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Chapter 1

Groups and algebras

The goal of these lectures is to introduce the basics of low-energy models of supersymmetry
(SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as a main example.
Rather than starting with the problems of the SM, we will focus on the algebraic origin of
SUSY in the sense of an extension of the symmetries of Einsten’s Special Relativity (SR),
which was the original motivation for SUSY.

1.1 What is a group?

Definition: The set G = {g¢;} and operation e form a group if and only if for
Vg, € G

i) g; ® gj € G (closure)
ii) (g;®gj)egr=gie(g;®gr) (associativity)

)
iii) Jde € G such that g; e e = e ® g; = g; (identity element)
)

1v Elgl_l € @ such that g; ® gz_l = g._l ey, =c¢ (iIlVGI'SG)

7

A simple example of a group is G = Z with usual addition as the operation, e = 0 and
g~' = —g. Alternatively we can restrict the group to Z,, where the operation is addition
with modulo n. In this group, g;” ' = n — ¢g; and the unit element is e = 0. Note that Z is
an infinite group, while Z,, is finite, with order n (meaning n members). Both are abelian
groups, meaning that g; e g; = g; e g;.

All of this is "only” mathematics. Physicists are often more interested in groups where
the elements of G act on some elements of a set s € S, g(s) = s’ € S S here can for example
be the state of a system, say a wave-function in quantum mechanics. We will return to this
in a moment, let us just mention that the operation g; e g; acts as (g; ® g;)(s) = g; ® (g;(s))
and the identity acts as e(s) = s

! As a result mathematics courses in group theory are not always so relevant to a physicist.
2We can prove this from iii) in the definition. Note that we use e as the identity in an abstract group, while
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A more sophisticated example of a group can be found in a use for the Taylor expansionﬁ

f(@) +af (@) + 2a?f" (@) + ..

flx+a) 5

. a d
= 2 g @

= i f(a)

The operator Tj, = eis is called the translation operator (in this case in one dimension).
Together with the operation Ty, @ T, = T, it forms the translational group 7'(1), where
T:7'=T_,. In N dimensions the group T(N) has the elements Ty = ¢@V.

Definition: A subset H C G, is a subgroup if and only if{d
i) h; e hj € H for Yh;,hj € H
ii) hi'e H for Vh; € H

“An alternative, more compact, way of writing these two requirements is h; hj_1 € H for
Vhi, hj € G. This is often utilised in proofs.

Definition: H is a proper subgroup if and only if H # G and H # {e}. A
subgroup H is a normal (invariant) subgroup, if and only if for Vg € G,

ghg™' € H for Vh ¢ H

A simple group G has no proper normal subgroup. A semi-simple group G has
no abelian normal subgroup.

The unitary group U(n) is defined by the set of complex unitary n x n matrices U, i.e.
matrices such that UTU = 1 or U~! = UT. This has the neat property that for VZ,7 € C"
multiplication by a unitary matrix leaves scalar products unchanged:

=/

Z-y

Il
8
el
<L
|
-
8
=
-
<y

If we additionally require that det(U) = 1 the matrices form the special unitary group
SU(n). Let U;,U; € SU(n), then

det(U;U; 1) = det(U;) det(U; ) = 1.

1 is used as the identity matrix in matrix representations.
3This is the first of many points where any real mathematician would start to cry loudly and leave the
room.
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This means that UZ-U]-_I € SU(N). In other words, SU(n) is a proper subgroup of U(n).
Let V € U(n) and U € SU(n), then VUV ~! € SU(n) because:

det(VUV ™) = det(V) det(U) det (V1) = jztgg;

det(U) = 1.

In other words, SU(n) is also a normal subgroup of U(n).

Definition: A (left) coset of a subgroup H C G is aset {gh : h € H} where g € G
and a (right) coset of a subgroup H C G is a set {hg : h € H} where g € G. For
normal subgroups H the left and right cosets coincide and form the coset group
G/H which has the members {gh : h € H} for Vg € G and the binary operation x*
with ghxg'h' € {(geg')h: h € H}.

Definition: The direct product of groups G and H, G x H, is defined as the
ordered pairs (g, h) where g € G and h € H, with component-wise operation (g;, h;)e®
(gj,hj) = (gi®gj, hiehj). G x H is then a group and G and H are normal subgroups
of G x H.

Definition: The semi-direct product G x H, where G is a mapping G : H — H,
is defined by the ordered pairs (g, h) where g € G and h € H, with component-wise
operation (g;, h;) ® (g5, h;) = (gi ® gj, hi ® gi(h;)). Here H is not a normal subgroup
of G x H.

The SM gauge group SU(3). x SU(2)r, x U(1)y is an example of a direct product. Direct
products are ”trivial” structures because there is no ”interaction” between the subgroups.
Can we imagine a group G D SU(3). x SU(2)r, x U(1)y that can be broken down to the SM
group but has a non-trivial unified gauge structure? There is, SU(5) being one example.

1.2 Representations

Definition: A representation of a group G on a vector space V isamap p: G —
GL(V), where GL(V) is the general linear group on V, i.e. invertible matrices of
the field of V', such that for Vg;,9; € G, p(gi95) = p(gi)p(g;) (homeomorphism).

For U(1) the transformation e’X® is the fundamental or defining representation which
can be used on wavefunctions (x)—these form a one dimensional vector space over the
complex numbers. For SU(2) the transformation €% with o being the Pauli matrices, is
the fundamental representation, which can be applied to e.g. weak doublets ¥ = (v,1)

“This is a bit daft, since both U(1) and SU(2) are defined in terms of matrices. However, we will also
have use for other representations, e.g. the adjoint representation, which is not the fundamental or defining
representation.
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Definition: Two representations p and p’ of G on V and V' are equivalent if and
only if 3A : V — V', that is one-to-one, such that for Vg € G, Ap(g)A~" = p'(g).

Definition: An irreducible representation p is a representation where there is
no proper subspace W C V that is closed under the group, i.e. there is no W C V'
such that for Vw € W, Vg € G we have p(g)w € wld

“In other words, we can not split the matrix representation of GG in two parts that do not ”mix”.

Let p(g) for g € G act on a vector space V as a matrix. If p(g) can be decomposed into
p1(g) and p2(g) such that

for Vv € V, then p is reducible.

Definition: T'(R) is the Dynkin index of the representation R in terms of ma-
trices Ty, given by Tr[T},,Ty] = T(R)dqp. C(R) is the Casimir invariant given by
C(R)6ij = (T*T);;

1.3 Lie groups

We begin by defining what we mean by Lie groups

Definition: A Lie group G is a finite-dimensional, n, smooth manifold C*°,
i.e. for Vg € G, g can locally be mapped onto (parametrised by) R™ or C", and
group multiplication and inversion are smooth functions, meaning that given
9(@),d (@) € G, g(@) o (@) = g"(b) where b(@,a) is analytic, and g~*(@) = ¢'(@)
where @ (@) is analytic.

In terms of a Lie group G acting on a vector space V', dim(V') = m (or more generally
an m-dimensional manifold), this means we can write the map GxV — V for Z € V
as x; — x} = fi(z;,a;) where f; is analytic in z; and a;. Additionally f; should have
an inverse.

The translation group 7T'(1) with g(a) = e is a Lie group since g(a) - g(a') = g(a + a’)
and a + @’ is analytic. Here we can write f(z,a) =  + a. SU(n) are Lie groups as they have
idX

a fundamental representation e’ where ) is a set of n x n-matrices, and f;(%, &) = [’ 7];.

By the analyticity we can always construct the parametrization so that ¢g(0) = e or z; =
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fi(x;,0). By an infinitesimal transformation da; we then get the following Taylor expansiorﬁ

/

X, = X + dl‘i = fl(xl, dai)
_ ofi
= filen0)+ 5

ofi

— . —da.
:L"Z—I—aaj a;

dCLj-i-...

This is the transformation by the member of the group that in the parameterisation sits da;
from the identity. If we now let [’ be a function from the vector space V to either the real R
or complex numbers C, then the group transformation defined by da; changes F' by

oF
_ OFOfi
n 81‘1 aaj J

= danjF

where the operators defined by
afi 0
8aj 8:EZ

are called the n generators of the Lie group. It is these generators X that define the action
of the Lie group in a given representation as the a’s are mere parameters.

As an example of the above we can now go in the opposite direction and look at the
two-parameter transformation defined by

X;

¥ = f(x) = a1z + as,

which gives

of o0 0
X = — = —_—
! Oay Ox Yo’
which is the generator for dilation (scale change), and
0
X9 =—
2 O )

which is the generator for T'(1). Note that [X;, Xs] = —Xo.

Exercise: Find the generators of SU(2) and their commutation relationships.
Hint: One answer uses the Pauli matrices, but try to derive this from an infinitesimal
parametrization.

Next we lists three central results on Lie groups derived by Sophus Lie [I]:

5The fact that f; is analytic means that this Taylor expansion must converge in some radius around f;(z;, 0).
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Theorem: (Lie’s theorems)

ofi s :
da; 18 analytic.

i) For a Lie group

ii) The generators X; satisfy [X;, X;] = C’ijk, where ij are structure con-
stants.

ii) Cf = —C% and CECpy + Chop + cfep = old

“The second identity follows from the Jacobi identity [X;,[X;, X&]] + [Xj, [ Xk, Xi]] +
[X/C7 [X7~7X]” =0

Exercise: What are the structure constants of SU(2)?

1.4 Lie algebras

Definition: An algebra A on a field (say R or C) is a linear vector space with a
binary operation o : A x A — A.

The vector space R? together with the cross-product constitutes an algebra.

Definition: A Lie algebra L is an algebra where the binary operator [, ], called
Lie bracket, has the properties that for z,y,z € L and a,b € R (or C):

i) (associativity)
la + by, ] = afz, 2] + by, 2

[2,ax + by] = alz, z] + bz, y]
ii) (anti-commutation)
[z, y] = —y, z]

iii) (Jacobi identity)
[.’L‘, [y7 ZH + [yv [va]] + [Zv [xay“ =0

We usually restrict ourselves to algebras of linear operators with [z, y] = zy — yz, where
property iii) is automatic. From Lie’s theorems the generators of an n-dimensional Lie group
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form an n-dimensional Lie algebra.

We mentioned the fundamental representation of a matrix based group earlier. These
representations have the lowest possible dimension. Another important representation is the
adjoint. This consists of the matrices:

(M;)k = —Cf;

where ij are the structure constants. From the Jacobi identity we have [M;, M;| = C’ijk,
meaning that the adjoint representation fulfills the same algebra as the fundamental (gener-
ators). Note that the dimension of the fundamental representation n for SO(n) and SU(n)
is always smaller than the adjoint, which is equal to the degrees of freedom, %n(n —1) and
n? — 1 respectively.

Exercise: Find the dimensions of the fundamental and adjoint representations of
SU(n).

Exercise: Find the fundamental representation for SO(3) and the adjoint repre-
sentation for SU(2). What does this say about the groups and their algebras?
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Chapter 2

The Poincaré algebra and its
extensions

We now take a look at the groups behind Special Relativity (SR), the Lorentz and Poincaré
groups, and look for ways to extend them to internal symmetries, i.e. gauge groups.

2.1 The Lorentz Group

A point in the Minkowski space-time manifold My is given by x# = (¢, x,y, z) and Einstein’s
requirement was that physics should be invariant under the Lorentz group.

Definition: The Lorentz group L is the group of linear transformations z# —

a'* = AF,z¥ such that 22 = z,t = z),x'" is invariant. The proper or-

thochronous Lorentz group L_T|r is a subgroup of L where det A = 1 and A% > 1.

“This guarantees that time moves forward, and makes space and time reflections impossible,
with the group describing only boosts and rotations.

From the discussion in the previous section one can show that any A € Ll can be written as

: p
A, = {exp <—%w’”Mpo>} , (2.1)

v

where w,, = —wgs, are the parameters of the transformation and M, are the generators of
L, and the basis of the Lie algebra for L, and are given by:

0 —-K, —-Ky, —-Kj
Ky O Js  —Ja
Ky —Js 0 Ji|
Ks Jy —J 0

13
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where K; and J; are generators of boost and rotation respectively. These fulfil the following
algebra

[JZ‘,J]'] = —iéijkjk, (2.2)
[JZ‘,K]'] == z'eiijk, .
[KZ',KJ‘] == —ieiijk. (24)

The generators M of L obey the commutation relation:

[Mum Mpcr] = _'L.(g,upMucr - g,quup - .gzxpM,ucr + guch,up)' (25)

2.2 The Poincaré group

We extend L by translation to get the Poincaré group, where translation : z# — z'# = zH+ak.
This leaves lengths (z — y)? invariant in My.

Definition: The Poincaré group P is the group of all transformations of the form
at — 'F =AM Y + oM.

We can also construct the restricted Poincaré group PT, by restricting the ma-

trices A in the same way as in LL.

We see that the composition of two elements in the group is:
(A1,a1) @ (Ag,a2) = (A1A2, Arag + ay).

This tells us that the Poincaré group is not a direct product of the Lorentz group and
the translation group, but a semi-direct product of L and the translation group 7'(1,3),
P =1 xT(1,3). The translation generators P, have a trivial commutation relationshipg

[P, P)=0 (2.6)

One can show thatf
[M;wa Pp] = _i(guppu - gupP,u) (27)
Equations (2.5)-(21) form the Poincaré algebra, a Lie algebra.

2.3 The Casimir operators of the Poincaré group

Definition: The Casimir operators of a Lie algebra are the operators that com-
mute with all elements of the algebraﬁ

“Technically we say they are members of the centre of the universal enveloping algebra of the
Lie algebra. Whatever that means.

'Notice that [Z2) and Z4) are the SU(2) algebra.

2This means that the translation group in Minkowski space is abelian. This is obvious, since z* + y* =
y* + x". One can show that the differential representation is the expected P, = —i0,.

3For a rigorous derivation of this see Chapter 1.2 of [2]
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A central theorem in representation theory for groups and algebras is Schur’s lemma:

Theorem: (Schur’s Lemma)
In any irreducible representation of a Lie algebra, the Casimir operators are
proportional to the identity.

This has the wonderful consequence that the constants of proportionality can be used to
classify the (irreducible) representations of the Lie algebra (and group). Let us take a concrete
example to illustrate: P? = P, P*# is a Casimir operator of the Poincaré algebra because the
following holdsf]

(P, P?] = 0, (2.11)
[M,,,P?] = o (2.12)

This allows us to label the irreducible representation of the Poincaré group with a quantum
number m?, writing a corresponding state as |m), such that{]

P%m) = m?|m).

The number of Casimir operators is the rank of the algebra, e.g. rank SU(n) = n — 1.
It turns out that PJTr has rank 2, and thus two Casimir operators. To demonstrate this is
rather involved, and we won’t make an attempt here, but note that it can be shown thatﬁ
LL =~ SU(2) x SU(2) because of the structure of the boost and rotation generators, where
SU(2) can be shown to have rank 1. Furthermore, LE_ = SL(2,C). We will return to this
relationship between LL and SL(2,C) in Section 25, where we use it to reformulate the
algebras we work with in supersymmetry.

So, what is the second Casimir of the Poincaré algebra?

Definition: The Pauli-Ljubanski polarisation vector is given by:

1
W = geurpa P M?°. (2.13)

“The first relation follows trivially from the commutation of P, with P,. To show the second we first use
that

[MMV7P/JPP] = [MM,I/7P/J]PP + Pp[MHU7Pp]7 (28)
and Eq. 27) to get:
(M., PPPP] = —i(gupPy — gupPu)Pp - iPp(gupPV - gupPu): (2.9)
thus
(M., P,P?] = —2i[P,, P,] = 0. (2.10)

5This quantum number looks astonishingly like mass and P? like the square of the 4-momentum operator.
However, we note that in general m? is not restricted to be larger than zero.
SHere 2 means homomorfic, that is structure preserving.
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Then W2 = W, WH is a Casimir operator of PJTF, i.e.

[Muwwz] =
[P, W?] = 0 (2.15)

o
—~
b
—_
=~

To show this we can re-write the operator asﬂ
1
w2 = _51\4,“,1\%‘”132 + M*° M, ,P,P".

From the above it is easy to show that W? is indeed a Casimir
Again, because W? is a Casimir operator, we can label all states in an irreducible repre-
sentation (read particles) with quantum numbers m, s, such that:

W?2|m,s) = —m?s(s + 1)|m, s)

The m? appears because there are two P, operators in each term. However, what is the
significance of the s, and why do we choose to write the quantum number in that (familiar?)
way? One can easily show using ladder operators that s = 0, %, 1,..., t.e. can only take integer
and half integer values. In the rest frame (RF) of the particle we have

P, = (m,0)

Using that W P = 0 this gives us Wy = 0 in the RF, and furthermore:
1 .
Wi = §€iojkmMjk = mSZ

where S; = %eijijk is the spin operator. This gives W?2 = —W? = —m2§2, meaning that
s is indeed the spin quantum number

The conclusion of this subsection is that anything transforming under the Poincaré group,
meaning the objects considered by SR, can be classified by two quantum numbers: mass and
spin.

2.4 The no-go theorem and graded Lie algebras

Since we now know the Poincaré group and its representations well, we can ask: Can the
external space-time symmetries be extended, perhaps also to include the internal gauge sym-
metries? Unfortunately no. In 1967 Coleman and Mandula [3] showed that any extension
of the Pointcaré group to include gauge symmetries is isomorphic to Ggps X PJTF, i.e. the
generators B; of standard model gauge groups all have

[Py, B;) = [M,,,, B;] = 0.

Not to be defeated by a simple mathematical proof this was countered by Haag, Lopuszanski
and Sohnius (HLS) in 1975 in [4] where they introduced the concept of graded Lie algebras

"This is non-trivial to demonstrate, see Chapter 1.2 of 2].

8This does not loose generality since physics should be independent of frame.

90bserve that this discussion is problematic for massless particles. However, it is possible to find a similar
relation for massless particles, when we chose a frame where the velocity of the particle is mono-directional.
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to get around the no-go theorem.

Definition: A (Zs) graded Lie algebra or superalgebra is a vector space L that
is a direct sum of two vector spaces Lg and Ly, L = Ly Ly with a binary operation
e: [ x L — L such that for Vx; € L;

i) ;0 2; € Litj mod2 (grading)d
ii) z; ex; = —(—1)Yz;  z; (supersymmetrization)

iii) x; 0 (zj0x)(—1)* +2; 0 (2 @2;)(—1)7" + x4 0 (z; ®2;)(—1)¥ = 0 (generalised
Jacobi identity)

This definition can be generalised to Z, by a direct sum over n vector spaces L;,
L = @?_OlLi, such that x; @ x; € Liy; mod n With the same requirements for super-

symmetrization and Jacobi identity as for the Zs graded algebra.

%This means that xo e zo € Lo, v1 @ x1 € Lo and zp e 1 € L1.

We can start, as HLS, with a Lie algebra (Lo = PJTF) and add a new vector space Lq spanned
by four operators, the Majorana spinor charges (J,. It can be shown that the superalgebra
requirements are fulfilled by:

[Qa;Pu] = 0 (2.16)
[Qme/] = (UMVQ)G (2.17)
{Qu,Qv} = 2Py (2.18)

where 0, = %[’m,’yu] and as usual Q, = (QT’yo)a

Unfortunately, the internal gauge groups are nowhere to be seen. They can appear if we
extend the algebra with %, where a = 1,..., N, which gives gives rise to so-called N > 1
supersymmetries. This introduces extra particles and does not seem to be realised in nature
due to an extensive number of extra particles This extension, including N > 1, can be
proven, under some reasonable assumptions, to be the largest possible extension of SR.

2.5 Weyl spinors

Previously we claimed that there is a homomorphism between LL and SL(2,C). This homo-
morphism, with A¥, € Ll and M € SL(2,C), can be explicitly given by

AMM):%HWM@ML (2.19)
1

M(A%) = + Ao, 2.20

(4%) det(Mrpapen) M (220)

where ¢# = (1, —¢) and o* = (1, 7).

19 Alternatively, ZI8) can be written as {Qa, Qp} = —2(7*C)ap Py

"Note that N > 8 would include particles with spin greater than 2.

12The sign in Eq. [220) is the reason that this is a homomorphism, instead of an isomorphism. Each element
in SL(2,C) can be assigned to two in Ll.
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Since we have this homomorphism we can look at the representations of SL(2,C) in-
stead of the Poincaré group (with its usual Dirac spinors) when we describe particles, but
what are those representations? It turns out that there exist two inequivalent fundamental
representations of SL(2,C):

i) The self-representation p(M) = M working on an element 1 of a representation space F:
Wy =MaPyp A B=1,2
ii) The complex conjugate self-representation p(M) = M* working on 1) in a space I

= (M) Py A B=1,2

Definition: ¢ and v are called left- and right-handed Weyl spinors.

Indices can be lowered and raised with:

0 —1
EABZEAB:<1 0>

AaB _ i _ (0 1
€« =€ _<—1 0>

The relationship between v and 1) can be expressed With

5OAA(1/1A)* — A
Note that from the above: )
(Wa)t =9,
W) =12

We define contractions of Weyl spinors as follows:

Definition: ¢y = 1*y4 and ¥y = QEA)ZA.
These quantities are invariant under SL(2,C). With this in hand we see that

2 = p = v s = eMBihpiha = €2ath + Mh1hg = othy — Y1t

This quantity is zero if the Weyl spinors commute. In order to avoid this we make the
following assumption which is consistent with how we treat fermions (and Dirac spinors):

Postulate: All Weyl spinors anticommute{d {(Ya, v} = (¥, ¥} = {Ya,¥p} =
{¢A7 wB} =0.

“This means that Weyl spinors are so-called Grassmann numbers.

3The dot on the indices is just there to help us remember which sum is which and does not carry any
additional importance.

" This is a bit daft, as o0 = 8 i 4, and we will in the following omit the matrix and write (¢4)* = .
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This means that

W =i = pa = —201s.
Weyl spinors can be related to Dirac spinors v, as Well

Ya
e ()
a T A
We see that in order to describe a Dirac spinor we need both handedness of Weyl spinor. For

Majorana spinors we have:
Ya
(i)

We can now write the super-Poincaré algebra (superalgebra) in terms of Weyl spinors.

With
Qo = (gﬁ) ; (2.21)
for the Majorana spinor charges, we have
{Qa,Q8} = {Q4.Qz}=0 (2.22)
{Qa,Qp} = 20,1, (2.23)
[Qa, B = [Q4 F)=0 (2.24)
[Qa,M™] = o"PQp (2.25)

where o/ = Z(otc" — a”c*).

Exercise: Show that LL and SL(2,C) are indeed homomorphic, i.e. that the
mapping defined by (2.19) or (2.20) has the property that A(M;Msy) = A(M7)A(M3)
or M(AlAz) = M(Al)M(Ag)

2.6 The Casimir operators of the super-Poincaré algebra

When @, is four-dimensional it is easy to see that P? is still a Casimir operator of the
superalgebra. From Eq. (224) P, commutes with the @s, so in turn P? must commute.
However, W? is not a Casimir because of the following result:

[W%ngquWan+gﬂQw

We want to find an extension of W that commutes with the (s while retaining the
commutators we alread have. The construction

Cu=B,P,—B,P,,

5Note that in general (¢¥4)* # )’(A.
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where )
B, =W, + ZX s
with
X, = 3Qu"@.
has the required relation:
[Cuv, Qal = 0.
By excessive algebra we can show that:
[C?,Q,] = 0 (trivial)
[C*,P,] = 0 (algebra)
[C*,M,,] = 0 (because C?is a Lorentz scalar)

Thus C? is a Casimir operator for the superalgebra.

2.7 Representations of the superalgebra

What sort of particles are described by the superalgebra? Let us again assume without loss
of generality that we are in the rest frame, i.e. P, = (m,ﬁ) As for the original Poincaré
group, states are labeled by m, where m? is the eigenvalue of P2. For C? we have to do a bit
of calculation:

c* = 2B,P,B'PY-2B,P,B'P"
U 9m2B,B* — 2m>B}
2m? B, B,

and from the definition of B,, we get:
1
B, = W.+ ZXk
1_
= mS; + gQ%ﬁE’Q =mJ.

The operator we just defined, J; = %Bk, is an abstraction of the ordinary spin operator,
and fulfills the angular momentum algebra (just like the spin operator):

[JZ', Jj] = ieiijk.
and has [Ji, Q. = 0[9 This gives us
C? =o2m*J,J",

such that:
C?Im, j, js) = —m"j(j + 1)|m, j, js),

16 Again the proof is algebraically extensive, and again I suggest the interested reader to pursue [2].
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where it can be shown that j = 0, %,1... and j3 = —j,—7 + 1,...,7 because J, fulfils the

angular momentum algebra. So, the irreducible representations of the superalgebra can be
labeled by m,j, and any given set m, j will give us 25 + 1 states with different jg

In the following we will construct all the states for a given representation with the set m, j.
To do this it is very usefull to write the generators @) in terms of two-component Weyl spinors
instead of four-component Dirac spinors, making explicit use of their Majorana nature, as we
did in Section We note that from the above discussion

[Ji, Qa] = [J,Qp] = 0.

We begin by claiming that for any given j3 there must then exist a state |2) that has the
same value of j3 and for which
QalQ) =0. (2.26)

This is called the Clifford Vacuum To show this, start with |3), a state with j3. Then
the construction

€2) = Q1Q2(B)
has these properties. First we show that ([2.26]) holds:

Q1Q1Q2|B) = —Q1Q1Q2|3) =0

and
Q2Q1Q2|8) = —Q1Q2Q2|0) = Q1Q2Q2|8) = —Q201Q2|F) = 0.

For this Clifford vacuum state we then have:
J31Q) = J3Q1Q2|0)
= Q1Q2J3]8) = j3|),

in other words, |Q2) has the same value for js as the |3) it was constructed from. We can now
use the explicit expression for J

L 5 -Ba
Jp = Sk — %Qggk Qa,
in order to find the spin for this state:
Jr|2) = Si[€) = i |S2),

meaning that s3 = j3 and s = j are the eigenvalues of S3 and S? for the Clifford vacuum |€2).
We can construct three more states from the Clifford vacuum

Q). Q%) QIQ*).

This means that there are four possible states that can be constructed out of any state with
the quantum numbers m, j, j3. Taking a look at:

QA1) = QA1) = jr Q4 |0),

"Note that j is NOT the spin, but a generalization of spin.

181t is called the Clifford vacuum because the operators satisfy a Clifford algebra {Qa, QB} = 2mJS‘B. Do
not confuse this with a vacuum state, it is only a name.

19All other possible combinations of Qs and |Q2) give either one of the other four states, or the zero state
which is trivial and of no interest.
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this means that all these states have the same js3 (and j) quantum numbers From the
superalgebra (2.25]) we have:

[Mljvc?A] = _(O-ij)ABQB7
so that:

$5Q419) = Q18410) - (o304 5QI) = <J’3 - %) @)

where — is for A = 1 and + is for A = 2. We can similarly show that
$:Q'Q°(0) = j5Q'Q°|).

This means that each set of quantum numbers m, j, j3 gives 2 states with s3 = j3, and two
with s3 = j3 £ %, giving two bosonic and two fermionic states, with the same mass.

The above explains the much repeated statement that any supersymmetry theory has an
equal number of bosons and fermions, which, incidentally, is not true.

Theorem: For any representation of the superalgebra where P, is a one-to-one
operator there is an equal number of boson and fermion states.

To show this, divide the representation into two sets of states, one with bosons and one with
fermions. Let {Qa,Q 5} act on the members of the set of bosons. Q ;3 transforms bosons
to fermions and Q4 does the reverse mapping. If P, is one-to-one, then so is {Q4,Q 3} =
20" , 5 P,. Thus there must be an equal number in both sets

Let us expand on the two simplest examples. For j = 0 the Clifford vacuum |Q2) has
s = 0 and is a bosonic state. There are two states Q4|Q) with s = % and s3 = :F% and one

state Q'Q?|Q) with s = 0 and s3 = 0. In total there are two scalar particles and two spin—%
fermions. Note that all these particles have the same mass. We will later refer to this set of
states as the scalar superfield.

For j = % we have two Clifford vacua |Q2) with j3 = i%, and with s = % and s3 = i%
(thus they are fermionic states). For the moment we label them as |Q; 1) and |Q; —3). From
each of these we can construct two further fermion states Q'Q?|(; :l:%) with s3 = :F%- In
addition to this we have the states Q'|Q; %> and Q%|Q; —%> with s3 = 0, the state Q?|Q; %>
with s3 = 1, and the state Ql\Q; —%> has s3 = —1. Together these states can form two
fermions with s = % and s3 = i%, one massive vector particle with s =1, and s3 = 1,0, —1,
and one scalar with s = 024 We will later refer to this set of states as the vector superfield.

Exercise: What are the states for j = 17

We should use the term particle here very lightly since the states we have found are
spinor states. A real Dirac fermion can only be described by a j = 0 representation and a

20The same can easily be shown for Q1Q2|Q>
21Observe that this tells us that there must be an equal number of states in both sets, not particles.
22For massless particles, m = 0, we can form a vector particle with s3 = 41 and one extra scalar.
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complex conjugate representation, thus having four degrees of freedom (d.o.f.). In field theory
calculations, when the fermion is on-shell, two of these are eliminated in the Dirac equation,
thus we get the expected two d.o.f. for a fermion.
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Chapter 3

Superspace

In this chapter we will introduce a very handy notation for considering supersymmetry trans-
formations effected by the superalgebra, or, more correctly, the elements of the super-Poincaré
group. This is called superspace, and allows us to define so-called superfields. In order to do
this we first need to know a little about the properties of Grassman numbers.

3.1 Superspace calculus

Grassman numbers # are numbers that anti-commute with each others but not with ordinary
numberEl. We will here use four such numbers, and in addition we want to place them in Weyl
spinors

(64,08} = {64,021 = {94,05) = {64,065} = 0.

From this we get the relationships

0% = 0404 =—0404 =0, (3.1)
0> = 00 =06, =—20,0s,
0> = 00=0,6" =200 (3.3)

Notice that if we have a function f of a Grassman number, say 6 4, then the all-order expansion
of that function in terms of 04, is

f(0a4) = ao + a1, (3.4)
there simply are no more terms because of ([B).

We now need to define differentiation and integration on these numbers in order to create
a calculus for them.

'We can already see how this can be handy: if we consistently use #4Q4 and éAQA instead of only Qa

and QA in Egs. (Z22)-(228) we can actually rewrite the superalgebra as an ordinary Lie algebra because of
these commutation properties.
2There is no summation implied in the first line.

25
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This has one surprising property. If we take the integral of (34 we get:

/ d047(04) = a1 = D F(0),

meaning that differentiation and integration has the same effect on Grassman numbers.
To integrate over multiple Grassman numbers we define volume elements for the Weyl
spinors

This means that

/d2999=1
/d2§§§:1

/ 0 (96)(30) = 1
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Delta functions of Grassmann variables are given by:

0(04) =04
62(04) = 06
5264 = 66

and these functions satisfy (just as the usual definition of delta functions):

/ 404 £(0.4)5(0.4) = F(0).

3.2 Superspace definition (Salam & Strathdee [5])

Superspace is a coordinate system where supersymmetry transformations are manifest, in
other words, the action of elements in the super-Poincaré group (SP) based on the superal-
gebra are treated like Lorentz-transformations are in Minkowski space.

Definition: Superspace is an eight-dimension manifold that can be constructed
from the coset space of the super-Poincaré group (SP) and the Lorentz group (L),

SP/L, by giving coordinates 2™ = (z*,64,64), where z* are the ordinary Minkowski
coordinates, and where 64 and 04 are four Grassman (anti-commuting) numbers,
being the parameters of the Q-operators in the algebra.

To see this we begin by writing a general element of SP, g € SP, ad]
. A Py B y
g = exp[—iz!' P, +i0°Qa +i0 ;Q" — iwp,,Mp 1,

where z#, §4, 0 i and wp, constitute the parametrization of the group, and F,, Qa, )4 and
M,, are the generators. We can now parametrise SP/L simply by setting w,, = 0 The
remaining parameters of SP/L then span superspace.

As we are physicists we also want to know the dimensions of our new parameters. To do

this we first look at Eq. (Z23):
{QA7 QB} = 20—”ABP;L

we know that P, has mass dimension [P,] = M. This means that [Q%] = M and [Q] = M 2,
In the exponential, all terms must have mass dimension zero to make sense. This means that
[0Q] = 0, and therefore [0] = M3,

In order to show the effect of supersymmetry transformations, we begin by noting that
any SP transformation can effectively be written in the following way:

L(a, o) = exp[—ia" P, + i0Q 4 + i@AQA],

3We hava already used this property, but this is what is formally called an exponential map of the Lie
algebra to the Lie group. For matrix Lie groups this is simply the matrix exponential shown here. Technicaly
this provides a local cover of the group around small values for the parameters.

4SP/L is not a coset group as defined previously, because L is not a normal subgroup of SP, but its
parametrisation still forms a vector space which we call superspace.
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because one can show thatﬁ
exp [—%wp,,Mp”] L(a,a) = L(Aa, S(A)a) exp [—%wp,,Mp”] , (3.6)

i.e. all that a Lorentz boost does is to transform spacetime coordinates by A(M) and Weyl
spinors by S(A(M)), which is a spinor representation of A(M). Thus, we can pick frames,
do our thing with the transformation, and boost back to any frame we wanted. In addition,
since P, commutes with all the s, when we speak of the supersymmetry transformation we
usually mean just the transformation

6s = atQu + dAQA. (3.7)

We can now find the transformation of superspace coordinates under a supersymme-
try transformation, just as we have all seen the transformation of Minkowski coordinates
under Lorentz transformations. The effect of g9 = L(a,«) on a superspace coordinate
2" = (m“,@A,HA) is defined by the mapping 2™ — 2'™ given by goe’* K= = ¢ Kr where
Ky =(Py,Qa,Q%). We havdl

12" K

goe = exp(—ia’P, +idPQp + Z'O?BQB) exp(iz" Kr)
= exp(—ia’P, +idPQp + ’Z@BQB + 12" K,
—%[—ia”Pv +ia®Qp + idBQB,iz”Kw] +...)
Here we take a closer look at the commutator{]
(] = [07Q5.6,Q" +[aQ".6%Qu]

= —aP0,Qp, Q) — aptrePQp, Q)

= —QQBéAEACO'uBCPM — @BHAEBCUMAOPM

= (—2aB§CU“BC - 26409A0“AO)PM
We can relabel B = A and C' = A which leads to

1 A GA oA _A

—5[, | = (a%ct 407 — 070", ja”)P,.

The commutator is proportional with P, and will therefore commute with all operators, in
particular the higher terms in the Campbell-Baker-Hausdorff expansion, meaning that the
series reduces to

goeiZ’“KTr

= expli(—at —a" + iaAJ”AAéA - i@Aa“AA-o_zA)PH +i(04 + aMQa + i(0, + &A)QA].

SFortunately we are not going to do this because it is messy, but it can be done using the algebra of the
group and the series expansion of the exponential function. Note, however, that the proof rests on the Ps and
Qs forming a closed set, which we saw in the algebra Eqs. (222))—(227]).

SHere we use Campbell-Baker-Hausdorff expansion eAeB = eATB-3lABl+ . yhere the next term contains
commutators of the first commutator and the operators A and B.

"Using that P, commutes with all elements in the algebra, as well as [8“Qa,%Qp] = 626%{Qa,Q5} =0,

and the same for QF.
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So superspace coordinates transform under supersymmetry transformations as:
(z*, 04, 0;) — f(a" o, a,) = (ac“+a“—iaAJ”AAH_A—I—iGAU“AAo?A, 04 +a”, 0i+a,). (3.8)

As a by-product we can now write down a differential representation for the supersym-
metry generators by applying the standard expression for the generators X; of a Lie algebra,
given the functions f; for the transformation of the parameters:

_0fr O
X0 = a; 927
which gives usﬁ
P, = i, (3.9)
Qs = —i(J”é)Aau + 04 (3.10)
iQh = —i(g"0)%9, + o7 (3.11)

Exercise: Check that Eqs. (3.9)—(3I1) fulfil the superalgebra in Eqs. (2:22)—(2.24)). ‘

3.3 Covariant derivatives

Similar to the properties of covariant derivatives for gauge transformations in gauge theories,
it would be nice to have a derivative that is invariant under supersymmetry transformations,
i.e. commutes with supersymmetry operators. Obviously P, = i0, does this, but more general
covariant derivatives can be made.

Definition: The following covariant derivatives commute with supersymmetry
transformations:
Dy = 0a+i(c"0)4d,, (3.12)
D = -8;—1i(00") 0, (3.13)

These can be shown to satisfy relations that are useful in calculations:

{Da,Dp} = {D;,Dp} =0 (3.14)
{Da,Dy} = 20" P, (3.15)
D3=D% = 0 (3.16)
D*DP*pD, = D, D*D* (3.17)

From the covariant derivatives we can construct projection operators.

8We define the generators X; as —iP,, iQa and iQ B respectively.
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Definition: The operators

1 -
T = —16—DD2D2, (3.18)
1 _
T_ = —16—DD2D2, (3.19)
1 - .
T = 8—DDAD2DA, (3.20)

with [0 = 9,,0*, are projection operators, i.e. they fulfill:

iy = Tar (3.21)
mym- = wamp =n_mp =0 (3.22)
1 = my+7n_+ap (3.23)

3.4 Superfields

Definition: A superfield ® is an operator valued function on superspace
®(x,0,0).

We can expand any ® in a power series in # and 6. In general@
O(2,0,0) = f(x)+0%a(x) + 0,5 (@) + 00m(x) + 60n(x)
+05"0V,(z) + 000 AXA(x) + 00044 4 () + 0000d (). (3.24)

The properties of the component fields of a superfield can be deduced from ® being a Lorentz
scalar. This is shown in Table B.1]

Component field Type d.o.f.
f(x), m(x), n(z) | Complex(pseudo) scalar 2
va(x), palz) Left-handed Weyl spinors 4
A (x), M(z) Right-handed Weyl spinors | 4
V() Lorentz 4-vector 8
d(x) Complex scalar 2

Table 3.1: Fields contained in a general superfield.

One can show (tedious) that under supersymmetry transformations these component fields
transform linearly into each other, thus superfields are representations of the supersymme-
try (super-Poincaré) algebra, albeit highly reducible representations We can recover the

9Note that any superfield commutes with any other superfield, because all Grassmann numbers appear
in pairs. Equation ([B24)) can be shown to be closed under supersymmetry transformations, meaning that a
superfield transforms into another superfield under the transformations of the previous section.

0Tndeed they are linear representations since a sum of superfields is a superfield, and the differential super-
symmetry operators act linearly.
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known irreducible representations, see Section 2.7, by some rather ad hoc restrictions on the

ﬁelds

D;®(x,0,0) = 0 (left-handed scalar superfield) (3.25)
D@ (x,0,0) = 0 (right-handed scalar superfield) (3.26)
o1(x,0,0) = ®(x,0,0) (vector superfield) (3.27)

Products of same-handed superfields are also superfields with the same handedness:
D;(®:i®;) = (D;2;)®; + (D ;) =0

This is important when creating a superpotential, the supersymmetric precursor to a full
Lagrangian

Note that the projection operators that we defined in Section B3] 74, project out left-
/right-handed superfields, respectively, because:

D74 ® = Dyr_®' = 0.

This is analogous to the familiar properties of Pr/r = %(1 F 75) in field theory.

3.4.1 Scalar superfields
What is the connection of the scalar superfields to the j = 0 irreducible representation? We

use a cutdd trick: Change to the variable y# = 2* + i#o*f. Then:

~i 0
_ i pA
Dy = 0Oa+2i0, ;0 oy (3.28)
D; = -0, (3.29)

This means that a field fulfilling D i® = 0 in the new set of coordinates must be independent
of #. Thus we can write:

®(y,0) = A(y) + V200 (y) + 00F (y),

and looking at the field content we get the result in Table B.2]

Component field Type d.o.f.
A(z), F(x) Complex scalar 2
¥(z) Left-handed Weyl spinors | 4

Table 3.2: Fields contained in a left-handed scalar superfield.

We can undo the coordinate change and get

B(2,0,8) = Ax) + i(60"0)9, A(z) — i@@éH_DA(x) + V200 (x) — %008“1/)(:17)0’”5 +00F(2).

"Note that the dagger here is part of the name of the field.

12Supersymmetry transformations can be shown to transform left-handed superfields into left-handed super-
fields and right-handed superfields into right-handed superfields.

3Here cute is used in the widest sense.

1 Just by expanding the above in powers of # and 6.
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By doing the transformation y* = 2* — ifo*d we can show a similar field content for the
right handed scalar superfield. The general form of a right handed scalar superfield is then:

' (z,0,) = A*(a:)—1(90”6)8MA*(95)—i@@@@DA*(z)—i—\@H\P(w)+%9600”8M@(w)+99}7*(x).

These fields will not correspond directly to particle states. After applying the equations
of motions (e.o.m.) the (auxillary) field F(z) can be eliminated as it does not have any
derivatives. The e.o.m. also eliminates two of the fermion d.o.f. and a Weyl spinor on its own
cannot describe a Dirac fermion. When we construct particle representations we will take one
left-handed scalar superfield and one different right-handed scalar superfield. These will form
a fermion and two scalars (and their anti-particles). We see from (3:25)) and (B20) that if ®
is left handed, then ®' is right handed and vice versa, the dagger now signifying hermitian
conjugation.

3.4.2 Vector superfields

We take the general superfield and compare ® and ®T. We see that the following is the
structure of a general vector superfield:

®(z,0,0) = f(x)+0p(z)+ 0p(z) + 00m(x) + 00m™(z)
+05"0V,(z) + 000X(x) + 000X (z) + 0000d(x).

and looking at the component fields we find the results in Table

Component field Type d.o.f.
f(z), d(z) Real scalar field 1
o(x), A(x) Weyl spinors 4

m(x) Complex scalar field 2
V() Real Lorentz 4-vector 4

Table 3.3: Fields contained in a general vector superfield.

One example of a vector superfield is the product V = ®'® where we easily see that
Vi = (#'®)f = of(dh)T = &T®. Note that sums and products of vector superfields are also
vector superfields:

Vi+ V)t =V + v =Vvi+ v,

and
(Vivy)h = Vv = vivj.

You may now be a little suspicious that this vector superfield does not correspond to the
promised degrees of freedom in the j = % representation of the superalgebra. Gauge-freedom
comes to the rescue.

3.5 Supergauge

We begin with the definition of a (super) gauge transformation on a vector superﬁel

15 And promise we will get back to the corresponding definition for a scalar superfield.
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One can show that under supergauge transformations the vector superfield components trans-
form as:

flz) — fl(z) = f(z) + A(z) + A*(2) (3.30)
p(x) — ¢(@)=p(x) +V20(x) (3.31)
m(z) — m'(z) =m(x)+ F(z) (3.32)
Vi(z) — Vi(z) = Vu(z) +i0u(A(z) — A*(2)) (3.33)
AMx) — N(x) = \x) (3.34)
d(z) — d(x)=d(x) (3.35)

Notice that from the above the standard field strength for a vector field, F,, = 9,V,—0,V,,,
is supergauge invariant. With the newfound freedom of gauge invariance we can choose
component fields of ® to eliminate some remaining reducibility.

A vector superfield in the WZ gauge can be written:
Vivz(x,0,0) = (00"0)[V,(z) +i0,(A(z) — A*(z))] + 000X(x) + 000X(x) + 0000d(x),

which contains one real scalar field d.o.f., three gauge field d.o.f. and four fermion d.o.f., cor-
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6

responding to the representation j = % The WZ gauge is particularly convenient because:
1 -~ . X . X
Vity = 50000[Vi(2) +i0,(A(z) — A" (2))][VH(2) + i0"(A(z) — A™(2))]

and
Vi, =0,

so that )
ez =14 Vipg + §Vv2vz-

6Note that supersymmetry transformations break this gauge.



Chapter 4

Construction of a low-energy
supersymmetric Lagrangian

We would now like to construct a model that is invariant under supersymmetry transforma-
tion, much in the same way that the Standard Model is invariant under Poincaré transforma-
tions.

4.1 Supersymmetry invariant Lagrangians and actions

As should be well known the action
S = / d'z L, (4.1)
R

is invariant under supersymmetry transformations if this transforms the Lagrangian by a total
derivative term £ — £’ = L+ 0" f(x), where f(z) — 0 on S(R) (the surface of the integration
region R). The question then becomes: how can we construct a Lagrangian from superfields
with this property?

We can show that the highest order component fields in # and 6 of a superfield always
transform in this way, e.g. for the general superfield the highest order component field d(z)
transforms under the supersymmetry transformation

dsd(z) = d'(z) — d(x),

as

5ed(z) = %(Qﬂb(ﬂ:)a“& 9 (@)o"a),

where the constant « is the supersymmetry transformation parameterEl These highest power
component can be isolated by using the projection property of integration in Grassman cal-

S:/d4az/d40£,
R

where L is a function of superfields, is guaranteed to be supersymmetry invariant. Note that
this constitutes a redefinition of what we mean by £, and one should be careful when counting

culus so that

!Note that this is a global SUSY transformation. Replacing o — a(z) gives a local SUSY transformation,
which, it turns out, leads to supergravity.

35
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the dimension of termsf We now have a generic form for the supersymmetry Lagrangian,
where the indices indicate the highest power of 6 in the term:

L = Lopgg + 00Lyz + ééﬁgg.

The requirement of renormalizability puts further restrictions on the fields in £. We can
at most have three powers of scalar superfields, for details see e.g. Wess & Bagger [0]. Since
the action must be real, the (almost) most general supersymmetry Lagrangian that can be
written in terms of scalar superfields is:

L=ol0;+ 00w 0] + 00w [af].
Here the first term is called the kinetic ternﬁ, and W is the superpotential
W] = gi®; +mijPi®;j + XijuPi®; Pp. (4.2)

This means that to specify a supersymmetric Lagrangian we only need to specify the super-
potential. Dimension counting for the couplings give [g;] = M?, [m;;] = M and [\;jx] = 1.
Notice also that m;; and A;;, are symmetric.

4.2 Abelian gauge theories

We would ultimately like to have a gauge theory like that of the SM, so we start with an
abelian warm-up, by finally definig what we mean by an (abelian) supergauge transformation
on a scalar superfield.

Definition: The U(1) (super)gauge transformation (local or global) on left
handed scalar superfields is defined as:

/ —iAg;
<I>i—><I>i=e i,

where ¢; is the U(1) charge of ®; and A, or A(z), is the parameter of the gauge
transformation.

For the definition to make sense ®; must be a left-handed scalar superfield, thus

and this requires:
DA'(I){ = DAe_iAqiq)i = e_iAqiDA(I)i — iqi(DA'A)e_iAqi(I)i
= —igi(D,;A)®; =0.

Thus we must have D 4N = 0, which by definition means that A itself is a left-handed
superfield. This is of course completely equivalent for right-handed scalar fields.

2Looking at the mass dimensions we have, since fd99 = 1 from superspace calculus (see Section [31),
[0] = M~'/2 which leads to [[ d§] = M'/?. We then have [[ d*0] = M?. Since we must have [[ d*0 £] = M*
for the action to be dimensionless, we need [£] = M?.

3The constant in front can always be chosen to be one because we can rescale the whole Lagrangian. Notice
that the kinetic terms are vector superfields.
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We will of course now require not only a supersymmetry invariant Lagrangian, but also a
gauge invariant Lagrangian. Let us first look at the transformation of the superpotential W
under the gauge transformation:

WD] — W] = gie AD,; 4 myje Mt 0)$,d; 4 \jpe Mt U180 0,8,

For W[®] = W[®'] we must have:

9 = 0ifg#0 (4.3)
mi; = 0 if ¢; + q; #0 (4.4)
)\ijk = 0 if q; + q; + qk 7’é 0 (45)

This puts great restrictions on the form of the superpotential and the charge assignments of
the superfields (as in ordinary gauge theories). What then about the kinetic term?

i, — @it aie—haig, = (A -Naiglep,

As in ordinary gauge theories we can introduce a gauge compensating vector (super)field

V with the appropriate gauge transformation to make the kinetic term invariant under su-

persymmetry transformations. We can write the kinetic term as @jeq"vfbi, which gives us:
(I);feq@'V(I)i . (I);[eiATqieth(V-i-iA—iAT)e—i/\fh(I)Z. — @jeqi‘/@i

This definition of gauge transformation can be shown to recover the SM minimal coupling

for the component fields through the covariant derivative

7

D! =9, 5

I qi V;u

where V), is the vector component field of the vector superfield.
In case you were worried: we can use the WZ gauge to show that the new kinetic term
q)jequCI)i has no term with dimension higher then four, and is thus renormalizable.

4.3 Non-Abelian gauge theories

How do we extend the above to deal with much more complicated non-abelian gauge theories?
Let us take a group G with the Lie algrabra of group generators ¢, that fullfil

[taa tb] = ifabctca (4.6)

where f,;,¢ are the structure constants. For an element ¢ in the group G we want to write down
a unitaryﬂ representation U(g) that transforms a scalar superfield ¥ by ¥ — @' = U(g)V.
With an exponential map we can write the representation as U(g) = et as you may
perhaps have expected] Thus, we simply copy the abelian structure (as in ordinary gauge
theories), and transform superfields as

U —» \P, — e_iqAata\I’,

“By unitary we mean, as usual, that UT = U~! so that UTU = 1.
5Since we demanded a unitary representation the generators t, must be hermitian.
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where ¢ is the charge of ¥ under Gﬁ Again we can easily show that we must require that the
A® are left-handed scalar superfields for ¥ to transform to a left-handed scalar superfield.
For the superpotential to be invariant we must now have:

mg; = 0 if mijUirUjs 7£ Mys (48)
Aije = 0 it NjpUpUjsUry # st (4.9)

where the indices on U are its matrix indices. We also want a similar construction for the
kinetic terms as for abelian gauge theories, ¥te?V*7aW, to be invariant under non-abelian
gauge transformations[] Now

a la s oAaT ra _ i AG
\I/Tqu Ta\II _ \I//Tqu Ta\I// — \I,Tequ Taqu Tae igA T“\I’,

so we have to require that the vector superfield V' transforms as:

V' Ta _ o=iqA* Ty ,qV*Ta ,igA“Ta (4.10)
When we look at this as an infinitesimal transformation in A we can show that
1
VI = VO (AT = AT = 2 i VAT 4+ A) + O(A),

which reduces to the abelian definition for abelian groups. If we look at the component vector
fields, V', these transform as for the standard gauge theory non-abelian

Vid = Vit = Vi 0, (A* — A*) — qfpc" Vi) (A + A7),

in the adjont representation of the gauge groupﬁ
The supergauge transformations of vector superfields can be written more efficiently in a
representation independent way as

/ AT .
eV —e i\ EVEZA,

and the inverse transformation is then given by

_Vv! 4 _ iAT
eV:eer VezA

)

where A = gA%T, and V = ¢qV°T}, such that e eV ="'V = 1H

SAt this point can choose a representation different from the fundamental, reflected in a different choice
for to. Since we are almost exclusively interested in groups defined by a matrix representation U(g) will be a
matrix with dimension fixed by the dimension chosen for the representation.

"We have chosen some specific representation T, of the generators t, of the Lie algebra &5).

8This is independent of our choice of representation for the gauge group for the supergauge transformation.

9Notice that despite the non-commutative nature of the matrices involved, the identity e*e™ =1 holds.
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4.4 Supersymmetric field strength

There is one missing type of term for the supersymmetric Lagrangian, namely field strength
terms, e.g. terms to describe the electromagetic field strength.

Definition: Supersymmetric field strength is defined by the spinor (matrix)
scalar superfields given by

1__
Wa = —ZDDe_VDAeV,

and

W,;=- DDe_VDAeV.

1
4

We can show that W, is a left-handed superfield and that Tr[WAW ] (and Tr[IW AWA])
is supergauge invariant and potential terms in the supersymmetry Lagrangian. Firstly

_ 1- _ _
DWa= —ZDADDe‘VDAeV =0,

because from Eq. (BI6) D? = 0. Under a supergaugetransformation we have:

1 - - . . . .
Wy — W) = —ZDDe_’Ae_Ve’ATDAe_’ATeve’A
_ 1 , . .
(DA =0) = —Ze_’ADDe_Ve’ATDAe_’ATeve’A
1 . .
(DAAT = 0) = —Ze_’ADDe_VDAeVe’A

1 .- . .
= —Ze_’ADDe_V[(DAeV)e’A + eV (D e
. . 1 .- .
= e MW et — Ze_ZADDDAe’A. (4.11)
We are free to add zero to ([@I1]) in the form of —%e"'ADDADeiA = OE giving
_ , 1 . .
Wi = e "W — 2e7D{D, Da}e™
. , 1 . . .
— e—zAWAezA + §e—zADAO_uABEABPuezA
— e—iAWAeiA

where we have used Eq. (8.15) to replace the anti-commutator. This means that the trace is
gauge invariant:
Te[WAWY,] = Trle " AWAe e AW e
= Trle®e ™ AWAW ] = Te[WAW,4].

OWhich is zero because A is a left-handed scalar superfield, DAA =0.
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If we expand W4 in the component fields we find, as we might have hoped, that it contains
the ordinary field strength tensor:

a a a aysby e
Fo, = 0,V8 = 0,V + afy VIV

and that the trace indeed contains terms with Fy, F/®.

4.5 The (almost) complete supersymmetric Lagrangian

We can now write down the Lagrangian for a supersymmetric theory with (possibly) non-
abelian gauge groups

L=3o"®+ 520)W D] 4 62(0)W [ + S(O)Tr[WAW 4], (4.12)

9T (R)

where T'(R) is the Dynkin index that appears to correctly normalize the energy density for
the chosen representation R of the gauge group. Note that since W4 is spanned by T, for a
given representation, we can write W4 = W4T,. Then

Te[WAW 4] = WAWL T[T, T3) = WAW 46, T(R) = T(R)W W34, (4.13)

Exercise: Write down the action of a supersymmetric field theory (without gauge
transformations) in terms of component fields and show that it contains no kinetic
terms for the Fj(x) fields. Then show how they can be eliminated by the equations
of motion. Challenge: Repeat for a gauge theory (here d(z) can be eliminated).

4.6 Spontaneous supersymmetry breaking

As we have seen above, supersymmetry predicts scalar partner particles with the same mass
as the known fermions (and new fermions for the known vectors). These, somewhat unfor-
tunately, contradict experiment by not existing. In the SM we have a similar problem: the
vector bosons should remain massless under the gauge symmetry of the model. Yet, they are
observed to be very massive. This is solved with the introduction of the Higgs mechanism
and spontaneous symmetry breaking in the scalar potential The idea is that while
there is a symmetry of the Lagrangian (in the SM the gauge symmetry), this may not be
a symmetry of the vacuum state, thereby allowing the properties of the vacuum to supply
the masses. Would it not be great if we could have spontaneous symmetry breaking in order
to break supersymmetry this way and boost the masses of supersymmetric particles beyond
current limits?

"'Note that there is no hermitian conjugate of the trace term, and an odd normalisation. This is because
the term can be proven to be real, although this is sometimes overlooked in the literature.

12The potential of the Lagrangian are those terms not containing derivatives of the fields (kinetic terms).
The scalar potential are such terms that contain only scalar fields.
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From the exercise in the previous section we can see that the Lagrangian of ([LI2]) written
in terms of component field contains no kinetic (derivative) terms for the F'(x) scalar fields.
These are then what we call auxilary fields and can be eliminated by the e.o.m. we get from
solving the Euler-Lagrange equation for this field {13

oL
—— =F W =0,
where oA 4,
152y dn
= b en el 4.1
%% oA (4.15)
This allows us to rewrite the action as (ignoring gauge interactions):
- \ 1 1 -
S = /d4x{18u1/1i0“1/1i — A70A; — §Wij1/1iwj — §Wij1/1iwj — W%}
Wit o2 A A4,
WAL ..., An
J 0A;04; ( )
Thus the scalar potential of the Lagrangian is
N O [A L AP
V(Ai, A7) =) Y (4.17)

i=1

In the SM figuring out a scalar potential that breaks SU(2); x U(1)y is a little messy.
In supersymmetry the argument goes like this: First, notice that we can write the supersym-
metric Hamiltonian as

1 _ _ _ _
H = Z(Ql@i +QiQ1 + Q205 + Q5Q2).
To see this, consider

{QA; QB}a,VBA — 2UMA36VBAPM
= 2Tr[o"c"]P,
— 4g"P, = 4P,

Now,
1 B .
H = P'=2{Qa.Qp}""

= i(@lc‘gi +QiQ1 + Q2Q5 + Q5Q2).

13We remind the reader that the Euler-Lagrange equation for a field ¢ is the result of minimizing the action
and is given in terms of the Lagrangian as:

oL oL\ _
5~ (am) = e

M This is called the fermionic mass matrix.
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As discussed in Section we have QL =Q i~ Thus the Hamiltonian is semipositive
definite, i.e. (V|H|¥) > 0 for any state |¥).

Imagine now that there exists some lowest lying states (possibly degenerate), the ground
state(s) |0), that have vanishing energy (0|H|0) = 0. These are supersymmetric since, to
fulfill the energy assumption, we must have

Qal0) =Q 4]0y =0 for VA, A, (4.18)
and are thus invariant under the supersymmetry transformations given by (B.7)
35]0) = (@?*Qa +a;Q™M)|0) = 0. (4.19)

This means that at this supersymmetric minimum of the potential the scalar potential must
contribute zero

ow

V(A,A*) =0 and thus oA

=0.

Conversely, if the scalar potential does contribute in the vacuum (ground state) |0), meaning

ow
0A4;

#0 and thus V(A4,4%) >0,

in the minimum of the potential for some A;, then supersymmetry must be broken! As in the
SM, the Lagrangian is still (super)symmetric, but |0) is not because (£I8]) can no longer hold
for all the Q@s.

The O’Raifeartaigh model (1975) [7] is an example of a model that spontaneously
breaks supersymmetry with three scalar superfields X, Y, Z, and the superpotential

W =\YZ+gX(Z*—m?), (4.20)

where A, g and m are real non-zero parameters. The scalar potential is

2 2 2

ow ow ow
V(A AY) =
0Ax 0Ay 0Ay
= |g(AZ —m?)]” + \Az* + |y + 29Ax Az[, (4.21)
which can never be zero because setting Ay = 0, which is needed for the second term,
gives a non-zero contribution g?m? from the first term. Since the expectation value at the
minimum that breaks supersymmetry is <O\%—%\O>, and F; = g—%", the condition for spon-

taneous SUSY (supersymmetry breaking) with the O’Raifertaigh mechanism can be written
(F;) = (0|F;(2)|0) > 0, hence it is given the name F-term breaking. In F-term breaking it
is the vacuum expectation value (vev) of the auxilary field of a scalar superfield that supplies
the breaking.

In a gauge theory, a similar mechanism is found by adding a term Lpr; ~ 2kV where V is a
vector superfield. The vev of the d(x) auxiliary field will create a non-zero scalar potential
This is called the Fayet-Iliopolous model, or D-term breaking.

151t is always the auxiliary fields fault!
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4.7 Supertrace

Unfortunately, the above does not work in practice with all particles at a low energy scale.
The problem is that at tree level the supertrace, STr, the weighted sum of eigenvalues of
the mass matrix M, can be shown to vanish, STr M? = o[

Definition: The supertrace is given by
STrM? = (—1)%(2s + 1) Tr M? (4.22)
S

where M is the mass matrix of the Lagrangian, s is the spin of particles and M is
the mass matrix of all spin—s particles.

For a theory with only scalar superfields, with two fermionic and two bosonic degrees of
freedom each, and with, respectively, mass matrices M;/, and My after spontaneous super-
symmetry breaking, this means that Tr { Mg — 2M12/2} = 0, d.e. the sum of scalar particle
masses (squared) is equal to the fermion masses (squared) The consequence is that not all
the scalar partners can be heavier than our known fermions 18

4.8 Soft breaking

What we can do instead is to add explicit supersymmetry breaking terms to the Lagrangian
parametrizing our ignorance of the true (spontaneous) supersymmetry breaking on some
higher scale \/W that we do not have access to where the supertrace relation is fullﬁlledE
for which there are many alternatives in the literature, e.g.:

e Planck-scale Mediated Symmetry Breaking (PMSB)
e Gauge Mediated Symmetry Breaking (GMSB)
e Anomaly Mediated Symmetry Breaking (AMSB)

However, we cannot simply add arbitrary terms to the Lagrangian. The terms we can add are
so-called soft terms with couplings of mass dimension one or higher. The dis-allowed terms
with smaller mass dimension are terms that can lead to divergences in loop contributions to
scalar masses (such as the Higgs) that are quadratic or worse (because of the high dimension-
ality of the fields in the loops). We will return to this issue in a moment. The allowed terms
are in superfield notation as follows:

1
Esoft - _W

—%b”%é@q%(l)j — t,HH@éCI% + h.c.

M@eééTl"{WAWA} — éa”k%é@@@fbk

~m?,00000];.

16See Ferrara, Girardello and Palumbo (1979) [8].
"Remember that there are two scalar particles for each fermion.

18Strong coupling, meaning tree level is a bad approximation, may help, but life is still difficult.
1

YRemember that [®] = M and [f] = M™% so that the component field must have [F] = M?.
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Note that these terms are not supersymmetric. From the #006-factors we see that only the
lowest order component fields of the superfields contribute. There are also some terms that
are called "maybe-soft” terms:

1
Lonaybe = —59999cijkc1>j ®;0; + hec. (4.23)

This last—oft ignored—type of term is soft as long as none of the scalar superfields is a singlet
under all gauge symmetries. It is, however, quite difficult to get large values for c;;; with
spontaneous SUSY. In the above terms we have not specified any gauge symmetry, which will,
in the same way as it did for the superpotential, severely restrict the allowed terms. However,
it turns out that soft-terms are responsible for most of the parameters in supersymmetric
theories!

We can write the soft terms in terms of their component fields a@

1 1 1 1
Looti = —§M>\A/\A — (GainAiAjAp + Sbis AiAj + tid; + SeipAT A Ay + c.c.)
—m?jA;‘kAj

Note that to be viable SUSY should to predict (universal) structures for the many soft-
term parameters involved. Non-diagonal parameters tend to lead to flavor changing neutral
currents (FCNC) or CP-violation in violation of measurement and should be avoided.

4.9 The hierarchy problem

Take a scalar particle, say the Higgs h. If we calculate loop-corrections to its mass in self-
energy diagrams like the ones shown in Fig. [, where f is a fermion and s some other
scalar, they diverge, meaning they are infinite. This then needs what is called regularization
in field theory in order to yield a finite answer. There are different ways of achiving this.
Since we know that the SM is an incomplete theory, at least when we go up to Planck scale
energies where we need an unknown quantum theory of gravity, we can introduce a cut-off
regularization limiting the integral in the loop-correction to energies below a scale Ayy. Then
the loop-correction to the Higgs mass is, at leading order in Ay,

Asl? A

- Afy + W;QA%JV ... (4.24)

where Ay and A, are the couplings of f and s to the Higgs, respectively, and Ayy is the high
energy cut-off scale, suggestively the Planck scale, Ayy = Mp = 2.4 x 10'® GeV. Now, in
order to keep my ~ 125GeV as measured there must then be a crazy cancellation of 10'6
times larger terms. This is known as the hierarchy problem

Enter supersymmetr to the rescue: with unbroken supersymmetry we find that we au-
tomatically have |/\f|2 = \s; and exactly twice as many scalar as fermion degrees of free-
dom running around in loops. This provides a magic cancellation of the quadratic diver-
gence in Eq. [@24]). To see that this relation between the couplings holds, remember that

2 _
Amh—

20We have omitted terms that have the form _%mijd)id)j7 because these can be absorbed by a redefinition
of the superpotential.

2'What about choosing dimensional regularization instead where there is no cut-off scale? That could in
principle work, however, as soon as you introduce any new particle (significantly) heavier than the Higgs this
results in a quadratic correction with the new particle mass, meaning that we cannot complete the SM at a
higher scale without reintroducing the problem!
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Figure 4.1: One loop contributions to the Higgs mass from a fermion (left) and scalar (right)
loop.

W~ Xij®;® ;P gives Lagrangian terms of the form A;;31;1); Ay, and from the scalar poten-
tial we have terms of the form

2

ow
——| = NirlP AT AL A Ay (4.25)

V(A,A%) ~ ' ow

When the scalar field A, is the Higgs field, the fermion is represented by 1); = ¢; and the
second scalar by A;, these two terms are responsible for the two types of vertices in Fig. 4.1l
with Ay = Ajjx and Ay = |)\,-jk|2. Note that the argument above applies to any scalar in the
theory.

Now, we have unfortunately already broken supersymmetry, so what happens in SUSY?
This is the reason for restricting ourselves to soft supersymemtry breaking terms in the
previous section. This guarantees that we end up with contributions to the Higgs mass of at
most )
— As m? In Ay

1672 ° " m2
at the leading order in Ayy, where my is the mass scale of the soft term. This is the most
important argument in favour of supersymmetry existing at low energy scales where we can
detect it, because mg can not be too large if we want the above corrections to be small. This
is called the little hierarchy problem and means that we want mg ~ O(1 TeV) in order to
keep cancellations reasonable.

Am} = o, (4.26)

4.10 The non-renormalization theorem

With our generic supersymmetric Lagrangian in Eq. ([AI2]) we should really ask ourselves
whether we can regularize the theory, i.e. is there a finite number of renormalisation con-
stants/counter terms to make all measurable predictions finite? And if so, what are they?

You may not be so surprised that the answer is yes, and indeed we have already used
one of the restrictions this gives on the possible terms in our superpotential construction.
Furthermore, we can prove the following theorem with a funny name. ..
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Theorem: Non-renormalisation theorem (Grisaru, Roach and Siegel, 1979 [9])
All higher order contributions to the effective supersymmetric action Seg can be
written:

Sof = Z/d4a:,-...d4xnd49F1(x1,9,0) X o X Fp(21,0,0) x G(21, ..., 1), (4.27)

where F; are products of the external superfields and their covariant derivatives,
and G is a supersymmetry invariant function.

So, why is the name funny? Well, mainly because it is not about not being able to
renormalize the theory, but about about not needing to renormalize certain parts of it. The
theorem has two important consequences

1. The couplings of the superpotential do not need separate normalization.

2. There is zero vacuum energy in global unbroken SUSY. In other words, A = 0 in general
relativity.

3. Quantum corrections cannot (perturbatively) break supersymmetry.

Let us try to argue how these consequences come about. From the non-renormalization
theorem we know that there are no counter terms needed for superpotential terms, because
superpotential terms have lower 0 integration than found in all the possible higher order
contributions in the non-renormalisation theorem. This means that we can relate the bare
fields &y and couplings gg, mo and Ag to the renormalized fields ¢ and couplings g, m and A,
by

Q0P = go, (4.28)
m()(I)QCI)() = m<I><I>, (4.29)
MPoPoPy = A\DDD. (4.30)

If we let scalar superfields be renormalized by the counterterm 2, &5 = ZY2®, vector
superfields by Zy, Vo = Z‘1,/2V, coupling constant g by Z4, go = Z4g9, m by Z,,, mo = Zpm,
and A by Zy, A\g = Z) A, then

Z,Z2Y? = 1 (4.31)
AV ACVATCEE | (4.32)
AV A ALY A | (4.33)

This set of equations can be solved for Z,, Z,, and Z) in terms of Z 1/2 50 no separate
renormalization except for the superfields ® and V' is needed.

22The theorem is for unbroken supersymmetry.
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The second consequence comes about because vaccum diagrams have no external fields.
This means that the integration | d*0 in Sy gives zero for the contribution from these dia-
grams. The same argument leads to V (A, A*) = 0 after quantum corrections.

In practice the regularisation of supersymmetric models is tricky. Using so-called DREG
(dimensional regularisation) with modified minimal subtraction (M.S) fails because working
in d = 4 — € dimensions violates the supersymmetry in the Lagrangian. In practice DRED
(dimensional reduction) with DR is used, where all the algebra is done in four dimensions,
but integrals are done in d = 4 — € dimensions. However, this leads to its own problems with
potential ambiguities in higher loops.

4.11 Renormalisation group equations

Renormalisation, the removal of infinities from field theory predictions, introduces a fixed
scale p at which the parameters of the Lagrangian, the couplings, are defined. For example,
the charge of the electron is not simply the bare charge e, but a charge at a given energy
scale p, e(u), which is the scale at which the theory describes the electron, and which we
can measure in an experiment at that scale. Scattering an electron at very high energy will
require a different value of e(u) than at a low energy. This is an experimentally well verified
fact

However, since p is not an observable per se but in principle a choice of how to write down
the theory (at which energy to write down the Lagrangian), the action should be invariant
under a change of pu, which is expressed as:

d
ZS(Z® N\, ) = 4.34
udﬂS( A ) =0, (4.34)

where A are the couplings of the theory and ® represents the (super)fields that have been
renormalised This equation can be re-written in terms of partial derivatives

—+ “_u_> S(Z®, A, p) =0, (4.35)

which is the renormalisation group equation (RGE).

We can look at the behavior of a Lagrangian parameter A as a function of the energy
scale p away from the value where it was defined, often denoted . This is controlled by the
[-function:

O
By = M@-

These (-functions can be found from the counterterm Z. As an example, take a gauge
coupling constant gy defined (taken from measurement) at some scale pg. At a different
scale p, go is given by (in d =4 — ¢ dimensions)

(4.36)

go = Zgp~/?

21t is also impossible to avoid if we accept that the electron is a point particle. Since the potential has
the form V(r) o« e/r an infinte energy would appear unless we somehow were to modify the charge at high
energies, or equivalently short distances.

%41n the previous section we showed that we did not need to renormalise the coupling constants of the
superpotential.

% The factor u7€/2 is there to ensure that the scale of g is correct, see the exercise below.
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Then, differentiating both sides with respect to p,

oz 0 €

_ 92 2L 799 2 _ E g —e/2-1
0 8#gu + 8#/1 5 Z9H
u9 e, 9ndZ
Fou = 297 Zau
89 € 0

= —g—gu—12Z,
Hau 59~ 9rg,

and taking the limit ¢ — 0:
Jg
By = 1z =9,

It is often practical to rewrite 3, = % with ¢ = In u so that u+ a at

Z can now be calculated to the required loop-order to ﬁnd the S-function to that order
and in turn the running of the coupling constant with u. By evaluating one-loop super graphs
we can find that for our particular example

Vg ‘l—loop = 16 FD) g (ZT )) 5 (438)

where the sum is over all superfields that transform under a representation R of the gauge
group and C'(A) is the Casimir invariant of the adjoint representation A of R. This expression
is particularly important since it will later lead us to the concept of gauge coupling unification.
Notice both that the running of the couplings with scale 1 is very slow because the S-function
is a logarithmic function of p and that the anomolous dimension may be negative for some
gauge groups.

Exercise: For fun, and ten points, prove the scale factor in go = Zgu~¢/?. Hint:
what are the dimensions of stuff in the Lagrangian in d = 4 — € dimensions?

4.12 Vacuum energy

We saw in the Section [4.10] that a globaly supersymmetric theory has A = 0. This is to be
compared to the measured value of the dark energy density, which can be interpreted as vac-
uum energy and is Apg ~ 1072 eV, and the value in the SM which is A ~ Mp ~ 10'8 GeV.
Clearly models with supersymmetry are doing a bit better than the SM in predicting this.
Now, what about SUSY?

26The origin of this is just the same as the quadratic divergence for the Higgs mass. It is the same type of
diagrams contributing, only without external legs.
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The scale of the contribution has to be the mass scale of the supersymmetric particles, so
with mgysy > 1TeV we have msysy /Apg > 10 which is twice as good as Mp/Apg = 103
but still a bit off the measured value. This problem is the hierachy problem for vacuum
energy.

However, in supergravity something interesting happens. Introducing a local supersym-
metry the scalar potential is not simply given by the superpotential derivatives in (£I7]), but
instead is (ignoring the effects of gauge fields)

V(A, A%) = ¢K/Mp Kij(DiW)(DjW*)—%|W|2 , (4.39)
P

where K(A, A*) is the so-called Kéhler potential, K;; = 0;0;K is the Kdhler metric

(the derivatives are with respect to the scalar fields) and D; the Kéhler derivative D; =

0; + #(@K ). In the Mp — oo limit, the low energy limit, we see that we recover the flat
P

space result of Eq. ([{I7). What is important to notice is that there is now a second negative
term in the potential that can in principle cancel the SUSY contribution, however, this will
come at the price of fantastic fine-tuning unless some mechanism can be found where this is
natural.
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Chapter 5

The Minimal Supersymmetric
Standard Model (MSSM)

The Minimal Supersymmetric Standard Model (MSSM) is a minimal model in the sense that
it has the smallest field (and gauge) content consistent with the known SM fields. We will
now construct this model on the basis of the previous chapters, and look at some of its
consequences.

5.1 MSSM field content

Previously we learnt that each (left-handed) scalar superfield S has a (left-handed) Weyl
spinor ¥4 and a complex scalar § since they are a j = 0 representation of the superalgebra
Given an application of the equations of motion these have two fermionic and two bosonic
degree of freedom remaining each (the auxiliary field has been eliminated and with it two
fermionic d.o.f.).

In order to construct a Dirac fermion, which are plentiful in the SM, we need a right-
handed Weyl spinor as well. We can aquire the needed right-handed Weyl spinor from the
Tt of a different scalar superfield T with the right-handed Weyl spinor @ AH With these four
fermionic d.o.f. we can construct two Dirac fermions, a particle—anti-particle pair, and four
scalars, two particle—anti-particle pairs.

We use these two superfield ingredients to construct all the known fermions:

e To get the SM leptons we introduce the superfields /; and E; for the charged leptons (i is
the generation index) and v; for the neutrinos, where we form SU(2);, doublet vectors
L; = (v;,l;). We do not introduce NZ-H These would contain right-handed neutrino
spinors needed for massive Dirac neutrinos, but are omitted as they do not couple to
anything, being SM singletsH This is a convention (MSSM is older than neutrino mass),

"With all posssible appologies, we have now changed notation for these fields to what is conventional in
phenomenology (as opposed to pure theory) and we will try to use the tilde notation for the scalar component
fields, while the superfields are denoted by latin letters.

2The bar here is used to (not) confuse us, it is part of the name of the superfields and does not denote any
hermitian or complex conjugate.

3The anti-neutrino contained in the superfield 1/;r is right-handed consistent with experiment.

4They can’t be colour-charged, they are right-handed singlets under SU(2); thus they have zero weak
isospin, but since they should also have zero electric charge the hypercharge must also be zero.

o1
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and including N; fields has some interesting consequencesﬁ

e For quarks the situation is similar. Up-type and down-type quarks get the superfields
ui, U; and d;, D;, forming the SU(2);, doublets Q; = (ui,di)é

Additionally we need vector superfields, which after the e.o.m. contain a massless vector
boson with two scalar d.o.f. and two Weyl-spinors, one of each handedness A and X, with two
fermionic degrees of freedom. Together these form a j = % representation of the superalgebra.
If the vector superfield is neutral, the fermions can form a Majorana fermion, if not they can
be combined with the Weyl-spinors from other fields to form Dirac fermions.

Looking at the construction V' = ¢t®V® in the supersymmetric Lagrangian we see that,
as expected, we need one superfield V¢ per generator t* of the algebra, giving the normal
SU(3)¢, SU(2)r and U(1)y vector bosons. We call these superfields C*, W* and B m
order to be really confusing, we use the following symbols for the fermions constructed from
the respective Weyl-spinors: §, W° and B°. The tilde here is supposed to tells us that hey
are supersymmetric partners (often just called sparticles) of the known SM particles.

We also need Higgs superfields. Now life gets interesting. The usual Higgs SU(2) doublet
sclar field H in the SM cannot give mass to all fermions because it relies on the H® =
—i(H'o9)T construction to give masses to up-type quarks (and possibly neutrinos). The
superfield version of this cannot appear in the superpotential because it would mix left- and
right-handed superfields. The minimal Higgs content we can get away with are two Higgs
superfield SU(2);, doublets, which we will call H, and Hy, indexing the quarks they give
mass toll These must have (more on that in a little bit) weak hypercharge y = £1 for H,
and H, respectively, so that we have the doublets:

i) 1= (it)
H, = ( v, Hg={,.,%]). (5.1)
H? H;

5.2 The kinetic terms

It is now straight forward to write down the kinetic terms of the MSSM Lagrangian giving
matter-gauge interaction terms
,C]“'n = LZB%QUW_%QIBLZ' + QIE%gSAC—F%gO’W—i_%'%g,BQi
_1_5*;6%95)\0—%%9’3@ _|_D;re%gs>\0+§-%g’BDi
+E;re2%g'BEi + H:Ee%gJW-i-%ngHu + ng%gaw—%ngHd’ (5‘2)
where ¢/, g and g5 are the couplings of U(1)y, SU(2);, and SU(3)c. As a convention we
assign the charge under U(1), hypercharge, in units of %g’ . All non-singlets of SU(2); and

SU(3)c have the same charge, the factor % here is used to get by without accumulation of
numerical factors since the algebras for the Pauli and Gell-Mann matrices are:

1 1 1
502'7 50]' = Zfijkga'ka

5Note that component fields in the same superfield must have the same charge under all the gauge groups,
i.e. the scalar partner of the electron has electric charge —e, so it cannot be a neutrino.

SHere we should really also include a color index a such that u¢ is a component in a SU(3)c vector. We
omit these for simplicity.

"And there we have another W.

81n some further insanity some authors prefer H; and H2 so that you have no idea which is which.
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and

1.1 . 1
[5/\2‘, §>\j] = ifiji g k-

These conventions lead to the SM gauge transformations for fermion component fields and
the familiar relations after electroweak symmetry breakingE Q= % + T3, where @ is the unit
of electric charge, y is hypercharge and T3 is weak charge, and e = gsinfy = ¢’ cos Oy .

We mentioned earlier that the two Higgs superfields have opposite hypercharge. This is
needed for so-called anomaly cancellation in the MSSM. Gauge anomaly is the possibility
that at loop level contributions to processes such as in Fig. 5] break gauge invariance and
ruins the predictability of the theory. This miraculously does not happen in the SM becuase
it has the field content it has, so that all gauge anomalies cancel (we don’t know of a deeper
reason). If we have one Higgs doublet this does not happer for the MSSM. With two Higgs
doublets, with opposite hypercharge, it does.

B B

B B

Figure 5.1: Possible three gauge boson B couplings a one-loop fermion contribution.

5.3 Gauge terms

The pure gauge terms with supersymmetric field strengths are also fairly easy to write down:
Ly = %Tr{WAWA}éé + % Tr{CAC 4160 + EBABAHF +h.c. (5.3)

where we have used

1,1 1
T(R), =Tr |=o! =o' ==
(F)z [20 20} 2’

and

2 2’

in the normalization of the terms, and where the field strengths are given as:

T(R)c = Tr BAl - 1)\1} 1

1- - 1

Wa = —ZDDe_WDAeW, W= 5gaawa, (5.4)
1~ 1

Cy = —ZDDe_CDAeC , C = ggsxaca, (5.5)
1 - 1

By = —4DDD4B, B:§g’BO. (5.6)

9Getting ahead of ourselves a little here.
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5.4 The MSSM superpotential

With the same gauge structure as in the SM in place we are ready to write down all possible
terms in the superpotential. First, we notice that there can be no tadpole terms (terms
with only one superfield), since there are no superfields that are singlets (zero charge) under
all SM gauge groups. The only alternative would be right-handed neutrino superfields N;.

We have seen that possible mass terms must fulfill m;;U;,Ujs = m,s to preserve gauge
invariance. For the abelian gauge group U(1)y this reduces to Y; +Y; = 0, which is easier
to check so this is where we start. In Table 5] we see that the only possible contributions
are particle-anti-particle combinations such as [;1/;z, but these come from superfields with
different handedness and cannot be used together.

Superfield L; EZT Q; U Z-T DZT
Particle vir, it | Lr | win,dir | Uir | dir
Hypercharge -1 —2 % % — %
Superfield L} E; Q;-r U, | D;
Anti-particle | 7;g, iiR [iL ﬂiR,JiR U; I, CZZ'L
Hypercharge 1 2 —% — % %

Table 5.1: MSSM superfields with SM fermion content and their hypercharge.

The exception is for the two Higgs superfields that have opposite hypercharge. In order
to also be invariant under SU(2); we have to write this superpotential term as

Lmass = MHgiUsz, (57)

where p is the Lagrangian mass parameter This is invariant under SU(2), because, with
the gauge transformations Hy; — eig%okaHd and HI' — ngig%"wwk, we get

HliooHy; — HIe937 Wigyel929"Wh g,

. 9 _iloghwE logkwk .
= H;fwze 390" W7 gizgo™ W Hd:H:fwsz,

since 0*T0? = —020%. Usually we ignore the SU(2);, specific structure and write terms like
this as uH, Hg, confusing the hell out of anyone that is not used to this convention since we
really do mean Eq. (51]). Notice that if we write (57) in terms of component fields we get

Hlio?Hy = HH; — HOHY,

which we should have been able to guess because the Lagrangian must also conserve electric

charge.
If you have paid very close attention to the argument above you may have noticed that

there is one more possibility, namely

pLiH, = piLTic*H, = pl(v; HY — 1,HF),

7

where p’ is some other mass parameter in the superpotential. This is clearly an allowable
term (and we will return to it below), however, it also raises a very interesting question:

OMust not be confused with the RGE scale!
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Could we have L; = H;? Could the lepton superfields L; play the role of Higgs superfields,
thus reducing the field content needed to describe the SM particles in a supersymmetric
theory? While not immediately forbidden, this suggestions unfortunately leads to problems
with anomaly cancelation, processes with large lepton flavor violation (LFV) and much too
massive neutrinos, and has been abandoned.

We have now found all possible mass terms in the superpotential. What about the Yukawa
terms? The hypercharge requirement is Y; +Y; + Y3, = 0. From our table of hypercharges
only the following terms are viable:

L;L;E,, LiH4E;, L,Q;Dy, QH,U;, UD;D, and  Q;HyD;.

For all these terms we can simultaneously keep SU(2)y invariance with the io? construction
implicitly inserted between any superfield doublets.

For SU(3)c to be conserved, we need to have colour singlets. Some of these terms are
colour singlets by construction since they do not contain any coloured fields. The terms with
two quark superfields contain left-handed Weyl spinors for quarks and anti-quarks, which
are SU(3)¢ singlets if the superfields come in colour—anti-colour pairs. In representation
language they are in the 3 and 3 representations of SU(3)c. Written with all indices explicit
we have e.g. L;Q;Dj = LZ-Q‘J?‘Z'UQDIW, where « is the colour index. The final term U;D; D,
is a colour singlet once we demand that it is totally anti-symmetric in the colour indices:
UZDJDk = EaﬁVUiaDjﬁDk.y.

Our complete superpotential is then:

W = pH,Hg+ pLiH, + y§LiH.E; + yQiH U + y Qi HyD;

where we have named and indexed the couplings in a natural Way

Exercise: Using the explicit form of the SU(3)¢ transformations with the Gell-
Mann matrices, show that with our definition of the superpotential term U;D;Dy,
this is invariant under SU(3)¢.

5.5 R-parity

The superpotential terms LH,,, LLE and LQD that we have written down all violate lepton
number conservation, and UDD violates baryon number conservation. Allowing such terms
leads to, among other phenomenological problems, processes like proton decay p — et 7" as
shown in Fig.

We can estimate the resulting proton life-time by noting that the scalar particle (a strange
squark 3) creates an effective Lagrangian term Aideu with coupling

A= /\,112)‘/1,12 (59)

2 b
mg

HEor some peculiar opinion of what is natural.
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Figure 5.2: Feynman diagram for proton decay with RPV couplings.

where the sparticle mass mjz comes from the scalar propagator in the diagram. The resulting
matrix element for the process must then be proportional to [A|?. Since the mass scale involved
in the problem is the proton mass m, the phase space integration part of a calculation of the
proton decay width must be of the order of mg. We then have

|/\/ " |2
Ly etqo ~ [APm) = ZHZH2L 0 (5.10)

m4 P

S
The measured lower limit on the lifetime from watching a lot of protons not decay is

Tpetr0 > 1.6-10%% y or Tposetn0 > 7107 s/y x 1.6-103% y = 5.0-10*0 s, which gives [Lpetro <
1.3 -107% GeV, so that with we have the following very strict limit on the combination of

two couplings
[M12M 12| < 3.6 - 10_27\/ 1 ?jv- (5.11)

To avoid all such couplings Fayet (1975) [10] introduced the conservation of R-partity.

Definition: R-parity is a multiplicatively conserved quantum number given by

R = (_1)23+3B+L

where s is a particle’s spin, B its baryon number and L its lepton number.

For all SM particles R = 1, while the superpartners all have R = —1. One usually defines
the MSSM as conserving R-parity. The consequence of this somewhat ad hoc definition is
that in all interactions supersymmetric particles are only created or annihilated in pairs. This
leads to the following very important phenomenological consequences:

1. The lightest supersymmetric particle (LSP) is absolutely stable.

2. Every other sparticle must decay down to the LSP (possibly in multiple steps).

3. Sparticles will always be produced in pairs in collider experiments.

For the MSSM this excludes the terms LH,, LLE, LQD and UDD from the superpotential.
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5.6 SUSY breaking terms

We can use our previous arguments on gauge invariance that we used when discussing the
superpotential on the soft-breaking terms to determine which terms are allowed. Terms

1 7 A

are allowed because they have the same gauge structure as the field strength terms. In
component fields these are for the MSSM:

1 -~ 1 =1
—5MiBB — 5J\@W““Wﬁ1 - §Mgg“‘§j‘g +cc
where the M; are potentially complex-valued. This gives six new parameters. Terms
1 __
—Eaijw@@@@i@j@k,

are allowed when corresponding terms exist in the superpotential (are gauge invariant and
not disallowed by R-parity). In component fields the allowed terms are

—aijHdé;R — a%QiHuﬂ;R — afj@incZ;R + c.c.
where the H here refers to scalar parts of the Higgs superfields. The couplings a;; are all
potentially complex valued, so this gives us 54 new parameters. The terms

1 __
50109992,

are only allowed for corresponding terms in the superpotential, i.e. —bH,H; + c.c., where b
is potentially complex valued, which gives us 2 new parameters Tadpole terms

—t,0000;,
are not allowed, as there are no tadpoles in the superpotential. Mass terms
—m?,00009] @,

are allowed because they have the same gauge structure as kinetic terms. In component fields
they are:

L\271F 2% = 24T A Py d\2 5% 7
—(mPLIL; — () Epein — (m3)*QIQ; — (miy)*uigijn — (miy)*dipd;n
—m3, HiH, —m% H)H, (5.12)
where the m?j are complex valued, however, also hermetic. This gives rise to 47 new param-
eters. Despite being allowed the MSSM ignores the "maybe-soft” terms in Eq. (4.23)).
In total, after using our freedom to choose our basis wisely in order to remove what
freedom we can, the MSSM has 105 new parameters compared to the SM, 104 of these are
soft-breaking terms and p is the only new parameter in the superpotential.

12The coupling b is sometimes written By where B is a unitless constant that indicates how different the
coupling is from the corresponding coupling in the superpotential.
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5.7 Radiative EWSB

In the SM the vector bosons are given mass spontaneous by electroweak symmetry breaking
(EWSB), which is induced by the shape of the scalar potential for a scalar field ®:

V(D) = 120Td + A\(DTD)?, (5.13)

with A > 0 and p? < 0 In supersymmetry we have the scalar potential

owlr 1 ) )
V(A,A*):Z‘M +§Zga(A*T“A) >0, (5.14)

when we have extended Eq. [@I7)) by including also gauge interactions and vector super-
ﬁelds For the scalar Higgs component fields (not superfields!) this gives the MSSM poten-
tial

V(H, Hy) = |pP(HP + |H 2+ [HY? + |H; P) (from F-terms)
1 —
500+ g HYE + | H P — Y = |Hy )2 (from D-terms)

1 * — %
+50° [y Hy" + HyHy |
+miy, (|Ho)? + [Hf ?) +my, (|H)? + |H;|?)  (from soft breaking terms)
+[b(HFH; — HYHY) + c.c (5.15)

This potential has 8 d.o.f. from 4 complex scalar fields H;", H?, Hg and H .

We now want to do as in the SM and break SU(2), x U(1)y — U(1)em in order to give
masses to gauge bosons and SM fermions[™ To do this we need to show that (BI5) has: i) a
minimum for finite, i.e. non-zero, field values, ii) that this minimum has a remaining U (1)em
symmetry and iii) that the potential is bunded from below, which are the essential properties
of Eq. (BI3]). We restrict our analysis to tree level, ignoring loop effects on the potential.

We start by using our SU(2), gauge freedom to rotate away any field value for H; at the
minimum of the potential, so without loss of generality we can use H;” = 0 in what follows.
At the minimum we must have 0V/9H;" = 0, and by explicit differentiation of the potential
one can show that H, = 0 then leads to H; = 0. This is good since it guarantees our item
ii), that U(1)em is a symmetry for the minimum of the potential, since the charged fields then
have no vev. We are then left with the potential

V(Hy, Hg) = (Il +mi, ) Hy® + (Iuf* +mig,) | Hg|”
1
+5 (0% + g (IH P — [H*)* = (bHyHy + c.c.) (5.16)

Since we can absorb a phase in H? or Hg we can take b to be real and positive. This does not
affect other terms because they are protected by absolute values. The minimum must also
have HSHg real and positive, to get a as large as possible negative contribution from the b

13The Mexican hat or wine bottle potential, depending on preferences.

MThe last term is due to the elimination of auxillary d-fields from vector superfields giving a contribution
d*d® = g2(A*T* A)%

5The soft-terms are unable to provide masses to these particles because they deal mostly with scalar fields.
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term. Thus the vevs v, = (HY) and vg = (H?) must have opposite phases. By the remaining
U(1)y symmetry, we can transform v, and v, so that they are real and have the same sign.
For the potential to have a negative mass term, and thus fulfill point i) above, we must then
have

b* > (|l +mb,) (Il +md,). (5.17)

Since the potential has SUSY we must also check that it is actually bounded from below,
our point iii), which was guaranteed for the SUSY vacuum. For large |HO| or |HY| the
quartic gauge term blows up to save the potential, except for |[H)| = |HY|, the so-called d-flat
directions. This means that we must also require

2b < 2|ul? + m%]u + m%]d. (5.18)

Negative values of m%; (or m7 ) help satisfy (EI7) and (EI8), but they do not guarantee
EWSB. If we assume that mpy, = mpy, at some high scale (GUT) then (5.I7) and (GI8)
cannot be simultaneously be satisfied at that scale. However, to 1-loop the RGE running of
these mass parameters is:

2

dm
167725#% = 1671271% = 6ly:[*(m, + m, +ma,) + ...

dm?
2 — 2 "H 20,2 2 2
167T /Bm%[d = 167'(' Td = 6‘yb’ (de + mQS + mug) + ...
where y; and y;, are the top and bottom quark Yukawa couplings, and mg, = m?%, Myy = M3,
Mgy = mgg in our previous notation. Because y; > vy, mp, runs down much faster than mp,
as we go to the electroweak scale, and may become negative, see Fig. 5.3l It is this property
that is termed radiative EWSB (REWSB). Thus, in the MSSM with soft terms there is an
explanation why EWSB happens, it is not put in by hand in the potential as it is in the SM!
To get the familiar vector boson masses, we need to satisfy the electroweak constraint:

2=t = 2P (174 Gev)?

Uu+vd:U_92+g/2N( e)7
which comes from experiment. Thus we have one free parameter coming from the Higgs vevs.

We can write this as

Uy

tan 3 = —,

Vq
where by convention 0 < 3 < m/2. Using the conditions V/OH) = 0V/OH) = 0 for the
minimum, b and || can be eliminated as free parameters from the model, however, not the
sign of u. Alternatively, we can choose to eliminate m%,u and m%,d. You can look at this
as giving away the freedom of these parameters to the vevs, and then fixing one vev by the
electroweak constraint, and using tan 3 for the other.

Let us make a little remark here on the parameter u. We have what is called the p
problem. The soft terms all get their scale from some common mechanism at some common
high energy scale, it is assumed, however, p is a mass term in the superpotential (the only
one) and could a priori take any value, even Mp. Why is p then of the order of the soft terms
allowing us to achieve REWSBY

16This problem can be solved in extensions of the MSSM such as the Next-to-Minimal Supersymmetric
Standard Model (NMSSM).
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(my, +u?)'/?

Mass

log(n/1 GeV)

Figure 5.3: Sketch of the RGE running of the two soft Higgs mass parameters m%{u and m%{d

as a function of the energy scale

Exercise: Show how you can eliminate the parameters |u| and b by using the
properties of the minimum of the potential in Eq. (5.10).

5.8 Higgs boson properties

Of the 8 d.o.f. in the scalar potential for the Higgs component fields three are Goldstone
bosons that get eaten by Z and W= to give masses. The remaining 5 d.o.f. form two neutral
scalars h, H, two charged scalars H* and one neutral pseudo-scalar (CP-odd) A At tree
level one can show that these have the masses:

9 2b

_ — 92 2 2 1
mh = =2l my, (519)
1
m%H = 3 <m?4 +m% F \/(m?4 —m%)? + 4m2Zm? sin? 25) , (5.20)
mie = mi+miy. (5.21)

As a consequence my4 and tan 3 can be used to parametrize the Higgs sector (at tree level),
and H, H* and A are in principle unbounded in mass since they grow as b/ sin 23. However,
at tree level the lightest Higgs boson is restricted to

mp, < mz|cos 20| (5.22)

7In addition to the scalars, the Higgs supermultiplets contain four fermions, HO, I:[g, H} and I:[; (higgsi-
nos). These will mix with the fermion partners of the gauge bosons (gauginos).
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In contrast we have the Higgs boson discovery with a mass of m;, = 125.7 & 0.3 (stat.) £
0.3 (sys.) GeV from the LHC [11].

Fortunately there are large loop-corrections or the MSSM would have been excluded al-
ready Because of the size of the Yukawa couplings the largest corrections to the mass
come from stop and top loops (see Fig. [4.1] for the relevant Feynman diagrams). In the limit
mg,,mgy, > my, and with stop mass eigenstates close to the chiral eigenstates (more on this
later), we get the dominant loop correction:

3 mg, m;g
Am? = —— cos® ay?m?In <M> , (5.23)
7T m

where « is a mixing angle for h and H with respect to the superfield component fields H?
and HY, given by

sina m%—km% (5.24)
sin 3 T om2 —m?’ ’
H h

at tree level.
With this and other corrections the bound is weaker:

mp < 135 GGV,

assuming a common sparticle mass scale of mgysy < 1TeV. Higher values for the sparticle
masses give large fine-tuning and weaken the bound very little because of the logarithm
in Eq. (523). The bound can be further weakened by adding extra field content to the
MSSM, e.g. as in the NMSSM, but for mgusy &~ 1 TeV there is an upper pertubative limit of
my, ~ 150 GeV.

It is very interesting to discuss what the Higgs discovery implies for low-energy super-
symmetry. As can be seen from the above it requires rather large squark masses even in the
favourable scenario with tan 3 > 10. A naive estimate from Eq. (5.23) gives m; > 1 TeV.
However, this does not take into account negative contributions to the Higgs mass from heavy
gauginos, and possible increases in the stop contribution due to tuning of the mixing of the
chiral eigenstates in the mass eigenstates.

Since the lightest stop quark is expected to be the lightest squark in scenarios with common
GUT scale soft masses—because of the large downward RGE running of mgQ3 due to the large
top Yukawa coupling—the expected sparticle spectrum lies mostly above 1 TeV, with the
possible exception of gauginos/higgsinos. This points to so-called Split-SUSY scenarios
with heavy scalars and light gauginos, and a relatively large degree of fine-tuning. If one can
live with this little hierarchy problem, it will explain why no signs of supersymemtry have
been seen yet at the LHC. With squark masses above 1 TeV any hints of SUSY are not likely
to come before the machine has been upgraded to 14 TeV in 2014.

If you are willing to accept fine-tuning of the stop mixing instead, or come up with a good
reason for why the mixing should be just-so to give a maximal Higgs mass, you can keep
fairly light stop quarks. With the addition of light higgsinos and a light gluino the model is
then technically natural, these scenarios are called Natural SUSY and should be within the
current or near future reach of the LHC.

181t is worth pointing out that the MSSM, despite its many parameters, is a falsifiable theory in that had the
Higgs boson mass been ~ 15 GeV higher, which is allowed in the SM, the MSSM would have been excluded.
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In Split-SUSY scenarios with a neutralino dark matter candidate (see below) the lightest
neutralino typically has a significant higgsino component. This means that its should be
relatively accessible in direct detection experiments due to its large coupling to normal matter,
and in the indirect search for neutrinos from captured dark matter annihilation in the Sun.
Both types of experiments may very soon see first indications of a signal if this scenario is
indeed realised in nature.

To do calculations with the Higgs bosons in the MSSM we need the Feynman rules that
result from the relevant Lagrangian terms. Since these have been listed elsewhere we will not
repeat them here, but recommend in particular the PhD-thesis of Peter Richardson [12], where
they can be found in Appendix A.6, including all interactions with fermions and sfermions.
These can also be found, together with all gauge and self-interactions, in the classic paper by
Gunion and Haber [13]. Note that in this paper a complex Higgs singlet appears which can
safely be ignored.

5.9 The gluino g

The gluino is a color octet Majorana fermion. As such it has nothing to mix with in the
MSSM (even with RPV) and at tree level the mass is given by the soft term Ms. The
one complication for the gluino is that it is strongly interacting so Ms(u) runs quickly with
energy. It is useful to instead talk about the scale-independent pole-mass, i.e. the pole of the
renormalized propagator, mg. Including one loop effects due to gluon exchange and squark
loops, see Fig. 5.4 in the DR scheme we get:

Qg

m§:M3(,u) 1+47‘r

15—|—61nML+ZAq :
3 Allg

where the squark loop contributions are

e

A _/1d 1 —§+(1— ) i (1—z)—i
;= n .
G o xXr T X 32 xr 3 xr x 1€

Due to the 15-factor the correction can be significant (colour factor).

Figure 5.4: One loop contributions to the gluino mass.

Complete Feynman rules for gluinos can be found in Appendix C of the classic MSSM
reference paper of Haber & Kane [I4]. A more comprehensible alternative may be Appendix
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A.3 from the PhD-thesis of M. Bolz [15]. This also provides a description of how to handle
clashing fermion lines that can appear with Majorana fermions.

5.10 Neutralinos & Charginos

We have a bunch of fermion fields that can mix because electroweak symmetry is broken and
we do not have to care about SU(2)r, x U(1)y charges, only the U(1)em charges matter. The
candidates are:

BY, WO, W Af, A, A; and A

u

The only requirement we have is that only fields with equal electromagnetic charge can mix.
The neutral (Majorana) gauginos mix as

5 = Nj;B°+ Nj,W°  (photino) (5.25)
Z = NyB°+ NL,W°  (zino) (5.26)

where the mixing is inherited from the gauge boson mixing. More generally, they also mix
with the higgsinos to form four neutralinos{"]

)N(? = Nz’lBO + NiQWO + Nzgﬁg + NZ4E[2 (527)
In the gauge eigenstate basis
X = (B, WO, HY, HY), (5.28)

the neutralino mass term can be written as

1. -
Ly —mass = 5 OTMX)(O + c.c.

where the mass matrix is found from the Lagrangian to be

M, 0 —J59'va %219’%
M, = 10 / 1M2 ﬁg’l}d _ﬁgvu
—ﬁg Vq ﬁgvd 0 —H
790 —gsove —p 0

In this matrix, the upper left diagonal part comes from the soft terms for the B and the
WO, the lower right off diagonal matrix comes from the superpotential term wH, Hg, while
the remaining entries come from Higgs-higgsino-gaugino terms from the kinetic part of the
Lagrangian, e.g. Hie%gow"'g/BHu.

9The neutral higgsinos are also Majorana fermion§ despite coming from scalar superfields. Unlike the
(s)fermion superfields the Higgs superfields have no H chiral partners to supply the left-right Weyl spinor
combinations required for Dirac fermions. Thus the neutralinos are Majorana fermions.
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With the Z-mass condition on the vevs we can also write

1

—qg'vg = cosBsinbymy, 5.29
759 BsinOymyz (5.29)
1 /

—g v, = sinfgsinfymyg, 5.30
739 v BsinOwmy (5.30)
1

—qgvg = cosfcosbBymy, 5.31
\/59 d B wmyz (5.31)
1

—qv, = sinfBcosbymyz. 5.32
\/59 B wmz (5.32)

The mass matrix can now be diagonalized to find the YV masses One particularly
interesting solution is in the limit where EWSB is a small effect, mz < [u + M|, | & Mo,
and when My < My < |p|, p € R. Then x§ ~ B, x§ ~ WY, X§, ~ 2=(H + H]) and

V2
m2Z sin? Oy sin 23
mge = M + ? (5.33)
2 o 2
mgg = My %mﬂ (5.34)
my
mey, = || + ﬂ(sgn,u Fsin2f6) +... (5.35)

Since the LSP is stable in R-parity conserving theories the lightest neutralino is an excel-
lent candidate for dark matter. In particular since a 100 GeV neutralino has a natural relic
density close to the measured dark matter density of the Universe. We will return to this
issue later.

From the charged fermions we can make charginos )2?[ that are Dirac fermions with mass

terms

1. -
Lyt _mass = —§XiTMXiX:t + c.c.

where x*1 = (W+, Hf, W—, fld_) and

0 0 My gug

10 0 gu, n
M= = |y, g 0 0

gua 0 0

Here the M, terms come from the soft terms for the W=, the u terms come from the super-
potential as above, while the remainder come from the kinetic terms. We have

gug = V2cosfmy, (5.36)
gue = V2sinBmy. (5.37)

2ONote that we are perfectly happy with negative or even complex eigenvalues, as this is just a phase for
the corresponding mass eigenstate in (5.28]). Redefinition of fields can rotate away either the M; or M> phase,
to make the parameter real and positive, but not both and not the pu-phase, which gives rise to problematic
CP-violation. Therefore these are often just assumed to be real in order not to violate experimental bounds.
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The eigenvalues of this matrix are doubly degenerated (to give the same masses to particles
and their anti-particles), and are given as:

1 .
Mgt T3 <\Mz!2 1+ 2y 7\ (M2 + [f2 + 2m3, )2 — 4|y — m3 sin® mz) ,

In the limit of small EWSB discussed above we have )Zf ~ W* and )@t ~ H/ ]fld_ with

2

_ My
mes = My — e sin 23, (5.38)
2
_ My
mes = || + TSgn L. (5.39)

Note that in this limit Mgy A M.
We should mention that some authors prefer other symbols for the neutralinos and
charginos. Common examples are N; or Z; for neutralinos, and C; or W; (again!) for charginos.

Feynman rules for charginos & neutralinos can again be found in Haber & Kane [14].

5.11 Sleptons & Squarks

There are multiple contributions to sfermion masses from the MSSM Lagrangian. We make
the following list:

i) Under the reasonable assumption that soft masses are (close to) diagona the sfermions
get contributions —m%FiTFZ- and —m% firfir from the soft terms

ii) There are so-called hyperfine terms that come from d-terms % 3 g2(A*T*A)? in the scalar
potential that give Lagrangian terms of the form (sfermion)?(Higgs)? when one of the
scalar fields A is a Higgs field. Under EWSB, when the Higgs field gets a vev these
become mass terms. They contribute with a mass

Ap = (T3F92 — nglz)(vﬁ — vi) = (Tsp — Qr sin? Ow ) cos 23 m2Z,

where the weak isospin, T3, hypercharge, Y, and electric charge, @), are for the left-
handed supermultiplet F' to which the sfermion belongs. However, these contributions
are usually quite small.

iii) There are also so-called F-term contributions that come from Yukawa terms in the su-
perpotential of the form y;FHK. From the contribution Y |W; \2 to the scalar potential
these give Lagrangian terms yQHO*HOf szL and y2H0*Hof sz With EWSB we get

the mass terms mffiszL and mffinZR since my = v, /qyf. These are only significant
for large Yukawa coupling y.

iv) Furthermore, there are also F-terms that combine scalars from the pH,H, term a~nq
Yukawa terms ysF'H K in the superpotential. These give Lagrangian terms —u*H 0%y rfLlph
With a Higgs vev this gives mass terms —p*v, /gy fhf1 + c.c.

21 This is of course to avoid flavor changing neutral currents (FCNCs).
*2Here, and in the following, F; represents an SU(2)r, doublet with generation index i, while f;r represents
a singlet.
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v) Finally, the soft Yukawa terms of the form a FH % with a Higgs vev give mass terms
S 53 f R
afvu/def}kz + C.C.

For the first two generations of sfermions, terms of type iii)-v) are small due to small
Yukawa couplings. Then the sfermion masses are e.g.

mi = mg, + Ay, (5.40)
m?ZL = mél + Adp, (5.41)
m%R = m?“ + Aug. (5.42)

Mass splitting between same generation slepton/squark is then given by

1
2 2 2 2 2/, 2 2 2
Mgy, = My, = Mg — Mg, = =59 (v —v5) = —cos2Bmiy,

since they have the same hypercharge, see Table 5.1l For tan 3 > 1 this gives mgL > m?,L and

2 2
m7 >mg, .
The third generation sfermions ¢, b and 7 have a more complicated mass matrix

structure, e.g. in the gauge eigenstate basis ({1, tg) for stop quarks the mass term is

- t
£stop = - (tL tR) m% ( L> ’

tr
where the mass matrix is given by

m2Q3 +m? + Ady, v(ay sin B — py: cos B)

2 _
my = [U(at sin 8 — p*y; cos 3) m%g +m2 + Adg } ) (5.43)

where the diagonal elements come from i), ii) and iii), while the off-diagonal elements come
from iv) and v). To find the particle masses, we must diagonalize this matrix, writing it in
terms of the mass eigenstates ; and t, aquiring also a mixing matrix for the mass eigenstates
in terms of the gauge eigenstates 7, and tp:

(0= (k). -

where m%l < mt% are the eigenvalues of (543) and |c7|? + |s;|> = 1. The matrices for b and #
have the same structure.

5.12 Gauge coupling unification

We earlier discussed the (-functions for the gauge couplings given in Eq. [£38]). With the
MSSM field content we have found and the couplings

o
N =\l39, 92=9 95=s

#We often assume that ay = Aoys in order to further reduce the FCNC, meaning that there is a global
constant Ao with unit mass relating the Yukawa couplings and the trilinear A-term couplings.

24The normalisation choice for g1 may seem a bit strange, however, this is the correct numerical factor when
breaking e.g. SU(5) or SO(10) down to the SM group. This factor might be different with a different unified

group.
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one then gets:

33
b S5M = <€, 1,—3)

for
1

_ 3
592' ‘l—loop = W 9; b; (5.45)
because
CA)sue) =3, CAsue =2, CAya =0
from the definition C'(A)d;; = (T°T");; and
1 1 3,

TRsve =5 TRsve =5  TRoa =y

from the definition T'(R)d,, = Tr{t.tp}, e.g. by =1 -12—-3.3 = -3,
At one loop order we can do a neat rewrite using a; = ﬁ giz. Since

d 0l dm d
at T g
we have: J S )
= 4, T 3 i
1= ) ——
fat = g @162 T Ton

Thus o~ ! runs linearly in t at one loop. By running from the EW scale measured values
to high scale it is observed that in the MSSM the coupling constants unify, which they do
not naturally do in the SM. The unification scale (GUT) is mgur ~ 2 - 106 GeV, about two
orders of magnitude below the Planck scale. See Fig. 5.5l taken from Martin [16].
Something funny happens to the gaugino mass parameters. Their § functions are

d 1
ﬁM¢|1—loop = @Ml = S QQZMb

Thus all three ratios M;/ 92'2 are scale independent at one loop. To see this let R = M;/ 91'2

then
_ %Mlgg _Mi%gzz o 87r292Mb gz MZ : 291 ’ 167rgzb o
Br = 1 = I =0 (5.46)
g; 9;
If we now assume the coupling constants unify at some high scale mgyr to the coupling g,
and that the gauginos have a common mass m; o = Mi(mgur) = Ma(mgur) = Ms(maur),

it follows that

My _ My _ My _mue
9% 9% 9 g
at all scales! This is a very powerful and predictive assumption. It leads to

M3 = % Sin2 QwMg = §% COS2 Hle (547)
« 5«

which numerically predicts
Mg :Ms:M;=6:2:1

at p = 1TeV. Comparing to our discussion for neutralinos and charginos this predicts mg =

6m . R0 Mgy R Mg = 2m.; %0 However, it is important to remember that this often used

relatlonshlp is based on the conjecture of gauge coupling unification!
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Figure 5.5: RG evolution of the inverse gauge couplings a;; }(Q) in the SM (dashed lines) and
the MSSM (solid lines). In the MSSM case, the sparticle mass thresholds are varied between
250 GeV and 1 TeV and ag(mz) between 0.113 and 0.123. Two-loop effects are included.
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