. It can be
determined based on the Fourier analysis of noise patterns obtained from uniform exposure of
x-rays to an imaging system. In conventional screen–film systems and in digital radiography,
the major source of noise in images is generally due to quantum noise or quantum mottle,
which is caused by the statistical fluctuation of x-ray quanta absorbed by the screen–film
system or the detector (Cleare et al 1962, Rossmann 1963, 1964, Doi 1969).

A theoretical framework for image quality evaluation of medical imaging systems
including conventional radiography, digital radiography, CT, MRI, radionuclide imaging and
ultrasonography has been provided in ICRU Report No 54, ‘Medical imaging: the assessment
of image quality’, published in 1996. The content of this report included the definition of
noise equivalent quanta (NEQ) and of detective quantum efficiency (DQE) as a function of
the spatial frequency (Shaw 1963, Dainty and Shaw 1974, Wagner 1977, Bunch et al 1987).
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High Resolution Conventional 

Figure 9. Comparison of bone images obtained with a conventional screen–film technique and
high-resolution technique by use of a film without screens.
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Figure 10. Comparison of the (a) NEQ and (b) DQE of two techniques used for bone images.

The NEQ are defined by taking into account the system’s gradient, the MTF and the Wiener
spectrum, and indicate the content of an image produced by uniform exposure incident on the
imaging system. The DQE is obtained from the ratio of the NEQ to the average number of
x-ray quanta incident on the detector, and also from the ratio of the signal-to-noise ratio (SNR)
of the output image to the SNR of the incident x-ray exposure. Thus, the DQE is an inherent
measure of an imaging system for detecting a known signal, whereas the NEQ provides a
measure of the potential quality of a uniformly exposed image in terms of the number of
quanta contributing to the image.

Figure 9 shows a comparison of bone images obtained with two different techniques,
i.e., the conventional technique by use of a screen–film and a high-resolution technique by
use of a film without screen (Genant and Doi 1978). The high-quality bone image obtained
with the high-resolution technique is apparent. The NEQ of these images and the DQE of
the two techniques are shown in figure 10. It is apparent that the NEQ of the high-resolution
technique is much greater than that of the conventional screen–film system, which is consistent
with a large difference in image quality between the two systems. However, the DQE of the
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high-resolution system is very low, but extends to high frequencies. This result corresponds
to the fact that the x-ray absorption in film was extremely low, and required a large incident
x-ray exposure.

5. ROC analysis

Although the theoretical framework for image quality evaluation is useful for design of the
technical parameters of an imaging system, there is a need for quantitative evaluation of the
diagnostic performance for many important clinical situations. For example, it is common
for many radiologists to question whether a new film, a novel technique or an improved
method can really provide a diagnostic performance superior to that with the conventional
film, technique or method. Many investigators believe that the answer to this question can be
found from analysis of receiver operating characteristic (ROC) curves obtained from observer
performance studies which can be carried out with a number of clinical cases and human
observers (Metz 1986, 1989, 2000). In fact, ROC analysis has become the standard statistical
methodology for evaluating the diagnostic accuracy of imaging systems.

Lusted (1960, 1971) may have been the first to suggest the application of ROC analysis
to medical imaging and decision making. The basic concept of ROC analysis was developed
during World War II in the field of detecting signals in radar images based on signal detection
theory. Goodenough et al (1972) reported on ROC curves which were obtained by an
observer in the detection of 2 mm lucite beads images, similar to those shown in figure 4,
recorded on various screen–film systems. Since then, various aspects of the methodology
for obtaining ROC curves and evaluating the results based on statistical analysis have been
developed to provide reliable comparisons of new techniques including digital mammography
and computer-aided diagnostic schemes. An important development was reported by Dorfman
et al (1992), who provided the so-called DBM method for analysing multi-reader, multi-case
(MRMC) ROC data by taking into account the variations in both readers and cases. With
MRMC methodology, the conclusions derived from ROC analysis by use of a sample of cases
and a sample of readers can be applied both to populations of cases and readers.

Based on an ROC analysis of the detection of breast cancer in a digital mammography
imaging screening trial (DMIST), Pisano et al (2005) recently reported that digital
mammography is as good as conventional screen–film mammography. It is likely that the
conclusion drawn in this study will end the controversy over the last 10 years or more as to
whether digital mammography can be used in clinical practice.

6. Analogue imaging systems

The central component of analogue radiologic imaging systems is the screen–film system,
which was first employed soon after the discovery of x-rays and is still widely used in many
countries around the world, but is being replaced slowly but steadily by digital imaging
systems. Over the last 50 years, screen–film systems have been improved substantially by
use of rare-earth phosphors instead of traditional calcium tungstate phosphors as the materials
used for absorbing x-rays in the screens. Because of the high x-ray absorption and high
light conversion efficiency of these rare-earth phosphors (Buchanan et al 1976, Wagner and
Weaver 1976), it was possible to achieve a significant reduction in patient dose, by a factor
of about 2, without a change in image quality as quantified by the MTF and Wiener spectra
(Doi et al 1982a, 1986), and/or to improve the image quality in radiographs (Bunch 1994,
1995). Although conventional screen–film systems are generally symmetrical in the sense
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that the same screens and the same film emulsions are used on both the front and back sides,
an asymmetrical screen–film system was developed by Eastman Kodak Co. specifically for
chest radiography to visualize both fine lung details at high optical densities and low-contrast
nodules at the low optical densities that may be located in the mediastinum (Bunch 1992,
Swensen et al 1993, Gray et al 1993).

Substantial progress was made in automatic film processors during the last 50 years (Haus
and Gullinan 1989), including 90 s film processors in the 1960s, 30 s film processors in the
1980s and later dry processors without water and liquid components for processing certain
types of films.

The effects of other components, which are common to both analogue and digital x-ray
imaging systems, on basic imaging properties have been investigated extensively over the last
50 years. The effect of geometric unsharpness due to the finite size of the x-ray tube focal spot
was evaluated by use of the MTF and the magnification factor (Doi and Rossmann 1975, Doi
et al 1975, 1982b), with a precision device developed specifically for accurate measurements
of the focal spot distribution. Monte Carlo simulation studies (Chan and Doi 1982a, 1982b,
1983) indicated that the effect of scattered radiation on image quality can be predicted, and
also that the effect of antiscatter grids can be evaluated quantitatively in terms of the contrast
improvement factor and Bucky factor. These studies have led to the development of high-
strip-density grids (Chan et al 1985), which have a relatively light weight, but good scatter
removal.

7. Digital imaging systems

Potential advantages of digital systems over analogue systems were predicted in the initial
phase of digital/electronic imaging research. However, considerable time and effort were
needed for understanding the effects of many parameters in digital systems on image quality,
and to accept digital images in many areas of clinical practice. One of the important digital
parameters is the pixel size, which may substantially affect the quality of digital images (Foley
et al 1981, Giger and Doi 1984a, 1984b, 1985, MacMahon et al 1986). Figure 11 shows a

Original

Digitized

Figure 11. Comparison of an original chest radiograph with a subtle pneumothorax and the
digitized image with a pixel size of 1.0 mm.
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Figure 12. ROC curves for radiologists in the detection of pneumothorax in original chest
radiographs and digitized images with various pixel sizes.

comparison of an original chest image with a subtle pneumothorax and the digitized image
with a pixel size of 1.0 mm. It is very difficult to detect the subtle pneumothorax on the
digitized image. In fact, the ROC curves in figure 12 indicate that radiologists’ performance
in the detection of pneumothorax in digitized images was degraded substantially as the pixel
size increased from 0.1 mm to 1.0 mm.

The first successful digital radiographic system was developed by Fuji Photo Film Co.,
and was called computed radiography (Sonoda et al 1983); the first-generation FCR 101,
which included an imaging plate made of a storage phosphor such as europium-activated
barium fluorohalide and a laser readout system, is shown in figure 13(a). The image quality
of early CR systems was not as good as that of screen–film images, probably due to the
relatively low DQE of the detector used (Dobbins et al 1995). However, the image quality of
recent advanced CR systems has been improved significantly by incorporation of a number of
innovative approaches such as dual-side reading of latent images in the imaging plate (Arakawa
et al 1999, 2003), as illustrated in figure 13(b). Although FCR included digital data storage to
allow image processing such as unsharp masking, its output images usually were printed on
film as hard-copy images in the initial phase of its development. However, digital radiographic
images can now be displayed on high-quality monitors and are often called soft-copy images.

The second generation of digital radiographic systems generally makes use of flat-panel
detectors (FPDs) which are self-scanning, two-dimensional solid-state imaging devices, and
thus are considered ‘ideal’ digital x-ray imaging devices. There are two types of FPDs. One,
which may be called a direct FPD (Zhao and Rowlands 1995, Lee et al 1995), employs an
x-ray sensitive photoconductor such as selenium to convert the input x-ray image to a charge
image that is then read out electronically by a two-dimensional array of thin-film transistors.
Another is called indirect FPD (Antonuk et al 1992, Granfors and Aufrichtig 2000, Finc et al
2002, Rapp-Bernhardt et al 2003, Bacher et al 2003); it includes a scintillator layer such as
thallium-doped caesium iodide for conversion of x-rays to visible light, which is then detected
by an array of amorphous silicon photodiodes for conversion to an electrical charge. The
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Figure 13. (a) The first-generation FCR system in 1983, and (b) a schematic diagram of a dual
reading system in an advanced FCR system (courtesy of Fuji Photo Film Co.).
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Gate Drivers
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(a) (b)

Figure 14. (a) Flat-panel detector system and (b) multi-purpose C-arm diagnostic x-ray system
with a flat-panel detector (above the table) (courtesy of Toshiba Medical Systems Co.).



Review R17

Original Processed

Figure 15. Comparison of an underexposed low-density film image and processed image for
enhancement of the underexposed film image.

advantages of these FPDs are a relatively high DQE due to high x-ray absorption by the
detector and also, in direct FPD, potentially high spatial resolution. Figure 14 shows (a) a
selenium FPD system together with the associated electronic components with a pixel size
of 150 µm and a matrix size of 2304 × 2304, and (b) a multi-purpose C-arm system with
the FPD installed above the table. This system can be used for fluoroscopic studies with a
matrix size of 1152 × 1152 at a frame rate of 30 s−1. It is compact in size compared with
conventional systems that include an I.I.–TV system.

8. Image processing

One of the advantages of digital images is that these images can be changed in many different
ways by use of various image processing techniques (Bankman 2000). This is a very important
advantage, because conventional film images cannot be changed once they have been obtained.
For example, if film images were under- or overexposed, additional exposure to patients was
necessary in analogue imaging systems. Figure 15 shows an underexposed low-density film
image and a digitally processed image which was obtained from the corresponding digitized
film image by use of a laser digitizer. It should be noted that the density distribution of the
processed image is very similar to that of a properly exposed film image (Yoshimura et al
1993).

Although many different image processing techniques are available for different purposes
including temporal subtraction (Kano et al 1994, Ishida et al 1999), the most commonly
used processing techniques for digital radiographic images have been aimed at enhancement
of the digital images by removal or suppression of noise, and by increasing contrast and/or
sharpness, such as the unsharp mask filtering used in FCR. Figure 16 shows a comparison
of an original film image with low-contrast objects at three different densities and an image
that has been processed to enhance low-contrast objects. Note that only the local contrast
in the film image has been increased, whereas a large-area overall density distribution in the
processed image was kept the same as that in the original image. The visibility of circular
objects in the processed image appears to be superior to that in the original film image. In
fact, the ROC curves shown in figure 17 indicate clearly that observers’ performance in the
detection of simple low-contrast patterns was substantially improved by use of the processed
images compared with the original film images (Ishida et al 1983, 1984). This improvement
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Figure 16. Comparison of an original film image with low-contrast circular objects at three
different background densities and processed image for enhancement of local contrast of objects
while maintaining the same large-area contrast, i.e., the same background densities.
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Figure 17. ROC curves for detection of low-contrast objects without and with image enhancement.

in the detection of low-contrast objects by enhancement of local contrast was possible because
the contribution of internal noise in human observers can be reduced in the detection of low-
contrast objects by increasing the contrast of objects in the processed image, even though image
noise is increased as well. The noise level in radiographic images is generally comparable to
the level of internal noise in human observers (Ishida et al 1984), although human observers
may not be aware of this important effect.



Review R19

9. Computer-aided diagnosis

Computer-aided diagnosis (CAD) is a relatively new concept that has been developed largely
during the last 20 years, and that is growing rapidly in diagnostic radiology and medical
physics (Doi 2003, 2004, 2005). The aim of CAD is to improve the diagnostic accuracy and
the consistency of image interpretation by a radiologist who uses the computer output as a
‘second opinion’. With the computer output pointing to a subtle lesion, the radiologist may
be reminded to consider carefully and therefore detect such a lesion, which would otherwise

Film  Digitizer Computer
Magneto-Optical 
Jukebox

Computer output Enlarged lesion

(a)

(b)

Figure 18. (a) The first CAD system developed at the University of Chicago in 1994 for detection
of breast lesions in mammograms, and (b) mammogram with clustered microcalcifications detected
by a CAD scheme.
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Figure 19. ROC curves for improved detection of clustered microcalcifications on mammograms
by use of a computer output.

be missed. In the development of various CAD schemes, it is necessary to employ image-
processing and information-processing techniques for quantitative analysis of images. In
addition, it is necessary to understand the medically relevant content of the images on the
basis of technical features. For example, for detecting lesions by computer, it may be useful
to devise approaches that are similar to those which radiologists employ in their clinical tasks.
For distinguishing between normal and abnormal patterns (or between benign and malignant
lesions), it may be useful to learn from radiologists and to quantify the kinds of image features
they recognize and use to make their clinical judgments.

Figure 18 shows (a) the first CAD system developed at the University of Chicago in
1994 for detection of breast lesions on mammograms (Nishikawa et al 1995), and (b) a
mammogram with clustered microcalcifications detected by a computer (see the arrow).
Observer performance studies were carried out for investigating whether the computer output
from a CAD scheme can improve radiologists’ performance. Chan et al (1990) reported
the first evidence, shown in figure 19, that the ROC curve for radiologists’ detection
of clustered microcalcifications was improved significantly when a computer output was
available. Because the concept of CAD is broad, CAD is potentially applicable to all imaging
modalities and all kinds of examinations of every part of the body. For example, a number
of CAD schemes have been developed for detection and classification of various lesions in
chest radiographs (Abe et al 2004), CT (Li et al 2005b, Yoshida and Dachman 2004) and MRI
(Arimura et al 2006, Hirai et al 2005), in addition to breast lesions in mammograms (Freer
and Ulissey 2001, Giger 2004).

10. PACS

The concept of a picture archiving and communication system (PACS) was perceived in
the early 1980s by the radiology community as an integrated communication network and
data management system (Huang 2004), which includes image acquisition devices, storage
archiving units, display workstations, computers and databases. Therefore, PACS may be
considered as the infrastructure for digital diagnostic imaging. Recently, large PACS have
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Figure 20. Illustration of (a) four major components and (b) high-resolution workstation in PACS.

become a reality, and have been implemented in major hospitals in the United States and in other
countries together with radiology information systems (RIS) and hospital information systems
(HIS), which are related to administrative and clinical operations concerning patient care.
Four major components in PACS are illustrated in figure 20(a), where image interpretations
are made by radiologists and physicians on workstations that often include high-resolution
LCD monitors with a matrix size of approximately 2000 × 2500, as shown in figure 20(b).

With PACS, it has become possible for radiologists and physicians to use monitors for daily
interpretation of radiologic images, which can be manipulated for enhancement by an image
processing technique, can be compared with previous images of the same patient together
with temporal-subtraction images, can be compared with similar clinical cases retrieved from
a large database, and also can indicate the computer output from a CAD scheme for prompting
the locations of potential lesions. Advantages of PACS include not only their use in clinical
operations, but also their applications to teaching and research.

11. 3D imaging

The need for 3D visualization of medical images became a pressing need when multi-detector
CT (MDCT) was developed to produce hundreds or thousands of axial images with almost
isotropic voxel data, because image interpretation of all individual image slices by radiologists
would be prohibitively time consuming. 3D images from 3D volume data may be created by
use of a surface-rendering or volume-rendering technique. Another approach is to view a large
number of these images in a stack (cine) mode for images displayed in the axial, sagittal and/or
coronal plane by use of a multi-planar reformatting (MPR) technique. For certain organs
such as the colon and bronchus, a flythrough or image-navigation technique (Rosset et al
2006) may be employed for visualizing the internal surfaces of these organs. For the colon,
this has been called virtual colonoscopy, which involves a perceptual task similar to that in
optical colonoscopy. Clinical examples of 3D images in cardiac CT (Schoenhagen et al 2004),
MR cholangio-pancreatography (Morimoto et al 1992, Ichikawa et al 1998, Koito et al 1998,
Sai and Ariyama 2000) and ultrasound imaging by fusion of a B-mode image and Doppler
image (Fenster and Downey 1996, Ohto et al 2005, Yamagata et al 1999) are illustrated in
figures 21, 22 and 23, respectively. It is likely that the visualization of 3D images would be
more useful if it could be combined with CAD schemes for detection of various abnormalities
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Figure 21. 3D image obtained by cardiac CT, with stenosis in left anterior descending artery
(LAD) (courtesy of Fujita Health University).
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Figure 22. 3D image obtained with MR cholangio-pancreatography (courtesy of Fukushima
Medical University Hospital).

and lesions, and also if images from multiple modalities, such as PET and CT images, could
be combined (von Schulthess et al 2006).

12. Future directions

Over the last 50 years, significant progress has been made in the field of diagnostic imaging.
Many new imaging modalities have been developed. Although some of these modalities are
already very sophisticated, it is likely that further improvements will be made, especially in
image quality for MRI, ultrasound and molecular imaging (Feinendegen et al 2003) which is
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Figure 23. 3D ultrasound image obtained by fusion of a B-mode image for hepatocellular
carcinoma (HCC) and a Doppler image with contrast enhancement for feeding arteries (courtesy
of National Institute of Radiological Science).

related to the spatio-temporal distribution of molecular or cellular processes for biochemical,
biological, diagnostic or therapeutic applications. The infrastructure of PACS is likely to be
improved further in terms of its reliability, speed and capacity. However, CAD is currently
still in its infancy, and is likely to be a subject of research for a long time because the
successful development of CAD schemes depends on a good understanding of the content
of medical images. This will probably require establishing a new field of image science
that is based on a technical understanding of the contents of medical images. In essence,
the major task for this new field of medical imaging science is to translate the knowledge
about image interpretation accumulated in radiologists’ brains into concepts and terminologies
understandable by physicists, computer scientists and engineers. It is, therefore, necessary to
have close collaboration among researchers in multiple disciplines.
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