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3.7 Representations of the superalgebra . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.1 Examples of irreducible representations . . . . . . . . . . . . . . . . . 28
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Superspace 31
4.1 Superspace calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Superspace definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Scalar superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Vector superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Supergauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Construction of a low-energy SUSY Lagrangian 41
5.1 Supersymmetry invariant Lagrangians . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Albanian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Non-Abelian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Supersymmetric field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 The (almost) complete supersymmetric Lagrangian . . . . . . . . . . . . . . . 46
5.6 Spontaneous supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . 46

3



4 CONTENTS

5.7 Supertrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Soft breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 The hierarchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.10 The non-renormalization theorem . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.11 Renormalisation group equations . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.12 Vacuum energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.13 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 The Minimal Supersymmetric Standard Model (MSSM) 57

6.1 MSSM field content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The kinetic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Gauge terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 The MSSM superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 SUSY breaking terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.7 Radiative EWSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.8 Higgs boson properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.9 The gluino g̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.10 Neutralinos & Charginos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.11 Sleptons & Squarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.12 Gauge coupling unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.13 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Sparticle phenomenology 77

7.1 Models for supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Planck-scale Mediated Supersymmetry Breaking (PMSB) . . . . . . . 78

7.1.2 Gauge Mediated Supersymmetry Breaking (GMSB) . . . . . . . . . . 79

7.2 Supersymmetry at hadron colliders . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Current bounds on sparticle masses . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Squarks and gluinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.2 Sbottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.3 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.4 Sleptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.5 Charginos and neutralinos . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Supersymmetry at lepton colliders . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4.1 Current bounds at lepton colliders . . . . . . . . . . . . . . . . . . . . 94

7.5 Precision observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5.1 Electroweak precision observables . . . . . . . . . . . . . . . . . . . . . 95

7.5.2 (g − 2)µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5.3 b→ sγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5.4 Bs → µ+µ− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Supersymmetric dark matter 105

8.1 Evidence for dark matter (DM) . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 WIMP magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 Dark matter candidates in supersymmetry . . . . . . . . . . . . . . . . . . . . 108



CONTENTS 5

8.3.1 Neutralino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.2 Sneutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.3 Gravitino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.5 Indirect detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.6 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



6 CONTENTS



Chapter 1

Introduction

The goal of these lecture notes is to introduce the basics of low-energy models of supersym-
metry (SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as our main
example. The notes are based on lectures given at the University of Oslo in 2011, 2013 and
2015, and lectures at the NORDITA Winter School on Theoretical Particle Physics in 2012.
The notes were originally taken by Paul Batzing in 2011, but has since been embellished
somewhat.

Oslo, August 2017
Are Raklev
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Chapter 2

Groups and algebras

Rather than starting with the problems of the Standard Model, we will focus on the alge-
braic origin of supersymmetry in the sense of an extension of the symmetries of Einstein’s
Special Relativity (SR), which was the original motivation for work on what we today call
supersymmetry. We first need to introduce some basic concepts used in physics for exploring
symmetries, mainly groups and Lie algebras.

2.1 Groups

A group is an abstract mathematical structure that consists of a set of objects, and a multi-
plication rule acting between pairs of these objects. As we will see, it is closely tied to the
concept of symmetries in physics, and we shall almost exclusively discuss symmetries in terms
of groups. We define a group as follows.

Definition: The set G = {gi} and operation • form a group if and only if for
∀ gi ∈ G :

i) gi • gj ∈ G, (closure)

ii) (gi • gj) • gk = gi • (gj • gk), (associativity)

iii) ∃e ∈ G such that gi • e = e • gi = gi, (identity element)

iv) ∃g−1
i ∈ G such that gi • g−1

i = g−1
i • gi = e. (inverse)

A simple example of a group is G = Z (the integers) with standard addition as the
operation. Then e = 0 and g−1 = −g. Alternatively we can restrict the group to Zn, where
the operation is addition modulo n. In this group, g−1

i = n − gi and the unit element is
again e = 0.1 Note that Z is an infinite group, while Zn is finite, with order n (meaning n
members). Both are abelian groups, meaning that the elements commute: gi • gj = gj • gi.
The simplest, non-trivial, of these groups is Z2 which has the members e = 0 and 1. The
operation is defined by 0 + 0 = 0, 0 + 1 = 1 and 1 + 1 = 0.

1Note that we will use e for the identity in an abstract group, while we later use I or 1 as the identity
matrix in matrix representations of groups.

9



10 CHAPTER 2. GROUPS AND ALGEBRAS

A somewhat more sophisticated example of a group can be found in a use for the Taylor
expansion2

f(x+ a) = f(x) + af ′(x) +
1

2
a2f ′′(x) + . . .

=

∞∑
n=0

an

n!

dn

dxn
f(x)

= ea
d
dx f(x).

The last equality uses the formal definition of the exponential series, but may drive some

mathematicians crazy.3 The resulting operator Ta = ea
d
dx is called the translation operator,

in this case in one dimension, since it shifts the coordinate. Together with the (natural)
operation Ta • Tb = Ta+b it forms the translational group T (1), where T−1

a = T−a. In n

dimensions the group T (n) has the elements T~a = e~a·
~∇.

We next define some groups that are very important in physics and to the discussion in
these notes. They have in common that they are defined in terms of matrices.

Definition: The general linear group GL(n) is defined by the set of invertible
n× n matrices A. If we additionally require that det(A) = 1 the matrices form the
special linear group SL(n).

Definition: The unitary group U(n) is defined by the set of complex unitary
n× n matrices U , i.e. matrices such that U †U = 1 or U−1 = U †. If we additionally
require that det(U) = 1 the matrices form the special unitary group SU(n).

Definition: The orthogonal group O(n) is the group of real n × n orthogonal
matrices O, i.e. matrices where OTO = 1. If we additionally require that det(O) = 1
the matrices form the special orthogonal group SO(n).

The unitary group has has the neat property that for ∀~x, ~y ∈ Cn multiplication by a
unitary matrix leaves scalar products unchanged:

~x′ · ~y′ ≡ ~x′†~y′ = (U~x)†U~y

= ~x†U †U~y = ~x†~y = ~x · ~y.

In a sense it doesn’t change the size of the vectors it acts on. For ~x ∈ Rn the orthogonal
group has the same property.

We now extend our vocabulary for groups by defining the subgroup of a group G.

2This is the first of many points where any real mathematician would start to cry loudly and leave the
room.

3We will not discuss this further, but there is a deep question here whether the operator formed by this
exponentiation is well defined.
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Definition: A subset H ⊂ G is a subgroup if and only if:a

i) hi • hj ∈ H for ∀hi, hj ∈ H, (closure)

ii) h−1
i ∈ H for ∀hi ∈ H. (inverse)

aAn alternative, equivalent, and more compact way of writing these two requirements is the
single requirement hi • h−1

j ∈ H for ∀hi, hj ∈ H. This is often utilised in proofs.

There is a very important type of subgroup called the normal subgroup. The importance
will become clear in a moment.

Definition: H is a proper subgroup if and only if H 6= G and H 6= {e}. A
subgroup H is a normal (invariant) subgroup, if and only if for ∀g ∈ G,a

ghg−1 ∈ H for ∀h ∈ H.

A simple group G has no proper normal subgroup. A semi-simple group G has
no abelian normal subgroup.

aAnother, pretty but slightly abusive, way of defining a normal group is to say that gHg−1 = H.

Up to this point things hopefully seem pretty natural, if not exactly easy. We will now
become slightly more cryptic by defining cosets.

Definition: A left coset of a subgroup H ⊂ G with respect to g ∈ G is the set
{gh : h ∈ H}, and a right coset of the subgroup is the set {hg : h ∈ H}. For
normal subgroups H it can be shown that the left and right cosets coincide and
form the coset groupa G/H. This has as its members the sets {gh : h ∈ H} for
∀g ∈ G and the binary operation ∗ with gh ∗ g′h′ ∈ {(g • g′)h : h ∈ H}.

aSometimes called the factor or quotient group.

The coset group has a heuristic understanding as a division of groups, where the structure of
the normal subgroup is removed from the larger group, hench the symbol.

Finally, we need to introduce products of groups in order to discuss multiple symmetries.

Definition: The direct product of groups G and H, G × H, is defined as the
ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise operation (gi, hi)•
(gj , hj) = (gi • gj , hi • hj). G×H is then a group and G and H can be shown to be
normal subgroups of G×H.

Now, given both the definition of a coset group and the direct product of groups, we can
see how to both make and remove products of groups. The normal subgroups can, again
heuristically, be viewed as factors in groups.

Because it has at least one guest star appearance in the text we also need the semi-direct
product.
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Definition: The semi-direct product GoH, where G is a mapping G : H → H,
is defined by the ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise
operation (gi, hi) • (gj , hj) = (gi • gj , hi • gi(hj)). Here H is not a normal subgroup
of GoH.

The famous Standard Model gauge group SU(3)c × SU(2)L × U(1)Y is an example of
a direct product. Direct products are ”trivial” structures because there is no ”interaction”
between the subgroups, the action of each group keeps to itself. Can we imagine a group
G ⊃ SU(3)c × SU(2)L × U(1)Y that can be broken down to the Standard Model group but
has a non-trivial unified gauge structure? There is, SU(5) being one example.

2.2 Representations

The previous section was ”only” mathematics. Physicists are usually more interested in
groups where the elements of G act on some elements of a set s ∈ S, g(s) = s′ ∈ S.4 Here,
the members of S can for example be the state of a system, say a wave-function in quantum
mechanics. This is representation theory. We would like that the result of the operation gi•gj
acts as (gi • gj)(s) = gi(gj(s)) and the identity acts as e(s) = s.

We begin with the (very) abstract definition of a representation that we will use.

Definition: A representation of a group G on a vector space V is a map ρ :
G → GL(V ), where GL(V ) is the general linear group on V , i.e. the invertible
matrices of the field of V ,a such that for ∀gi, gj ∈ G,

ρ(gigj) = ρ(gi)ρ(gj). (homeomorphism)

aTechnically, we can only be sure that we can write GL(V ) as matrices as long as V is a finite
dimensional vector space. However, we shall do our best not to ass around with infinite dimensional
representations.

The point here is that our groups will be used on quantum mechanical states, or fields in
field theory, which can be just complex numbers (functions) or multi-component vectors of
such. They are thus members of a vector space, and the definition of representations force
the transformation properties of the group to be written in terms of matrices. Furthermore,
that the mapping from the group, or, if you like, the concrete way of writing the abstract
group elements, must be homomorphic (structure preserving), meaning that if we can write a
group element as the product of two others, the matrix for that element must be the product
of the two matrices for the individual group elements it can be written in terms of.

You may by now have noticed that the (special) unitary groups defined in the previous
section have the property that they are defined in terms of one of their representations. These
are called the fundamental or defining representations. However, we will also have use
for other representations, e.g. the adjoint representation. Let us take a few examples
that connect to our definition. For U(1) the group members can be written as the complex
numbers on the unit circle eiα, which can be used as phase transformations on wavefunctions
ψ(x)—these form a one dimensional vector space over the complex numbers. For SU(2) the

4As a result mathematics courses in group theory are not always so relevant to a physicist.
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group members can be written in the fundamental representation as eiαiσi , with σi being
the Pauli matrices, which in the Standard Model is applied to weak doublets of fields, e.g.
ψ = (νl, l) that form a two-dimensional vector space, as the SU(2)L gauge transformation.

For later use we need to know when two representations are equivalent.

Definition: Two representations ρ and ρ′ of G on V and V ′ are equivalent if and
only if ∃A : V → V ′, that is one-to-one, such that for ∀g ∈ G, Aρ(g)A−1 = ρ′(g).

The building blocks of representations are so-called irreducible representations. These
are defined as follows:

Definition: An irreducible representation ρ is a representation where there is
no proper subspace W ⊂ V that is closed under the group, i.e. there is no W ⊂ V
such that for ∀w ∈W , ∀g ∈ G we have ρ(g)w ∈W .a

aIn other words, we can not split the matrix representation of G in two parts that do not ”mix”.

Let us take an example to try to clear up what a reducible representation means. The
representation ρ(g) for g ∈ G acts on a vector space V as a matrix. If the matrices ρ(g) can
be decomposed into ρ1(g) and ρ2(g) such that

ρ(g)v =

[
ρ1(g) 0

0 ρ2(g)

]
v,

for ∀v ∈ V and ∀g ∈ G, then ρ is reducible. In this case we could instead split the vector
space V in two vector spaces, and define a representation of G on each of them using ρ1 and
ρ2, which in turn could either be reduced more, or would be irredeucible.

Finally, we need some more calculation focused definitions for representations.

Definition: T (R) is the Dynkin index of the representation R in terms of matrices
Ta, and is given by Tr[Ta, Tb] = T (R)δab. C(R) is the Casimir invariant given by
C(R)δij = (T aT a)ij .

2.3 Lie groups

In physics we are particularly interested in a special type of group, the Lie group, which is the
basic tool we use to describe continous symmetries. In order to define Lie groups we will use
the technical term (smooth) manifold, meaning a mathematical object (formally a topological
space) that locally5 can be parametrised as a function of Rn or Cn. Thus we can describe a
Lie group G in terms of a parameterisation of the members g(~a) ∈ G, where ~a ∈ Rn (or Cn).
In order to describe continous symmetries these groups/manifolds need to be smooth, also in
the technical sense of smooth, which means infinitely differentiable.

5This insistence on local means that the parameterisation is not necessarily the same for the whole group.
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Definition: A Lie group G is a finite-dimensional smooth manifold where group
multiplication and inversion are smooth functions, meaning that given g(~a), g′(~a) ∈
G, g(~a′) • g′(~a′) = g′′(~b) where ~b(~a,~a′) is smooth, and g−1(~a) = g′(~a′) where ~a′(~a) is
smooth.

In terms of a Lie group G acting on a vector space V , dim(V ) = m, this means we can
write the map G× V → V for ~x ∈ V as xi → x′i = fi(~x,~a) where fi is analytic6 in xi and ai.
Additionally fi should have an inverse.

The translation group T (1) with the parameterisation g(a) = ea
d
dx is a Lie group since

g(a) · g(a′) = g(a + a′) and a + a′ is analytic. Here we can write the action of the group on
the vector space R1 as f(x, a) = x+ a. The SU(n) groups are also Lie groups as they have a

fundamental representation ei~α
~λ where λ is a set of n× n-matrices, and fi(~x, ~α) = [ei~α

~λ~x]i.
By the analyticity we can always construct the parametrization so that g(0) = e or xi =

fi(xi, 0). By an infinitesimal transformation dai we then get the following Taylor expansion7

x′i = xi + dxi = fi(xi, dai)

= fi(xi, 0) +
∂fi
∂aj

daj + . . .

= xi +
∂fi
∂aj

daj

This is the transformation by the member of the group that in the parameterisation sits d~a
from the identity. If we now let F be a function from the vector space V to either the real R
or complex numbers C, then the group transformation defined by d~a changes F by

dF =
∂F

∂xi
dxi

=
∂F

∂xi

∂fi
∂aj

daj

≡ dajXjF

where the operators defined by

Xj ≡
∂fi
∂aj

∂

∂xi

are called the n generators of the Lie group. It is these generators X that define the action
of the Lie group in a given representation as the a’s are mere parameters. We can say that
the generators determine the local structure of the group.

As an example of the above we can now go in the opposite direction and look at the
two-parameter transformation defined by

x′ = f(x) = a1x+ a2,

which gives

X1 =
∂f

∂a1

∂

∂x
= x

∂

∂x
,

6Meaning infinitely differentiable and in possession of a convergent Taylor expansion.
7The fact that fi is analytic means that this Taylor expansion must converge in some radius around fi(xi, 0).
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which is the generator for dilation (scale change), and

X2 =
∂

∂x
,

which is the generator for T (1). Note that [X1, X2] = X1X2 −X2X1 = −X2.

The commutator of the generators of the Lie group satisfy [Xi, Xj ] = CkijXk, where Ckij
are the structure constants of the group. We can easily see that these are antisymmetric
in i and j, Ckij = −Ckji. In what is called Lie’s third theorem, Sophus Lie [1] showed that
there is a Jacobi identity among the generators,

[Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0. (2.1)

This immediately leads to the following identity for the structure constants: CkijC
m
kl +C

k
jlC

m
ki+

CkliC
m
kj = 0.

We touched on the fundamental representation of a matrix based group earlier. These
representations have the lowest possible dimension. Another important representation is the
adjoint. This consists of the matrices:

(Mi)
k
j = −Ckij ,

where Ckij are the structure constants. From the Jacobi identity we have [Mi,Mj ] = CkijMk,
meaning that the adjoint representation fulfills the same algebra as the fundamental (gener-
ators). Note that the dimension of the fundamental representation n for SO(n) and SU(n)
is equal to the degrees of freedom, 1

2n(n− 1) and n2 − 1, respectively.

2.4 Lie algebras

We begin this section by defining algebras, which extend familiar vector spaces by adding a
multiplication operation for the vectors.

Definition: An algebra A on a field (say R or C) is a linear vector space with a
binary operation ◦ : A×A→ A.

As a very simple example, the vector space R3 together with the standard cross-product
constitutes an algebra.
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Definition: A Lie algebra L is an algebra where the binary operator [ , ], called
the Lie bracket, has the properties that for x, y, z ∈ L and a, b ∈ R (or C):

i) (bilinearity)
[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

ii) (anti-commutation)
[x, y] = −[y, x]

iii) (Jacobi identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Again R3 with [~x, ~y] = ~x× ~y is a simple example of a Lie algebra.

We usually restrict ourselves to algebras of linear operators where the Lie bracket is the
commutator [x, y] = xy − yx, where these properties follow automatically. The generators of
an n-dimensional Lie group with the commutator as the binary operation then form a unique
n-dimensional Lie algebra. However, the reverse is not true. There can be multiple Lie groups
with the same algebra. The often quoted example is SO(3) and SU(2), which have the same
algebra.

Now that we have discussed the algebra as the local structure of the group, we can finally
look at how the group (and matrix representation) is reconstructed from the algebra. For
this we use what is called the exponential map.

Definition: The exponential map from the Lie algebra L of the general linear
group GL(n) is defined by exp : L→ GL, where

exp(X) =

∞∑
n=0

Xn

n!
. (2.2)

This is nothing than the formal definition of an exponential of a matrix. For any subgroup
G of GL, the Lie algebra of G is mapped into G by the exponential map, meaning that any
group that can be written in terms of matrices, can be reconstructed from the algebra in
this manner. For groups that can not be written as matrices the exponential map must be
generalized, however, this is somewhat beyond the scope of these notes.

2.5 Exercises

Exercise 2.1 Show that T−1
a = T−a and that T (1) is group.

Exercise 2.2 Show that SU(n) is a proper subgroup of U(n). Show that U(n) is not simple.

Exercise 2.3 Find the dimensions of the fundamental and adjoint representations of SU(n).
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Exercise 2.4 Find the fundamental representation for SO(3) and the adjoint representation
for SU(2). What does this say about the groups and their algebras?

Exercise 2.5 Find the generators of SU(2) and their commutation relationships. Hint: One
answer uses the Pauli matrices, but try to derive this from an infinitesimal parametrization.

Exercise 2.6 What are the structure constants of SU(2)?

Exercise 2.7 Show that R3 with the binary operator [~x, ~y] = ~x× ~y is a Lie algebra.
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Chapter 3

The Poincaré algebra and its
extensions

We now take a look at the groups behind Special Relativity (SR), the Lorentz and Poincaré
groups. We will first see what sort of states transform properly under SR, which has surprising
connections to already familiar physics. We will then look for ways to extend these external
symmetries to internal symmetries, i.e. the symmetries of gauge groups.

3.1 The Lorentz Group

A point in the Minkowski space-time manifold M4 is given by xµ = (t, x, y, z) and Einstein’s
requirement in Special Relativity was that the laws of physics should be invariant under rota-
tions and/or boosts between different reference frames. These transformations are captured
in the Lorentz group.

Definition: The Lorentz group L is the group of linear transformations xµ →
x′µ = Λµνx

ν such that x2 = xµx
µ = x′µx

′µ is invariant. The proper or-

thochronous Lorentz group L↑+ is a subgroup of L where det Λ = 1 and Λ0
0 ≥ 1.

a

aThis guarantees that time moves forward, and makes space and time reflections impossible, so
that the group describes only proper boosts and rotations.

From the discussion in the previous section any Λ ∈ L↑+ can be written as

Λµν =

[
exp

(
− i

2
ωρσMρσ

)]µ
ν , (3.1)

where ωρσ = −ωσρ are the parameters of the transformation and Mρσ are the generators of
the group L. The elements of Mρσ form the basis of the Lie algebra for L, and are given by:

M =


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 ,
19
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where Ki and Ji are generators of boost and rotation respectively. These fulfil the following
algebra:1

[Ji, Jj ] = iεijkJk, (3.2)

[Kj , Ji] = iεijkKk, (3.3)

[Ki,Kj ] = −iεijkJk. (3.4)

In terms of M these commutation relations can be written:

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (3.5)

3.2 The Poincaré group

We extend L by translation to get the Poincaré group, where translation : xµ → x′µ = xµ+aµ.
This leaves lengths (x− y)2 invariant in M4.

Definition: The Poincaré group P is the group of all transformations of the form

xµ → x′µ = Λµνx
ν + aµ.

We can also construct the restricted Poincaré group P ↑+, by restricting the ma-

trices Λ in the same way as in L↑+.

We see that the composition of two elements in the group is:

(Λ1, a1) • (Λ2, a2) = (Λ1Λ2,Λ1a2 + a1).

This tells us that the Poincaré group is not a direct product of the Lorentz group and
the translation group, but a semi-direct product of L and the translation group T (1, 3),
P = Lo T (1, 3). The translation generators Pµ have a trivial commutation relationship:2

[Pµ, Pν ] = 0 (3.6)

One can show that:3

[Mµν , Pρ] = −i(gµρPν − gνρPµ) (3.7)

Equations (3.5)–(3.7) form the Poincaré algebra, a Lie algebra.

3.3 The Casimir operators of the Poincaré group

Definition: The Casimir operators of a Lie algebra are the operators that com-
mute with all elements of the algebra a

aTechnically we say they are members of the centre of the universal enveloping algebra of the
Lie algebra. Whatever that means.

1Notice that (3.2) is the SU(2) algebra.
2This means that the translation group in Minkowski space is abelian. This is obvious, since xµ + yµ =

yµ + xµ. One can show that the differential representation is the expected Pµ = −i∂µ.
3For a rigorous derivation of this see Chapter 1.2 of [2]
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A central theorem in representation theory for groups and algebras is Schur’s lemma:

Theorem: (Schur’s Lemma)
In any irreducible representation of a Lie group, the Casimir operators are propor-
tional to the identity.

This has the wonderful consequence that the constants of proportionality can be used to
classify the (irreducible) representations of the Lie algebra (and group). Let us take a concrete
example to illustrate: P 2 = PµP

µ is a Casimir operator of the Poincaré algebra because the
following holds: [

Pµ, P
2
]

= 0, (3.8)[
Mµν , P

2
]

= 0. (3.9)

This allows us to label the irreducible representation of the Poincaré group with a quantum
number m2, writing a corresponding state as |m〉, such that:4

P 2|m〉 = m2|m〉.

The number of Casimir operators is the rank of the algebra, e.g. rankSU(n) = n − 1.

It turns out that P ↑+ has rank 2, and thus two Casimir operators. To demonstrate this is
rather involved, and we won’t make an attempt here, but note that it can be shown that5

L↑+
∼= SU(2) × SU(2) because of the structure of the boost and rotation generators, where

SU(2) can be shown to have rank 1. Furthermore, L↑+
∼= SL(2,C). We will return to this

relationship between L↑+ and SL(2,C) in Section 3.5, where we use it to reformulate the
algebras we work with in supersymmetry.

So, what is the second Casimir of the Poincaré algebra?

Definition: The Pauli-Ljubanski polarisation vector is given by:

Wµ ≡
1

2
εµνρσP

νMρσ. (3.10)

Then W 2 = WµW
µ is a Casimir operator of P ↑+, i.e.:[

Mµν ,W
2
]

= 0, (3.11)[
Pµ,W

2
]

= 0. (3.12)

Again, because W 2 is a Casimir operator, we can label all states in an irreducible repre-
sentation (read particles) with quantum numbers m, s, such that:

W 2|m, s〉 = −m2s(s+ 1)|m, s〉
4This quantum number looks astonishingly like mass and P 2 like the square of the 4-momentum operator.

However, we note that in general m2 is not restricted to be larger than zero.
5Here ∼= means homomorfic, that is structure preserving.
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The m2 appears because there are two Pµ operators in each term. However, what is the
significance of the s, and why do we choose to write the quantum number in that (familiar?)
way? One can easily show using ladder operators that s = 0, 1

2 , 1, . . ., i.e. can only take integer
and half integer values. In the rest frame (RF) of the particle we have:6

Pµ = (m,~0)

Using that WP = 0 this gives us W0 = 0 in the RF, and furthermore:

Wi =
1

2
εi0jkmM

jk = mSi,

where Si = 1
2εijkM

jk is the spin operator. This gives W 2 = − ~W 2 = −m2~S2, meaning that
s is indeed the spin quantum number.7

The conclusion of this subsection is that anything transforming under the Poincaré group,
meaning the objects considered by SR, can be classified by two quantum numbers: mass and
spin.

3.4 The no-go theorem and graded Lie algebras

Since we now know the Poincaré group and its representations well, we can ask: Can the
external space-time symmetries be extended, perhaps also to include the internal gauge sym-
metries? Unfortunately no. In 1967 Coleman and Mandula [3] showed that any extension

of the Pointcaré group to include gauge symmetries is isomorphic to GSM × P ↑+, i.e. the
generators Bi of standard model gauge groups all have

[Pµ, Bi] = [Mµν , Bi] = 0.

Not to be defeated by a simple mathematical proof this was countered by Haag,  Lopuszański
and Sohnius (HLS) in 1975 in [4] where they introduced the concept of graded Lie algebras
to get around the no-go theorem.

Definition: A (Z2) graded Lie algebra or superalgebra is a vector space L that
is a direct sum of two vector spaces L0 and L1, L = L0⊕L1 with a binary operation
• : L× L→ L such that for ∀xi ∈ Li

i) xi • xj ∈ Li+j mod 2 (grading)a

ii) xi • xj = −(−1)ijxj • xi (supersymmetrization)

iii) xi • (xj • xk)(−1)ik + xj • (xk • xi)(−1)ji + xk • (xi • xj)(−1)kj = 0 (generalised
Jacobi identity)

This definition can be generalised to Zn by a direct sum over n vector spaces Li,
L = ⊕n−1

i=0 Li, such that xi • xj ∈ Li+j mod n with the same requirements for super-
symmetrization and Jacobi identity as for the Z2 graded algebra.

aThis means that x0 • x0 ∈ L0, x1 • x1 ∈ L0 and x0 • x1 ∈ L1.

6This does not loose generality since physics should be independent of frame.
7Observe that this discussion is problematic for massless particles. However, it is possible to find a similar

relation for massless particles, when we chose a frame where the velocity of the particle is mono-directional.
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We can start, as HLS, with a Lie algebra (L0 = P ↑+) and add a new vector space L1 spanned
by four operators, the Majorana spinor charges Qa. It can be shown that the superalgebra
requirements are fulfilled by:

[Qa, Pµ] = 0 (3.13)

[Qa,Mµν ] = (σµνQ)a (3.14)

{Qa, Q̄b} = 2/P ab (3.15)

where σµν = i
4 [γµ, γν ] and as usual /P = Pµγ

µ and Q̄a = (Q†γ0)a.
8

Unfortunately, the internal gauge groups are nowhere to be seen. They can appear if we
extend the algebra with Qαa , where α = 1, . . . , N , which gives gives rise to so-called N > 1
supersymmetries. This introduces extra particles and does not seem to be realised in nature
due to an extensive number of extra particles.9 This extension, including N > 1, can be
proven, under some reasonable assumptions, to be the largest possible extension of SR.

3.5 Weyl spinors

Previously we claimed that there is a homomorphism between the groups L↑+ and SL(2,C).

This homomorphism, with Λµν ∈ L↑+ and M ∈ SL(2,C), can be explicitly given by:10

Λµν(M) =
1

2
Tr[σ̄µMσνM

†], (3.16)

M(Λµν) = ± 1√
det(Λµνσµσ̄ν)

Λµνσµσ̄
ν , (3.17)

where σ̄µ = (1,−~σ) and σµ = (1, ~σ).

This two-to-one correspondence means that L↑+
∼= SL(2,C)/Z2. Thus we can look at the

representations of SL(2,C) instead of the Poincaré group, with its usual Dirac spinors, when
we describe particles, but what are those representations? It turns out that there exist two
inequivalent fundamental representations of SL(2,C):

i) The self-representation ρ(M) = M working on an element ψ of a representation space F :

ψ′A = MA
BψB, A,B = 1, 2.

ii) The complex conjugate self-representation ρ(M) = M∗ working on ψ̄ in a space Ḟ :11

ψ̄′
Ȧ

= (M∗)Ȧ
Ḃψ̄Ḃ, Ȧ, Ḃ = 1, 2.

8Alternatively, (3.15) can be written as {Qa, Qb} = −2(γµC)abPµ.
9Note that N > 8 would include particles with spin greater than 2.

10The sign in Eq. (3.17) is the reason that this is a homomorphism, instead of an isomorphism. Each element
in L↑+ can be assigned to two in SL(2,C).

11The dot on the indices is just there to help us remember which sum is which and does not carry any
additional importance.
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Definition: ψ and ψ̄ are called left- and right-handed Weyl spinors.

Indices can be lowered and raised with:

εAB = εȦḂ =

(
0 −1
1 0

)

εAB = εȦḂ =

(
0 1
−1 0

)
The relationship between ψ and ψ̄ can be expressed with:12

σ̄0ȦA(ψA)∗ = ψ̄Ȧ

Note that from the above:

(ψA)† = ψ̄Ȧ

(ψ̄Ȧ)† = ψA

We define contractions of Weyl spinors as follows:

Definition: ψχ ≡ ψAχA and ψ̄χ̄ ≡ ψ̄Ȧχ̄Ȧ.

These quantities are invariant under SL(2,C). With this in hand we see that

ψ2 ≡ ψψ = ψAψA = εABψBψA = ε12ψ2ψ1 + ε21ψ1ψ2 = ψ2ψ1 − ψ1ψ2.

This quantity is zero if the Weyl spinors commute. In order to avoid this we make the
following assumption which is consistent with how we treat fermions (and Dirac spinors):

Postulate: All Weyl spinors anticommute:a {ψA, ψB} = {ψ̄Ȧ, ψ̄Ḃ} = {ψA, ψ̄Ḃ} =
{ψ̄Ȧ, ψB} = 0.

aThis means that Weyl spinors are so-called Grassmann numbers.

This means that

ψ2 ≡ ψψ = ψAψA = −2ψ1ψ2.

Weyl spinors can be related to Dirac spinors ψa as well:13

ψa =

(
ψA

χ̄Ȧ

)
.

We see that in order to describe a Dirac spinor we need both handedness of Weyl spinor. For
Majorana spinors we have:

ψa =

(
ψA

ψ̄Ȧ

)
.

12This is a bit daft, as σ̄0ȦA = δȦA, and we will in the following omit the matrix and write (ψA)∗ = ψ̄Ȧ.
13Note that in general (ψA)∗ 6= χ̄Ȧ.
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We can now write the super-Poincaré algebra (superalgebra) in terms of Weyl spinors.
With

Qa =

(
QA

Q̄Ȧ

)
, (3.18)

for the Majorana spinor charges, we have

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0, (3.19)

{QA, Q̄Ḃ} = 2σµ
AḂ
Pµ, (3.20)

[QA, Pµ] = [Q̄Ȧ, Pµ] = 0, (3.21)

[QA,M
µν ] = σµνA

BQB, (3.22)

where now σµν = i
4(σµσ̄ν − σν σ̄µ).

3.6 The Casimir operators of the super-Poincaré algebra

It is easy to see that P 2 is still a Casimir operator of the superalgebra. From Eq. (3.21)
Pµ commutes with the Qs, so in turn P 2 must commute.14 However, W 2 is not a Casimir
because of the following result:15

[W 2, Qa] = Wµ(/Pγµγ
5Q)a +

3

4
P 2Qa.

We want to find an extension of W that commutes with the Qs while retaining the
commutators we alread have. The construction

Cµν ≡ BµPν −BνPµ,

where

Bµ ≡Wµ +
1

4
Xµ,

and with

Xµ ≡
1

2
Q̄γµγ

5Q,

has the required relation:

[Cµν , Qa] = 0.

We can show that C2 indeed commutes with all the generators in the algebra:

[C2, Qa] = 0, (trivial)

[C2, Pµ] = 0, (excessive algebra)

[C2,Mµν ] = 0. (because C2 is a Lorentz scalar)

Thus C2 is a Casimir operator for the superalgebra.

14Although the fact that Eq. (3.21) holds crucially depends on Qa being four-dimensional. Pµ and Qa would
not commute if there had been five Qs.

15Which, by the way, is really hard work!
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3.7 Representations of the superalgebra

What sort of particles transform under the super-Poincaré group? Or, in other words, what
are the irreducible representations of the group? Let us again assume without loss of generality
that we are in the rest frame, i.e. Pµ = (m,~0).16 As was the case for the original Poincaré
group, states are labeled by m, where m2 is the eigenvalue of P 2. For C2 we have to do a bit
of calculation:

C2 = 2BµPνB
µP ν − 2BµPνB

νPµ

RF
= 2m2BµB

µ − 2m2B2
0

= 2m2BkB
k,

and from the definition of Bµ we get:

Bk = Wk +
1

4
Xk

= mSk +
1

8
Q̄γµγ

5Q ≡ mJk.

The operator we just defined, Jk ≡ 1
mBk, is an abstraction of the ordinary spin operator,

and fulfills the angular momentum algebra (just like the spin operator):

[Ji, Jj ] = iεijkJk.

and has [Jk, Qa] = 0.17 This gives us

C2 = 2m4JkJ
k,

such that:
C2|m, j, j3〉 = −m4j(j + 1)|m, j, j3〉,

where j = 0, 1
2 , 1 . . . and j3 = −j,−j+1, . . . , j−1, j, because Jk fulfils the angular momentum

algebra.18 So, the irreducible representations of the superalgebra can be labeled by (m, j),
and any given set of m and j will give us 2j + 1 states with different j3.19

In the following we will construct all the states for a given representation labeled by the
set (m, j). To do this it is very usefull to write the generators Q in terms of two-component
Weyl spinors instead of four-component Dirac spinors, making explicit use of their Majorana
nature, as we did in Section 3.5. We note that from the above discussion

[Jk, QA] = [Jk, Q̄Ḃ] = 0.

We begin by claiming that for any state with a given value of j3 there must then exist a
state (possibly the same) |Ω〉 that has the same value of j3 and for which

QA|Ω〉 = 0. (3.23)

16We can carry out a similar argument in a different frame for massless particles.
17Again the proof is algebraically extensive, and again I suggest the interested reader to pursue [2].
18The interested reader can check that the proof seen in any quantum mechanics course using ladder operators

for spin holds also for J since it does not depend on any properties but the algebra.
19Make sure you remember that that j is not the spin, but a generalization of spin. J3 is not a Casimir, so

strictly speaking j3 does not label the irrep, rather, for given values of m and j the irrep has 2j+1 independent
states.
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This state is called the Clifford vacuum.20 To show this, start with |β〉, a state with j3.
Then the construction

|Ω〉 = Q1Q2|β〉,
has these properties. First we show that (3.23) holds:

Q1Q1Q2|β〉 = −Q1Q1Q2|β〉 = 0,

and
Q2Q1Q2|β〉 = −Q1Q2Q2|β〉 = Q1Q2Q2|β〉 = −Q2Q1Q2|β〉 = 0.

For this Clifford vacuum state we then have:

J3|Ω〉 = J3Q1Q2|β〉
= Q1Q2J3|β〉 = j3|Ω〉,

in other words, |Ω〉 has the same value for j3 as the |β〉 it was constructed from. We can now
use the explicit expression for Jk

Jk = Sk −
1

4m
Q̄Ḃσ̄

ḂA
k QA,

in order to find the spin for this state:

Jk|Ω〉 = Sk|Ω〉 = jk|Ω〉,

meaning that s3 = j3 and s = j are the eigenvalues of S3 and S2 for the Clifford vacuum |Ω〉.
We can construct three more states from the Clifford vacuum:21

Q̄1̇|Ω〉, Q̄2̇|Ω〉, Q̄1̇Q̄2̇|Ω〉.

This means that there are four possible states that can be constructed out of any state with
the quantum numbers m, j, j3. Taking a look at:

JkQ̄
Ȧ|Ω〉 = Q̄ȦJk|Ω〉 = jkQ̄

Ȧ|Ω〉,

this means that all these states have the same j3 (and j) quantum numbers.22 From the
superalgebra (3.22) we have:

[M ij , Q̄Ȧ] = −(σij)ȦḂQ̄
Ḃ,

so that:

S3Q̄
Ȧ|Ω〉 = Q̄ȦS3|Ω〉 −

1

2
(σ̄3σ

0)ȦḂQ̄
Ḃ|Ω〉 =

(
j3 ∓

1

2

)
Q̄Ȧ|Ω〉,

where − is for Ȧ = 1̇ and + is for Ȧ = 2̇. We can similarly show that

S3Q̄
1̇Q̄2̇|Ω〉 = j3Q̄

1̇Q̄2̇|Ω〉.
20It is called the Clifford vacuum because the operators satisfy a Clifford algebra {QA, Q̄Ḃ} = 2mσ0

AḂ
. Do

not confuse this with a vacuum state, it is only a name.
21All other possible combinations of Qs and |Ω〉 give either one of the other four states, or the zero state

which is trivial and of no interest.
22The same can easily be shown for Q̄1̇Q̄2̇|Ω〉.
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This means that each set of quantum numbers m, j, j3 gives 2 states with s3 = j3, and two
with s3 = j3 ± 1

2 , giving two bosonic and two fermionic states, with the same mass.

The above explains the much repeated statement that any supersymmetry theory has an
equal number of bosons and fermions, which, incidentally, is not true.

Theorem: For any representation of the superalgebra where Pµ is a one-to-one
operator there is an equal number of boson and fermion states.

To show this, divide the representation into two sets of states, one with bosons and one with
fermions. Let {QA, Q̄Ḃ} act on the members of the set of bosons. Q̄Ḃ transforms bosons
to fermions and QA does the reverse mapping. If Pµ is one-to-one, then so is {QA, Q̄Ḃ} =
2σµAḂPµ. Thus there must be an equal number in both sets.23

3.7.1 Examples of irreducible representations

Finally, let us briefly look at two examples of irreducible representations for a fixed non-zero
m.

j = 0

For j = 0, we must have j3 = 0 and as a result the Clifford vacuum |Ω〉 has s = 0 and is a

bosonic state. There are two states Q̄Ȧ|Ω〉 with s = 1
2 and s3 = ∓1

2 and one state Q̄1̇Q̄2̇|Ω〉
with s = 0 and s3 = 0. In total there are two scalar states and two spin-1

2 fermion states. We
will later represent this set of states by the so-called scalar superfield.

We should use be carefull about using the term particle about these states since what
we have found are in fact Weyl spinor states. A real Dirac fermion can only be described
by a j = 0 representation together with a different complex conjugate representation, thus
consisting of four states, or four degrees of freedom (d.o.f.). In field theory, when the fermion
is on-shell, two of these states are eliminated by the Dirac equation, thus we get the expected
two d.o.f. for a spin-1

2 fermion. The situation for the scalars is the same, from the total
four scalar d.o.f., two are eliminated by the equations of motion, resulting in two scalar
particles. The complex conjugate representation of the first representation together with the
self-representation of the second then form the anti-particle of the fermion, and provide an
additional two scalars. So the particle count from the two irreducible representations is a
fermion–anti-fermion pair, and four scalars. Note that all of the resulting particles have the
same mass m.

j = 1
2

For j = 1
2 we have two Clifford vacua |Ω〉 with j3 = ±1

2 , and with s = 1
2 and s3 = ±1

2 (thus
they are fermionic states). For the moment we label them as |Ω; 1

2〉 and |Ω;−1
2〉. From each of

these we can construct two further fermion states Q̄1̇Q̄2̇|Ω;±1
2〉 with s3 = ∓1

2 . In addition to

this we have the states Q̄1̇|Ω; 1
2〉 and Q̄2̇|Ω;−1

2〉 with s3 = 0, the state Q̄2̇|Ω; 1
2〉 with s3 = 1,

and the state Q̄1̇|Ω;−1
2〉 has s3 = −1. Together these states can form two fermions with s = 1

2

23Observe that this tells us that there must be an equal number of states in both sets, not particles.



3.8. EXERCISES 29

and s3 = ±1
2 , one massive vector particle with s = 1, and s3 = 1, 0,−1, and one scalar with

s = 0.24 We will later refer to this set of states as the vector superfield.

3.8 Exercises

Exercise 3.1 Show that [
Pµ, P

2
]

= 0, (3.24)[
Mµν , P

2
]

= 0. (3.25)

Exercise 3.2 Using:25

W 2 = −1

2
MµνM

µνP 2 +MρσMνσPρP
ν ,

show that [
Mµν ,W

2
]

= 0, (3.26)[
Pµ,W

2
]

= 0. (3.27)

Exercise 3.3 Show that L↑+ and SL(2,C) are indeed homomorphic, i.e. that the mapping
defined by (3.16) or (3.17) has the property that Λ(M1M2) = Λ(M1)Λ(M2) or M(Λ1Λ2) =
M(Λ1)M(Λ2).

Exercise 3.4 Show that the generalization of the spin operator, Jk ≡ Sk+ 1
8mQ̄γµγ

5Q, fulfils
the algebra

[Ji, Jj ] = iεijkJk.

Exercise 3.5 What are the states for j = 1?

24For massless particles, m = 0, we can form a vector particle with s3 = ±1 and one extra scalar.
25This is non-trivial to demonstrate, see Chapter 1.2 of [2].
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Chapter 4

Superspace

In this chapter we will introduce a very handy notation system for considering supersym-
metry transformations effected by the Q elements of the superalgebra, or, more correctly,
the elements of the super-Poincaré group and their representations. This notation is called
superspace, and allows us to define so-called superfields as a replacement of ordinary field
theory fields. This mirrors the Lorentz invariance built into relativistic field theory by us-
ing four-vectors. In order to do this we first need to know a little about the properties of
Grassman numbers.

4.1 Superspace calculus

Grassman numbers θ are numbers that anti-commute with each other but not with ordinary
numbers. We will here use four such numbers and in addition we want to place them in Weyl
spinors, indexed by A and Ȧ:1

{θA, θB} = {θA, θ̄Ḃ} = {θ̄Ȧ, θB} = {θ̄Ȧ, θ̄Ḃ} = 0.

From this we get the relationships:2

θ2
A = θAθA = −θAθA = 0, (4.1)

θ2 ≡ θθ ≡ θAθA = −2θ1θ2, (4.2)

θ̄2 ≡ θ̄θ̄ ≡ θ̄Ȧθ̄Ȧ = 2θ̄1̇θ̄2̇. (4.3)

Notice that if we have a function f of a Grassman number, say θA, then the all-order expansion
of that function in terms of θA, is

f(θA) = a0 + a1θA, (4.4)

as there are simply no more terms because of (4.1).
We now need to define differentiation and integration on these numbers in order to create

a calculus for them.

1We can already see how this can be handy: if we consistently use θAQA and θ̄ȦQ̄
Ȧ instead of only QA

and Q̄Ȧ in Eqs. (3.19)–(3.22) we can actually rewrite the superalgebra as an ordinary Lie algebra, but with
Grassman elements, because of these commutation properties.

2There is no summation implied in the first line. These are of course the same relations we already used
for the Weyl spinors.
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Definition: We define differentiation by:a

∂Aθ
B ≡ ∂

∂θA
θB ≡ δAB,

with a product rule

∂A(θB1θB2θB3 . . . θBn) ≡ (∂Aθ
B1)θB2θB3 . . . θBn

−θB1(∂Aθ
B2)θB3 . . . θBn

+ . . .+ (−1)n−1θB1θB2 . . . (∂Aθ
Bn). (4.5)

aNote that this has no infinitesimal interpretation.

Definition: We define integration by
∫
dθA ≡ 0 and

∫
dθAθA ≡ 1 and we demand

linearety: ∫
dθA[af(θA) + bg(θA)] ≡ a

∫
dθAf(θA) + b

∫
dθAg(θA).

This has one surprising property. If we take the integral of (4.4) we get:∫
dθAf(θA) = a1 = ∂Af(θA),

meaning that differentiation and integration has the same effect on Grassman numbers.
To integrate over multiple Grassman numbers we define volume elements as

Definition:

d2θ ≡ −1

4
dθAdθA,

d2θ̄ ≡ −1

4
dθ̄Ȧdθ̄

Ȧ,

d4θ ≡ d2θd2θ̄.

This definition is made so that ∫
d2θ θθ = 1,∫
d2θ̄ θ̄θ̄ = 1,∫

d4θ (θθ)(θ̄θ̄) = 1.

Delta functions of Grassmann variables are given by:

δ(θA) = θA,
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δ2(θA) = θθ,

δ2(θ̄Ȧ) = θ̄θ̄,

and these functions satisfy, just as the usual definition of delta functions:∫
dθAf(θA)δ(θA) = f(0).

4.2 Superspace definition

Superspace3 is a coordinate system where supersymmetry transformations are manifest, in
other words, the action of elements in the super-Poincaré group (SP ) based on the superal-
gebra are treated like Lorentz-transformations are in Minkowski space.

Definition: Superspace is an eight-dimension manifold that can be constructed
from the coset space of the super-Poincaré group (SP ) and the Lorentz group (L),

SP/L, by giving coordinates zπ = (xµ, θA, θ̄Ȧ), where xµ are the ordinary Minkowski

coordinates, and where θA and θ̄Ȧ are four Grassman (anti-commuting) numbers,
being the parameters of the Q-operators in the algebra.

To see this we begin by writing a general element of SP, g ∈ SP , as4

g = exp[−ixµPµ + iθAQA + iθ̄ȦQ̄
Ȧ − i

2
ωρνM

ρν ],

where xµ, θA, θ̄Ȧ and ωρν constitute the parametrisation of the group, and Pµ, QA, Q̄Ȧ and
Mρν are the generators. We can now parametrise SP/L simply by setting ωµν = 0.5 The
remaining parameters of SP/L then span superspace.

As we are physicists we also want to know the dimensions of our new parameters. To do
this we first look at Eq. (3.20):

{QA, Q̄Ḃ} = 2σµAḂPµ

we know that Pµ has mass dimension [Pµ] = M . This means that [Q2] = M and [Q] = M
1
2 .

In the exponential, all terms must have mass dimension zero to make sense. This means that
[θQ] = 0, and therefore [θ] = M−

1
2 .

In order to show the effect of supersymmetry transformations, we begin by noting that
any SP transformation can effectively be written in the following way:

L(a, α) = exp[−iaµPµ + iαAQA + iᾱȦQ̄Ȧ],

3Introduced by Salam & Strathdee [5].
4We have already discussed this way of reconstructing the group by an exponential map of the Lie algebra

to the Lie group in Section 2.4. Technically this only provides a local cover of the group around small values
of the parameters, but we shall not go into more details here.

5SP/L is in reality not a coset group as defined previously, because L is not a normal subgroup of SP , but
its parametrisation still forms a vector space (the coset space) which we call superspace.
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because one can show that6

exp

[
− i

2
ωρνM

ρν

]
L(a, α) = L(Λa, S(Λ)α) exp

[
− i

2
ωρνM

ρν

]
, (4.6)

i.e. all that a Lorentz boost does is to transform spacetime coordinates by Λ(M) and Weyl
spinors by S(Λ(M)), which is a spinor representation of Λ(M). Thus, we can pick frames,
do our thing with the transformation, and boost back to any frame we wanted. In addition,
since Pµ commutes with all the Qs, when we speak of the supersymmetry transformation we
usually mean just the transformation

δS = αAQA + ᾱȦQ̄
Ȧ. (4.7)

We can now find the transformation of superspace coordinates under a supersymme-
try transformation, just as we have all seen the transformation of Minkowski coordinates
under Lorentz transformations. The effect of g0 = L(a, α) on a superspace coordinate
zπ = (xµ, θA, θ̄Ȧ) is defined by the mapping zπ → z′π given by g0e

izπKπ = eiz
′πKπ where

Kπ = (Pµ, QA, Q̄
Ȧ). We have7

g0e
izπKπ = exp(−iaνPν + iαBQB + iᾱḂQ̄

Ḃ) exp(izπKπ)

= exp(−iaνPν + iαBQB + iᾱḂQ̄
Ḃ + izπKπ

−1

2
[−iaνPν + iαBQB + iᾱḂQ̄

Ḃ, izπKπ] + . . . )

Here we take a closer look at the commutator:8

[ , ] = [αBQB, θ̄ȦQ̄
Ȧ] + [ᾱḂQ̄

Ḃ, θAQA]

= −αB θ̄ȦεȦĊ{QB, Q̄Ċ} − ᾱḂθAεḂĊ{Q̄Ċ , QA}
= −2αB θ̄Ȧε

ȦĊσµBĊPµ − ᾱḂθAεḂĊσµAĊPµ
= (−2αB θ̄ĊσµBĊ − 2ᾱĊθAσµAĊ)Pµ

We can relabel B = A and Ċ = Ȧ which leads to

−1

2
[ , ] = (αAσµAȦθ̄

Ȧ − θAσµAȦᾱȦ)Pµ.

The commutator is proportional with Pµ, and will therefore commute with all operators, in
particular the higher terms in the Campbell-Baker-Hausdorff expansion, meaning that the
series reduces to

g0e
iZπKπ

= exp[i(−xµ − aµ + iαAσµAȦθ̄
Ȧ − iθAσµAȦᾱȦ)Pµ + i(θA + αA)QA + i(θ̄Ȧ + ᾱȦ)Q̄Ȧ].

6Fortunately we are not going to do this because it is messy, but it can be done using the algebra of the
group and the series expansion of the exponential function. Note, however, that the proof rests on the P s and
Qs forming a closed set, which we saw in the algebra Eqs. (3.19)–(3.22).

7Here we use Campbell-Baker-Hausdorff expansion eÂeB̂ = eÂ+B̂− 1
2
[Â,B̂]+... where the next term contains

commutators of the first commutator and the operators Â and B̂.
8Using that Pµ commutes with all elements in the algebra, as well as [θAQA, ξ

BQB ] = θAξB{QA, QB} = 0,

and the same for Q̄Ḃ .
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So superspace coordinates transform under supersymmetry transformations as:

(xµ, θA, θ̄Ȧ)→ f(aµ, αA, ᾱȦ) = (xµ+aµ−iαAσµAȦθ̄Ȧ+iθAσµAȦᾱ
Ȧ, θA+αA, θ̄Ȧ+ᾱȦ). (4.8)

As a by-product we can now write down a differential representation for the supersym-
metry generators by applying the standard expression for the generators Xi of a Lie algebra,
given the functions fπ for the transformation of the parameters:

Xj =
∂fπ
∂aj

∂

∂zπ

which gives us:9

Pµ = i∂µ (4.9)

iQA = −i(σµθ̄)A∂µ + ∂A (4.10)

iQ̄Ȧ = −i(σ̄µθ)Ȧ∂µ + ∂Ȧ (4.11)

4.3 Covariant derivatives

Similar to the properties of covariant derivatives for gauge transformations in gauge theories,
it would be nice to have a derivative that is invariant under supersymmetry transformations,
i.e. commutes with supersymmetry operators. Obviously Pµ = i∂µ does this, but more general
covariant derivatives can be made.

Definition: The following covariant derivatives commute with supersymmetry
transformations:

DA ≡ ∂A + i(σµθ̄)A∂µ, (4.12)

D̄Ȧ ≡ −∂Ȧ − i(θσµ)Ȧ∂µ. (4.13)

These can be shown to satisfy relations that are useful in calculations:

{DA, DB} = {D̄Ȧ, D̄Ḃ} = 0 (4.14)

{DA, D̄Ḃ} = −2σµ
AḂ
Pµ (4.15)

D3 = D̄3 = 0 (4.16)

DAD̄2DA = D̄ȦD
2D̄Ȧ (4.17)

4.4 Superfields

Using the superspace coordinates we can now define functions of these. Naturally we should
call these superfields.

Definition: A superfield Φ is an operator valued function on superspace
Φ(x, θ, θ̄).

9We define the generators Xi as −iPµ, iQA and iQB respectively.
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We can expand any Φ in a power series in θ and θ̄. In general:10

Φ(x, θ, θ̄) = f(x) + θAϕA(x) + θ̄Ȧχ̄
Ȧ(x) + θθm(x) + θ̄θ̄n(x)

+θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAψA(x) + θθθ̄θ̄d(x). (4.18)

The properties of the component fields of a superfield can be deduced from the requirement
that Φ must be a Lorentz scalar or pseudoscalar. This is shown in Table 4.1

Component field Type d.o.f.

f(x), m(x), n(x) Complex (pseudo) scalar 2
ψA(x), ϕA(x) Left-handed Weyl spinors 4

χ̄Ȧ(x), λ̄Ȧ(x) Right-handed Weyl spinors 4
Vµ(x) Lorentz 4-vector 8
d(x) Complex scalar 2

Table 4.1: Field content of a general superfield.

One can show (tedious) that under supersymmetry transformations these component fields
transform linearly into each other, thus superfields are representations of the supersymme-
try (super-Poincaré) algebra, albeit highly reducible representations!11 We can recover the
known irreducible representations, see Section 3.7, by some rather ad hoc restrictions on the
fields:12

D̄ȦΦ(x, θ, θ̄) = 0 (left-handed scalar superfield) (4.19)

DAΦ†(x, θ, θ̄) = 0 (right-handed scalar superfield) (4.20)

Φ†(x, θ, θ̄) = Φ(x, θ, θ̄) (vector superfield) (4.21)

Products of same-handed superfields are also superfields with the same handedness since

D̄Ȧ(ΦiΦj) = (D̄ȦΦi)Φj + Φi(D̄ȦΦj) = 0.

This is important when creating a superpotential, the supersymmetric precursor to a full
Lagrangian.13

4.4.1 Scalar superfields

What is the connection of the scalar superfields to the j = 0 irreducible representation? We
use a cute14 trick: Change to the variable yµ ≡ xµ + iθσµθ̄. Then:

DA = ∂A + 2iσµ
AȦ
θ̄Ȧ

∂

∂yµ
, (4.22)

D̄Ȧ = −∂Ȧ. (4.23)

10Note that any superfield commutes with any other superfield, because all Grassmann numbers appear
in pairs. Equation (4.18) can be shown to be closed under supersymmetry transformations, meaning that a
superfield transforms into another superfield under the transformations of the previous section.

11Indeed, they are linear representations since a sum of superfields is a superfield, and the differential
supersymmetry operators act linearly.

12Note that it is Φ† which is the right handed superfield in Eq. (4.20), not Φ.
13Supersymmetry transformations can also be shown to transform left-handed superfields into left-handed

superfields and right-handed superfields into right-handed superfields.
14Here cute is used in the widest sense.
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This means that a field fulfilling D̄ȦΦ = 0 in the new set of coordinates must be independent
of θ̄. Thus we can write:

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y),

and looking at the field content we get the result in Table 4.2.

Component field Type d.o.f.

A(x), F (x) Complex scalar 2
ψ(x) Left-handed Weyl spinors 4

Table 4.2: Fields contained in a left-handed scalar superfield.

We can undo the coordinate change and get:15

Φ(x, θ, θ̄) = A(x) + i(θσµθ̄)∂µA(x)− 1

4
θθθ̄θ̄�A(x) +

√
2θψ(x)− i√

2
θθ∂µψ(x)σµθ̄ + θθF (x).

By doing the transformation yµ ≡ xµ − iθσµθ̄ we can show a similar field content for the
right handed scalar superfield. The general form of a right handed scalar superfield is then:

Φ†(x, θ, θ̄) = A∗(x)−i(θσµθ̄)∂µA∗(x)−1

4
θθθ̄θ̄�A∗(x)+

√
2θ̄Ψ̄(x)+

i√
2
θ̄θ̄θσµ∂µΨ̄(x)+θ̄θ̄F ∗(x).

Compare the above to the j = 0 representation with two scalar states and two fermionic
states (d.o.f.). After applying the equations of motions (e.o.m.) the (auxillary) field F (x)
can be eliminated as it does not have any derivatives. The e.o.m. also eliminates two of the
fermion d.o.f. Thus we are left with the same states as in the j = 0 representation.

However, the scalar superfields will not correspond directly to particle states for the known
SM particles since a Weyl spinor on its own cannot describe a Dirac fermion. When we con-
struct particle representations we will take one left-handed scalar superfield and one different
right-handed scalar superfield. These will form a fermion and two scalars (and their anti-
particles) after application of the e.o.m. We see from (4.19) and (4.20) that if Φ is left handed,
then Φ† is right handed and vice versa with the dagger signifying hermitian conjugation.

4.4.2 Vector superfields

We take the general superfield and compare Φ and Φ†. We see that the following is the
structure of a general vector superfield:

Φ(x, θ, θ̄) = f(x) + θϕ(x) + θ̄ϕ̄(x) + θθm(x) + θ̄θ̄m∗(x)

+θσµθ̄Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄d(x).

and looking at the component fields we find the results in Table 4.3.

Component field Type d.o.f.

f(x), d(x) Real scalar field 1
ϕ(x), λ(x) Weyl spinors 4
m(x) Complex scalar field 2
Vµ(x) Real Lorentz 4-vector 4

Table 4.3: Field content of a general vector superfield.

15Just by expanding the above in powers of θ and θ̄.
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One example of a vector superfield is the product V = Φ†Φ where we easily see that
V † = (Φ†Φ)† = Φ†(Φ†)† = Φ†Φ. Note that sums and products of vector superfields are also
vector superfields:

(Vi + Vj)
† = V †i + V †j = Vi + Vj ,

and
(ViVj)

† = V †j V
†
i = ViVj .

You may now be a little suspicious that this vector superfield does not correspond to the
promised degrees of freedom in the j = 1

2 representation of the superalgebra. Gauge-freedom
comes to the rescue.

4.5 Supergauge

We begin with the definition of an abelian (super) gauge transformation on a vector super-
field16

Definition: Given a vector superfield V (x, θ, θ̄), we define the abelian supergauge
transformation as

V (x, θ, θ̄)→ V ′(x, θ, θ̄) = V (x, θ, θ̄) + Φ(x, θ, θ̄) + Φ†(x, θ, θ̄)

≡ V (x, θ, θ̄) + i(Λ(x, θ, θ̄)− Λ†(x, θ, θ̄))

where the parameter of the transformation Φ (or Λ) is a scalar superfield.

One can show that under supergauge transformations the vector superfield components trans-
form as:

f(x) → f ′(x) = f(x) +A(x) +A∗(x) (4.24)

ϕ(x) → ϕ′(x) = ϕ(x) +
√

2ψ(x) (4.25)

m(x) → m′(x) = m(x) + F (x) (4.26)

Vµ(x) → V ′µ(x) = Vµ(x) + i∂µ(A(x)−A∗(x)) (4.27)

λ(x) → λ′(x) = λ(x) (4.28)

d(x) → d′(x) = d(x) (4.29)

Notice that from the above the standard field strength for a vector field, Fµν = ∂µVν−∂νVµ,
is supergauge invariant. With the newfound freedom of gauge invariance we can choose
component fields of Φ to eliminate some remaining reducibility.

Definition: The Wess-Zumiono (WZ) gauge is a supergauge transformation of
a vector superfield by a scalar superfield with

ψ(x) = − 1√
2
ϕ(x), (4.30)

F (x) = −m(x), (4.31)

A(x) +A∗(x) = −f(x). (4.32)

16And promise we will get back to the corresponding definition for a scalar superfield.
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A vector superfield in the WZ gauge can be written:

VWZ(x, θ, θ̄) = (θσµθ̄)[Vµ(x) + i∂µ(A(x)−A∗(x))] + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄d(x),

which, considered carefully, contains one real scalar field d.o.f., three gauge field d.o.f.17 and
four fermion d.o.f., corresponding to the representation j = 1

2 .18

Notice that the WZ gauge is particularly convenient for calculations because:

V 2
WZ =

1

2
θθθ̄θ̄[Vµ(x) + i∂µ(A(x)−A∗(x))][V µ(x) + i∂µ(A(x)−A∗(x))]

and
V 3
WZ = 0,

so that

eVWZ = 1 + VWZ +
1

2
V 2
WZ .

4.6 Exercises

Exercise 4.1 Check that Eqs. (4.9)–(4.11) fulfil the superalgebra in Eqs. (3.19)–(3.21).

Exercise 4.2 Show the vector superfield component field transformation properties, using
the redefinitions:

λ(x)→ λ(x) +
i

2
σµ∂µϕ̄(x),

d(x)→ d(x)− 1

4
�f(x).

17Hang on, where did that last d.o.f. go from V (x)? We have a remaining gauge freedom in the choice of
A(x)− A∗(x), which is the ordinary gauge freedom of a U(1) field theory. This can be used to eliminate one
d.o.f. from the vector field.

18Note that supersymmetry transformations break this gauge.
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Chapter 5

Construction of a low-energy
supersymmetric Lagrangian

We would now like to construct a model that is invariant under supersymmetry transforma-
tion, much in the same way that the Standard Model Lagrangian is invariant under Poincaré
transformations.

5.1 Supersymmetry invariant Lagrangians and actions

As should be well known the action

S ≡
∫
R
d4xL, (5.1)

is invariant under supersymmetry transformations if this transforms the Lagrangian by a total
derivative term L → L′ = L+∂µf(x), where f(x)→ 0 on S(R) (the surface of the integration
region R). The question then becomes: how can we construct a Lagrangian from superfields
with this property?

We can show that the highest order component fields in θ and θ̄ of a superfield always
transform in this way, e.g. for the general superfield the highest order component field d(x)
transforms under the supersymmetry transformation

δs = αQ+ ᾱQ̄, (5.2)

where the constant α is the supersymmetry transformation parameter,1 as

δsd(x) = d′(x)− d(x) =
i

2
(∂µψ(x)σµᾱ− ∂µλ̄(x)σµα), (5.3)

For a scalar (chiral) superfield it is the F -field which has this property

δsF (x) = −i
√

2∂µψ(x)σµᾱ. (5.4)

These highest power component can be isolated by using the projection property of inte-
gration in Grassman calculus so that

S =

∫
R
d4x

∫
d4θL,

1Note that this is a global SUSY transformation. Replacing α→ α(x) gives a local SUSY transformation,
which, it turns out, leads to supergravity.
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where L is a function of superfields, is guaranteed to be supersymmetry invariant. Note that
this constitutes a redefinition of what we mean by L, and one should be careful when counting
the dimension of terms.2

We can now write down a generic form for the supersymmetry Lagrangian of scalar (chiral)
superfields, where the indices indicate the highest power of θ in the term:

L = Lθθθ̄θ̄ + θθLθ̄θ̄ + θ̄θ̄Lθθ.

Here Lθθ (Lθ̄θ̄) is a function of left-handed (right-handed) scalar superfields where we project
out the F -field — called the superpotential — while Lθθθ̄θ̄ is a real valued function of the
scalar superfields where we project out the d-field, called the Kähler potential.

The requirement of renormalizability puts further restrictions on the fields in L. We can
at most have three powers of scalar superfields, for details see e.g. Wess & Bagger [6]. Since
the action must be real, the (almost) most general supersymmetry Lagrangian that can be
written in terms of scalar superfields is:

L = Φ†iΦi + θ̄θ̄W [Φ] + θθW [Φ†].

Here the first term is called the kinetic term3, and W is the symbol for the superpotential
which is restricted to

W [Φ] = giΦi +mijΦiΦj + λijkΦiΦjΦk. (5.5)

This means that to specify a supersymmetric Lagrangian we only need to specify the super-
potential. Dimension counting for the couplings give [gi] = M2, [mij ] = M and [λijk] = 1.
Notice also that mij and λijk are symmetric.

5.2 Abelian gauge theories

We would ultimately like to have a gauge theory like that of the SM, so we start with an
abelian warm-up, by finally definig what we mean by an (abelian) supergauge transformation
on a scalar superfield.

Definition: The U(1) (super)gauge transformation (local or global) on left
handed scalar superfields is defined as:

Φi → Φ′i = e−iΛqiΦi

where qi is the U(1) charge of Φi and Λ, or Λ(x), is the parameter of the gauge
transformation.

For the definition to make sense Φ′i must be a left-handed scalar superfield, thus

D̄ȦΦ′i = 0,

2Looking at the mass dimensions we have, since
∫
dθ θ = 1 from superspace calculus (see Section 4.1),

[θ] = M−1/2 which leads to [
∫
dθ] = M1/2. We then have [

∫
d4θ] = M2. Since we must have [

∫
d4θL] = M4

for the action to be dimensionless, we need [L] = M2.
3The constant in front can always be chosen to be one because we can rescale the whole Lagrangian. Notice

that the kinetic terms are vector superfields.
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and this requires:

D̄ȦΦ′i = D̄Ȧe
−iΛqiΦi = e−iΛqiD̄ȦΦi − iqi(D̄ȦΛ)e−iΛqiΦi

= −iqi(D̄ȦΛ)Φ′i = 0.

Thus we must have D̄ȦΛ = 0, which by definition means that Λ itself is a left-handed
superfield. This is of course completely equivalent for right-handed scalar fields.

We will of course now require not only a supersymmetry invariant Lagrangian, but also a
gauge invariant Lagrangian. Let us first look at the transformation of the superpotential W
under the gauge transformation:

W [Φ]→W [Φ′] = gie
−iΛqiΦi +mije

−iΛ(qi+qj)ΦiΦj + λijke
−iΛ(qi+qj+qk)ΦiΦjΦk

For W [Φ] = W [Φ′] we must have:

gi = 0 if qi 6= 0 (5.6)

mij = 0 if qi + qj 6= 0 (5.7)

λijk = 0 if qi + qj + qk 6= 0 (5.8)

This puts great restrictions on the form of the superpotential and the charge assignments of
the superfields (as in ordinary gauge theories). What then about the kinetic term?

Φ†iΦi → Φ†ie
iΛ†qie−iΛqiΦi = ei(Λ

†−Λ)qiΦ†iΦi.

As in ordinary gauge theories we can introduce a gauge compensating vector (super)field
V with the appropriate gauge transformation to make the kinetic term invariant under su-
persymmetry transformations. We can write the kinetic term as Φ†ie

qiV Φi, which gives us:

Φ†ie
qiV Φi → Φ†ie

iΛ†qieqi(V+iΛ−iΛ†)e−iΛqiΦi = Φ†ie
qiV Φi

This definition of gauge transformation can be shown to recover the SM minimal coupling
for the component fields through the covariant derivative

Di
µ = ∂µ −

i

2
qiVµ,

where Vµ is the vector component field of the vector superfield.
In case you were worried: we can use the WZ gauge to show that the new kinetic term

Φ†ie
qiV Φi has no term with dimension higher then four, and is thus renormalizable.

5.3 Non-Abelian gauge theories

How do we extend the above to deal with much more complicated non-abelian gauge theories?
Let us take a group G with the Lie algebra of group generators ta that fulfil

[ta, tb] = ifab
ctc, (5.9)

where fab
c are the structure constants. For an element g in the group G we want to write down

a unitary4 representation U(g) that transforms a scalar superfield Ψ by Ψ → Ψ′ = U(g)Ψ.

4By unitary we mean, as usual, that U† = U−1 so that U†U = 1.
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With an exponential map we can write the representation as U(g) = eiλ
ata , as you may

perhaps have expected.5,6 Thus, we simply copy the abelian structure (as in ordinary gauge
theories), and transform superfields as

Ψ→ Ψ′ = e−iqΛ
ataΨ,

where q is the charge of Ψ under G.7 Again we can easily show that we must require that the
Λa are left-handed scalar superfields for Ψ to transform to a left-handed scalar superfield.

For the superpotential to be invariant we must now have:

gi = 0 if giUir 6= gr (5.10)

mij = 0 if mijUirUjs 6= mrs (5.11)

λijk = 0 if λijkUirUjsUkt 6= λrst (5.12)

where the indices on U are its matrix indices. We also want a similar construction for the
kinetic terms as for abelian gauge theories, Ψ†eqV

aTaΨ, to be invariant under non-abelian
gauge transformations.8 Now

Ψ†eqV
aTaΨ→ Ψ′†eqV

′aTaΨ′ = Ψ†eiqΛ
a†TaeqV

′aTae−iqΛ
aTaΨ,

so we have to require that the vector superfield V transforms as:9

eqV
′aTa = e−iqΛ

a†TaeqV
aTaeiqΛ

aTa . (5.13)

When we look at this as an infinitesimal transformation in Λ we can show that

V ′a = V a + i(Λa − Λa†)− 1

2
qfbc

aV b(Λc† + Λc) +O(Λ2),

which reduces to the abelian definition for abelian groups. If we look at the component vector
fields, V a

µ , these transform just like in a standard non-abelian gauge theory:

V a
µ → V ′aµ = V a

µ + i∂µ(Aa −Aa∗)− qfbcaV b
µ (Ac −Ac∗),

in the adjoint representation of the gauge group.
The supergauge transformations of vector superfields can be written more efficiently in a

representation independent way as

eV
′

= e−iΛ
†
eV eiΛ,

and the inverse transformation is then given by

e−V
′

= e−iΛe−V eiΛ
†
,

where Λ ≡ qΛaTa and V ≡ qV aTa, such that eV e−V = eV
′
e−V

′
= 1.10

5Since we demanded a unitary representation the generators ta must be hermitian.
6Of, course, you may ask, how do we even know that we can find a unitary representation for a particular

Lie group? It turns out that this is alwyas true for a subset of Lie groups, called compact Lie groups. These
are the Lie groups where the parameters vary over a closed interval.

7At this point can choose a representation different from the fundamental, reflected in a different choice
for ta. Since we are almost exclusively interested in groups defined by a matrix representation U(g) will be a
matrix with dimension fixed by the dimension chosen for the representation.

8We have chosen some specific representation Ta of the generators ta of the Lie algebra (5.9).
9This is independent of our choice of representation for the gauge group for the supergauge transformation.

10Notice that despite the non-commutative nature of the matrices involved, the identity eAe−A = 1 holds.
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5.4 Supersymmetric field strength

There is one missing type of term for the supersymmetric Lagrangian, namely field strength
terms, e.g. terms to describe the electromagetic field strength.

Definition: Supersymmetric field strength is defined by the spinor (matrix)
scalar superfields given by

WA ≡ −
1

4
D̄D̄e−VDAe

V ,

and

W̄Ȧ ≡ −
1

4
DDe−V D̄Ȧe

V ,

where V = V aTa.

We can show that WA is a left-handed superfield and that Tr[WAWA] (and Tr[W̄ȦW̄
Ȧ])

is supergauge invariant and potential terms in the supersymmetry Lagrangian. Firstly

D̄ȦWA = −1

4
D̄ȦD̄D̄e

−VDAe
V = 0,

because from Eq. (4.16) D̄3 = 0. Under a supergaugetransformation we have:

WA →W ′A = −1

4
D̄D̄e−iΛe−V eiΛ

†
DAe

−iΛ†eV eiΛ

(D̄ȦΛ = 0) = −1

4
e−iΛD̄D̄e−V eiΛ

†
DAe

−iΛ†eV eiΛ

(DAΛ† = 0) = −1

4
e−iΛD̄D̄e−VDAe

V eiΛ

= −1

4
e−iΛD̄D̄e−V [(DAe

V )eiΛ + eV (DAe
iΛ)]

= e−iΛWAe
iΛ − 1

4
e−iΛD̄D̄DAe

iΛ. (5.14)

We are free to add zero to (5.14) in the form of −1
4e
−iΛD̄DAD̄e

iΛ = 0,11 giving

W ′A = e−iΛWAe
iΛ − 1

4
e−iΛD̄{D̄,DA}eiΛ

= e−iΛWAe
iΛ +

1

2
e−iΛD̄Ȧσ

µ
AḂε

ȦḂPµe
iΛ

= e−iΛWAe
iΛ,

where we have used Eq. (4.15) to replace the anti-commutator. This means that the trace is
gauge invariant:

Tr[W ′AW ′A] = Tr[e−iΛWAeiΛe−iΛWAe
iΛ]

= Tr[eiΛe−iΛWAWA] = Tr[WAWA].

11Which is zero because Λ is a left-handed scalar superfield, D̄ȦΛ = 0.



46 CHAPTER 5. CONSTRUCTION OF A LOW-ENERGY SUSY LAGRANGIAN

If we expand WA in the component fields we find, as we might have hoped, that it contains
the ordinary field strength tensor:

F aµν = ∂µV
a
ν − ∂νV a

µ + qfbc
aV b

µV
c
µ

and that the trace indeed contains terms with F aµνF
µνa.

5.5 The (almost) complete supersymmetric Lagrangian

We can now write down the Lagrangian for a supersymmetric theory with (possibly) non-
abelian gauge groups:12

L = Φ†eV Φ + δ2(θ̄)W [Φ] + δ2(θ)W [Φ†] +
1

2T (R)
δ2(θ̄)Tr[WAWA], (5.15)

where T (R) is the Dynkin index that appears to correctly normalize the energy density for
the chosen representation R of the gauge group. Note that since WA is spanned by Ta for a
given representation, we can write WA = W a

ATa. Then

Tr[WAWA] = W aAW b
ATr[TaTb] = WAaW b

AδabT (R) = T (R)W aAW a
A. (5.16)

5.6 Spontaneous supersymmetry breaking

As we have seen above, supersymmetry predicts scalar partner particles with the same mass
as the known fermions (and new fermions for the known vectors). These, somewhat unfor-
tunately, contradict experiment by not existing. In the SM we have a similar problem: the
vector bosons should remain massless under the gauge symmetry of the model. Yet, they are
observed to be very massive. This is solved with the introduction of the Higgs mechanism
and spontaneous symmetry breaking in the scalar potential.13 The idea is that while
there is a symmetry of the Lagrangian (in the SM the gauge symmetry), this may not be
a symmetry of the vacuum state, thereby allowing the properties of the vacuum to supply
the masses. Would it not be great if we could have spontaneous symmetry breaking in order
to break supersymmetry this way and boost the masses of supersymmetric particles beyond
current limits?

From exercise 5.13 we can see that the Lagrangian of (5.15) written in terms of component
field contains no kinetic (derivative) terms for the F (x) scalar fields. These are then what
we call auxilary fields and can be eliminated by the e.o.m. we get from solving the Euler-
Lagrange equation for this field:14

∂L
∂F ∗i (x)

= Fi(x) +W ∗i = 0,

12Note that there is no hermitian conjugate of the trace term, and an odd normalisation. This is because
the term can be proven to be real, although this is sometimes overlooked in the literature.

13The potential of the Lagrangian are those terms not containing derivatives of the fields (kinetic terms).
The scalar potential are such terms that contain only scalar fields.

14We remind the reader that the Euler-Lagrange equation for a field φ is the result of minimizing the action
and is given in terms of the Lagrangian as:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (5.17)
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where

Wi ≡
∂W [A1, ..., An]

∂Ai
. (5.18)

This allows us to rewrite the action as (ignoring gauge interactions):

S =

∫
d4x{i∂µψ̄iσµψi −A∗i�Ai −

1

2
Wijψiψj −

1

2
W ∗ijψ̄iψ̄j − |Wi|2}

with15

Wij ≡
∂2W [A1, ..., An]

∂Ai∂Aj
. (5.19)

Thus the scalar potential of the Lagrangian is

V (Ai, A
∗
i ) =

n∑
i=1

∣∣∣∣∂W [A1, ..., An]

∂Ai

∣∣∣∣2 . (5.20)

In the SM figuring out a scalar potential that breaks SU(2)L × U(1)Y is a little messy.
In supersymmetry the argument goes like this: First, notice that we can write the supersym-
metric Hamiltonian as

H =
1

4
(Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2).

To see this, consider

{QA, Q̄Ḃ}σ̄νḂA = 2σµAḂσ̄
νḂAPµ

= 2 Tr[σµσ̄ν ]Pµ

= 4gµνPµ = 4P ν .

Now,

H = P 0 =
1

4
{QA, Q̄Ḃ}σ̄0ḂA

=
1

4
(Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2).

As discussed in Section 3.5 we have Q†A = Q̄Ȧ. Thus the Hamiltonian is semipositive
definite, i.e. 〈Ψ|H|Ψ〉 ≥ 0 for any state |Ψ〉.

Imagine now that there exists some lowest lying states (possibly degenerate), the ground
state(s) |0〉, that have vanishing energy 〈0|H|0〉 = 0. These are supersymmetric since, to
fulfill the energy assumption, we must have

QA|0〉 = Q̄Ȧ|0〉 = 0 for ∀A, Ȧ, (5.21)

and are thus invariant under the supersymmetry transformations given by (4.7)

δS |0〉 = (αAQA + ᾱȦQ̄
Ȧ)|0〉 = 0. (5.22)

15This is called the fermionic mass matrix.
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This means that at this supersymmetric minimum of the potential the scalar potential must
contribute zero

V (A,A∗) = 0 and thus
∂W

∂Ai
= 0.

Conversely, if the scalar potential does contribute in the vacuum (ground state) |0〉, meaning

∂W

∂Ai
6= 0 and thus V (A,A∗) > 0,

in the minimum of the potential for some Ai, then supersymmetry must be broken! As in the
SM, the Lagrangian is still (super)symmetric, but |0〉 is not because (5.21) can no longer hold
for all the Qs.

The O’Raifeartaigh model (1975) [7] is an example of a model that spontaneously
breaks supersymmetry with three scalar superfields X, Y , Z, and the superpotential

W = λY Z + gX(Z2 −m2), (5.23)

where λ, g and m are real non-zero parameters. The scalar potential is

V (A,A∗) =

∣∣∣∣ ∂W∂AX
∣∣∣∣2 +

∣∣∣∣ ∂W∂AY
∣∣∣∣2 +

∣∣∣∣ ∂W∂AZ
∣∣∣∣2

= |g(A2
Z −m2)|2 + |λAZ |2 + |λAY + 2gAXAZ |2, (5.24)

which can never be zero because setting AZ = 0, which is needed for the second term, gives a
non-zero contribution g2m4 from the first term. Since the expectation value at the minimum
that breaks supersymmetry is 〈0|∂Wi

∂Ai
|0〉, and Fi = ∂Wi

∂Ai
, the condition for spontaneous ����SUSY

(supersymmetry breaking) with the O’Raifertaigh mechanism can be written

〈Fi〉 ≡ 〈0|Fi(x)|0〉 > 0, (5.25)

hence it is given the name F-term breaking. In F-term breaking it is the vacuum expectation
value (vev) of the auxilary field of a scalar superfield that supplies the breaking.

In a gauge theory, a similar mechanism is found by adding a term LFI ∼ 2kV where V is a
vector superfield. The vev of the d(x) auxiliary field will create a non-zero scalar potential.16

This is called the Fayet-Iliopolous model, or D-term breaking.

5.7 Supertrace

Unfortunately, the above does not work in practice with all particles at a low energy scale.
The problem is that at tree level the supertrace, STr, the weighted sum of eigenvalues of
the mass matrix M, can be shown to vanish, STrM2 = 0.17

Definition: The supertrace is given by

STrM2 ≡
∑
s

(−1)2s(2s+ 1) TrM2
s (5.26)

where M is the mass matrix of the Lagrangian, s is the spin of particles and Ms is
the mass matrix of all spin–s particles.

16It is always the auxiliary fields fault!
17See Ferrara, Girardello and Palumbo (1979) [8].
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For a theory with only scalar superfields, with two fermionic and two bosonic degrees of
freedom each, and with, respectively, mass matrices M1/2 and M0 after spontaneous super-
symmetry breaking, this means that Tr {M2

0 − 2M2
1/2} = 0, i.e. the sum of scalar particle

masses (squared) is equal to the fermion masses (squared).18 The consequence is that not all
the scalar partners can be heavier than our known fermions.19

5.8 Soft breaking

What we can do instead is to add explicit supersymmetry breaking terms to the Lagrangian
parametrizing our ignorance of the true (spontaneous) supersymmetry breaking on some
higher scale

√
〈F 〉 that we do not have access to where the supertrace relation is fullfilled,20

for which there are many alternatives in the literature, e.g.:

• Planck-scale Mediated Symmetry Breaking (PMSB)

• Gauge Mediated Symmetry Breaking (GMSB)

• Anomaly Mediated Symmetry Breaking (AMSB)

However, we cannot simply add arbitrary terms to the Lagrangian. The terms we can add are
so-called soft terms with couplings of mass dimension one or higher. The dis-allowed terms
with smaller mass dimension are terms that can lead to divergences in loop contributions to
scalar masses (such as the Higgs) that are quadratic or worse (because of the high dimension-
ality of the fields in the loops). We will return to this issue in a moment. The allowed terms
are in superfield notation as follows:

Lsoft = − 1

4T (R)
Mθθθ̄θ̄Tr{WAWA} −

1

6
aijkθθθ̄θ̄ΦiΦjΦk

−1

2
bijθθθ̄θ̄ΦiΦj − tiθθθ̄θ̄Φi + h.c. (5.27)

−m2
ijθθθ̄θ̄Φ

†
iΦj .

Note that these terms are not supersymmetric. From the θθθ̄θ̄-factors we see that only the
lowest order component fields of the superfields contribute. There are also some terms that
are called ”maybe-soft” terms:

Lmaybe = −1

2
θθθ̄θ̄cijkΦ

†
iΦjΦk + h.c. (5.28)

This last—oft ignored—type of term is soft as long as none of the scalar superfields is a singlet
under all gauge symmetries. It is, however, quite difficult to get large values for cijk with
spontaneous����SUSY. In the above terms we have not specified any gauge symmetry, which will,
in the same way as it did for the superpotential, severely restrict the allowed terms. However,
it turns out that soft-terms are responsible for most of the parameters in supersymmetric
theories!

18Remember that there are two scalar particles for each fermion.
19Strong coupling, meaning tree level is a bad approximation, may help, but life is still difficult.
20Remember that [Φ] = M and [θ] = M−

1
2 so that the component field must have [F ] = M2.
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We can write the soft terms in terms of their component fields as21

Lsoft = −1

2
MλAλA − (

1

6
aijkAiAjAk +

1

2
bijAiAj + tiAi +

1

2
cijkA

∗
iAjAk + c.c.)

−m2
ijA
∗
iAj

Note that to be viable ����SUSY should to predict (universal) structures for the many soft-
term parameters involved. Non-diagonal parameters tend to lead to flavor changing neutral
currents (FCNC) or CP-violation in violation of measurement and should be avoided.

5.9 The hierarchy problem

Take a scalar particle, say the Higgs h. If we calculate loop-corrections to its mass in self-
energy diagrams like the ones shown in Fig. 5.1, where f is a fermion and s some other
scalar, they diverge, meaning they are infinite. This then needs what is called regularization
in field theory in order to yield a finite answer. There are different ways of achiving this.
Since we know that the SM is an incomplete theory, at least when we go up to Planck scale
energies where we need an unknown quantum theory of gravity, we can introduce a cut-off
regularization limiting the integral in the loop-correction to energies below a scale ΛUV . Then
the loop-correction to the Higgs mass is, at leading order in ΛUV ,

∆m2
h = −|λf |

2

8π2
Λ2
UV +

λs
16π2

Λ2
UV + . . . (5.29)

where λf and λs are the couplings of f and s to the Higgs, respectively, and ΛUV is the high
energy cut-off scale, suggestively the Planck scale, ΛUV = MP = 2.4 × 1018 GeV. Now, in
order to keep mh ∼ 125 GeV as measured there must then be a crazy cancellation of 1016

times larger terms. This is known as the hierarchy problem.22

Enter supersymmetr to the rescue: with unbroken supersymmetry we find that we au-
tomatically have |λf |2 = λs and exactly twice as many scalar as fermion degrees of free-
dom running around in loops. This provides a magic cancellation of the quadratic diver-
gence in Eq. (5.29). To see that this relation between the couplings holds, remember that
W ∼ λijkΦiΦjΦk gives Lagrangian terms of the form λijkψiψjAk, and from the scalar poten-
tial we have terms of the form

V (A,A∗) ∼
∣∣∣∣∂W∂Ai

∣∣∣∣2 = |λijk|2A∗jA∗kAjAk. (5.30)

When the scalar field Ak is the Higgs field, the fermion is represented by ψi = ψj and the
second scalar by Aj , these two terms are responsible for the two types of vertices in Fig. 5.1
with λf = λijk and λs = |λijk|2. Note that the argument above applies to any scalar in the
theory.

Now, we have unfortunately already broken supersymmetry, so what happens in ����SUSY?
This is the reason for restricting ourselves to soft supersymemtry breaking terms in the

21We have omitted terms that have the form − 1
2
mijψiψj , because these can be absorbed by a redefinition

of the superpotential.
22What about choosing dimensional regularization instead where there is no cut-off scale? That could in

principle work, however, as soon as you introduce any new particle (significantly) heavier than the Higgs this
results in a quadratic correction with the new particle mass, meaning that we cannot complete the SM at a
higher scale without reintroducing the problem!
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Figure 5.1: One loop contributions to the Higgs mass from a fermion (left) and scalar (right)
loop.

previous section. This guarantees that we end up with contributions to the Higgs mass of at
most

∆m2
h = − λs

16π2
m2
s ln

Λ2
UV

m2
s

+ . . . , (5.31)

at the leading order in ΛUV , where ms is the mass scale of the soft term. This is the most
important argument in favour of supersymmetry existing at low energy scales where we can
detect it, because ms can not be too large if we want the above corrections to be small. This
is called the little hierarchy problem and means that we want ms ∼ O(1 TeV) in order to
keep cancellations reasonable.

5.10 The non-renormalization theorem

With our generic supersymmetric Lagrangian in Eq. (5.15) we should really ask ourselves
whether we can regularize the theory, i.e. is there a finite number of renormalisation con-
stants/counter terms to make all measurable predictions finite? And if so, what are they?

You may not be so surprised that the answer is yes, and indeed we have already used
one of the restrictions this gives on the possible terms in our superpotential construction.
Furthermore, we can prove the following theorem with a funny name. . .

Theorem: Non-renormalisation theorem (Grisaru, Roach and Siegel, 1979 [9])
All higher order contributions to the effective supersymmetric action Seff can be
written:

Seff =
∑
n

∫
d4xi...d

4xnd
4θ F1(x1, θ̄, θ)× ...× Fn(x1, θ̄, θ)×G(x1, ..., xn), (5.32)

where Fi are products of the external superfields and their covariant derivatives,
and G is a supersymmetry invariant function.
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So, why is the name funny? Well, mainly because it is not about not being able to
renormalize the theory, but about about not needing to renormalize certain parts of it. The
theorem has two important consequences:23

1. The couplings of the superpotential do not need separate normalization.

2. There is zero vacuum energy in global unbroken SUSY. In other words, Λ = 0 in general
relativity.

3. Quantum corrections cannot (perturbatively) break supersymmetry.

Let us try to argue how these consequences come about. From the non-renormalization
theorem we know that there are no counter terms needed for superpotential terms, because
superpotential terms have lower θ integration than found in all the possible higher order
contributions in the non-renormalisation theorem. This means that we can relate the bare
fields Φ0 and couplings g0, m0 and λ0 to the renormalized fields Φ and couplings g, m and λ,
by

g0Φ0 = gΦ, (5.33)

m0Φ0Φ0 = mΦΦ, (5.34)

λ0Φ0Φ0Φ0 = λΦΦΦ. (5.35)

If we let scalar superfields be renormalized by the counterterm Z, Φ0 = Z1/2Φ, vector

superfields by ZV , V0 = Z
1/2
V V , coupling constant g by Zg, g0 = Zgg, m by Zm, m0 = Zmm,

and λ by Zλ, λ0 = Zλλ, then

ZgZ
1/2 = 1 (5.36)

ZmZ
1/2Z1/2 = 1 (5.37)

ZλZ
1/2Z1/2Z1/2 = 1 (5.38)

This set of equations can be solved for Zg, Zm and Zλ in terms of Z1/2 so no separate
renormalization except for the superfields Φ and V is needed.

The second consequence comes about because vaccum diagrams have no external fields.
This means that the integration

∫
d4θ in Seff gives zero for the contribution from these dia-

grams. The same argument leads to V (A,A∗) = 0 after quantum corrections.
In practice the regularisation of supersymmetric models is tricky. Using so-called DREG

(dimensional regularisation) with modified minimal subtraction (MS) fails because working
in d = 4 − ε dimensions violates the supersymmetry in the Lagrangian. In practice DRED
(dimensional reduction) with DR is used, where all the algebra is done in four dimensions,
but integrals are done in d = 4− ε dimensions. However, this leads to its own problems with
potential ambiguities in higher loops.

5.11 Renormalisation group equations

Renormalisation, the removal of infinities from field theory predictions, introduces a fixed
scale µ at which the parameters of the Lagrangian, the couplings, are defined. For example,

23The theorem is for unbroken supersymmetry.
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the charge of the electron is not simply the bare charge e, but a charge at a given energy
scale µ, e(µ), which is the scale at which the theory describes the electron, and which we
can measure in an experiment at that scale. Scattering an electron at very high energy will
require a different value of e(µ) than at a low energy. This is an experimentally well verified
fact.24

However, since µ is not an observable per se but in principle a choice of how to write down
the theory (at which energy to write down the Lagrangian), the action should be invariant
under a change of µ, which is expressed as:

µ
d

dµ
S(ZΦ, λ, µ) = 0, (5.39)

where λ are the couplings of the theory and Φ represents the (super)fields that have been
renormalised.25 This equation can be re-written in terms of partial derivatives(

µ
∂

∂µ
+ µ

∂λ

∂µ

∂

∂λ

)
S(ZΦ, λ, µ) = 0, (5.40)

which is the renormalisation group equation (RGE).
We can look at the behavior of a Lagrangian parameter λ as a function of the energy

scale µ away from the value where it was defined, often denoted µ0. This is controlled by the
β-function:

βλ ≡ µ
∂λ

∂µ
. (5.41)

These β-functions can be found from the counterterm Z. As an example, take a gauge
coupling constant g0 defined (taken from measurement) at some scale µ0. At a different
scale µ, g0 is given by (in d = 4− ε dimensions):26

g0 = Zgµ−ε/2

Then, differentiating both sides with respect to µ,

0 =
∂Z

∂µ
gµ−ε/2 + Z

∂g

∂µ
µ−ε/2 − ε

2
Zgµ−ε/2−1

µ
∂g

∂µ
=

ε

2
g − gµ

Z

∂Z

∂µ

µ
∂g

∂µ
=

ε

2
g − gµ ∂

∂µ
lnZ,

and taking the limit ε→ 0:

βg = µ
∂g

∂µ
= −gγg,

where we have defined the anomalous dimension of g

γg = µ
∂

∂µ
lnZ. (5.42)

24It is also impossible to avoid if we accept that the electron is a point particle. Since the potential has
the form V (r) ∝ e/r an infinte energy would appear unless we somehow were to modify the charge at high
energies, or equivalently short distances.

25In the previous section we showed that we did not need to renormalise the coupling constants of the
superpotential.

26The factor µ−ε/2 is there to ensure that the scale of g is correct, see the exercise below.
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It is often practical to rewrite βg = ∂g
∂t with t = lnµ so that µ ∂

∂µ = ∂
∂t .

Z can now be calculated to the required loop-order to find the β-function to that order
and in turn the running of the coupling constant with µ. By evaluating one-loop super graphs
we can find that for our particular example

γg |1−loop =
1

16π2
g2

(∑
R

T (R)− 3C(A)

)
, (5.43)

where the sum is over all superfields that transform under a representation R of the gauge
group and C(A) is the Casimir invariant of the adjoint representation A of R. This expression
is particularly important since it will later lead us to the concept of gauge coupling unification.
Notice both that the running of the couplings with scale µ is very slow because the β-function
is a logarithmic function of µ and that the anomolous dimension may be negative for some
gauge groups.

5.12 Vacuum energy

We saw in the Section 5.10 that a globaly supersymmetric theory has Λ = 0. This is to be
compared to the measured value of the dark energy density, which can be interpreted as vac-
uum energy and is ΛDE ∼ 10−3 eV, and the value in the SM which is Λ ∼MP ' 1018 GeV.27

Clearly models with supersymmetry are doing a bit better than the SM in predicting this.
Now, what about ����SUSY?

The scale of the contribution has to be the mass scale of the supersymmetric particles, so
with mSUSY ≥ 1 TeV we have mSUSY /ΛDE ≥ 1015 which is twice as good as MP /ΛDE = 1030

but still a bit off the measured value. This problem is the hierachy problem for vacuum
energy.

However, in supergravity something interesting happens. Introducing a local supersym-
metry the scalar potential is not simply given by the superpotential derivatives in (5.20), but
instead is (ignoring the effects of gauge fields)

V (A,A∗) = eK/MP

[
Kij(DiW )(DjW

∗)− 3

M2
P

|W |2
]
, (5.44)

where Kij = ∂i∂jK(A,A∗) is the Kähler metric and the derivatives are with respect to the
scalar fields in the Kähler potential K, and Di the Kähler derivative Di = ∂i + 1

M2
P

(∂iK).

In the MP → ∞ limit, the low energy limit, we see that we recover the flat space result of
Eq. (5.20). What is important to notice is that there is now a second negative term in the
potential that can in principle cancel the ����SUSY contribution, however, this will come at the
price of fantastic fine-tuning unless some mechanism can be found where this is natural.

5.13 Excercises

Exercise 5.1 Write down the Lagrangian and find the action of the simplest possible su-
persymmetric field theory with a single scalar superfield, without gauge transformations, in

27The origin of this is just the same as the quadratic divergence for the Higgs mass. It is the same type of
diagrams contributing, only without external legs.
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terms of component fields, and show that it contains no kinetic terms for the Fi(x) fields.
Then show how they can be eliminated by the equations of motion. Challenge: Repeat for a
gauge theory (here d(x) can be eliminated). Hint: The action is

S =

∫
d4x

{
−A∗(x)�A(x) + |F (x)|2 + i(∂µψ(x))σ̄µψ(x)

}
. (5.45)

Exercise 5.2 For fun, and ten points, prove the scale factor in g0 = Zgµ−ε/2. Hint: what
are the dimensions of stuff in the Lagrangian in d = 4− ε dimensions?
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Chapter 6

The Minimal Supersymmetric
Standard Model (MSSM)

The Minimal Supersymmetric Standard Model (MSSM) is a minimal model in the sense that
it has the smallest field (and gauge) content consistent with the known SM fields. We will
now construct this model on the basis of the previous chapters, and look at some of its
consequences.

6.1 MSSM field content

Previously we learnt that each (left-handed) scalar superfield S has a (left-handed) Weyl
spinor ψA and a complex scalar s̃ since they are a j = 0 representation of the superalgebra.1

Given an application of the equations of motion these have two fermionic and two bosonic
degree of freedom remaining each (the auxiliary field has been eliminated and with it two
fermionic d.o.f.).

In order to construct a Dirac fermion, which are plentiful in the SM, we need a right-
handed Weyl spinor as well. We can aquire the needed right-handed Weyl spinor from the
T̄ † of a different scalar superfield T̄ with the right-handed Weyl spinor ϕ̄Ȧ.2 With these four
fermionic d.o.f. we can construct two Dirac fermions, a particle–anti-particle pair, and four
scalars, two particle–anti-particle pairs.

We use these two superfield ingredients to construct all the known fermions:

• To get the SM leptons we introduce the superfields li and Ēi for the charged leptons (i is
the generation index) and νi for the neutrinos, where we form SU(2)L doublet vectors
Li = (νi, li). We do not introduce N̄i.

3 These would contain right-handed neutrino
spinors needed for massive Dirac neutrinos, but are omitted as they do not couple to
anything, being SM singlets.4 This is a convention (MSSM is older than neutrino mass),

1With all posssible appologies, we have now changed notation for these fields to what is conventional in
phenomenology (as opposed to pure theory) and we will try to use the tilde notation for the scalar component
fields, while the superfields are denoted by latin letters.

2The bar here is used to (not) confuse us, it is part of the name of the superfields and does not denote any
hermitian or complex conjugate.

3The anti-neutrino contained in the superfield ν†i is right-handed consistent with experiment.
4They can’t be colour-charged, they are right-handed singlets under SU(2)L thus they have zero weak

isospin, but since they should also have zero electric charge the hypercharge must also be zero.
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and including N̄i fields has some interesting consequences.5

• For quarks the situation is similar. Up-type and down-type quarks get the superfields
ui, Ūi and di, D̄i, forming the SU(2)L doublets Qi = (ui, di).

6

Additionally we need vector superfields, which after the e.o.m. contain a massless vector
boson with two scalar d.o.f. and two Weyl-spinors, one of each handedness λ and λ̄, with two
fermionic degrees of freedom. Together these form a j = 1

2 representation of the superalgebra.
If the vector superfield is neutral, the fermions can form a Majorana fermion, if not they can
be combined with the Weyl-spinors from other fields to form Dirac fermions.

Looking at the construction V ≡ qtaV a in the supersymmetric Lagrangian we see that,
as expected, we need one superfield V a per generator ta of the algebra, giving the normal
SU(3)C , SU(2)L and U(1)Y vector bosons. We call these superfields Ca, W a and B0.7 In
order to be really confusing, we use the following symbols for the fermions constructed from
the respective Weyl-spinors: g̃, W̃ 0 and B̃0. The tilde here is supposed to tells us that hey
are supersymmetric partners (often just called sparticles) of the known SM particles.

We also need Higgs superfields. Now life gets interesting. The usual Higgs SU(2)L doublet
sclar field H in the SM cannot give mass to all fermions because it relies on the HC ≡
−i(H†σ2)T construction to give masses to up-type quarks (and possibly neutrinos). The
superfield version of this cannot appear in the superpotential because it would mix left- and
right-handed superfields. The minimal Higgs content we can get away with are two Higgs
superfield SU(2)L doublets, which we will call Hu and Hd, indexing the quarks they give
mass to.8 These must have (more on that in a little bit) weak hypercharge y = ±1 for Hu

and Hd respectively, so that we have the doublets:

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
. (6.1)

6.2 The kinetic terms

It is now straight forward to write down the kinetic terms of the MSSM Lagrangian giving
matter-gauge interaction terms

Lkin = L†ie
1
2
gσW− 1

2
g′BLi +Q†ie

1
2
gsλC+ 1

2
gσW+ 1

3
· 1
2
g′BQi

+Ū †i e
1
2
gsλC− 4

3
· 1
2
g′BŪi + D̄†i e

1
2
gsλC+ 2

3
· 1
2
g′BD̄i

+Ē†i e
2 1
2
g′BĒi +H†ue

1
2
gσW+ 1

2
g′BHu +H†de

1
2
gσW− 1

2
g′BHd, (6.2)

where g′, g and gs are the couplings of U(1)Y , SU(2)L and SU(3)C . As a convention we
assign the charge under U(1), hypercharge, in units of 1

2g
′. All non-singlets of SU(2)L and

SU(3)C have the same charge, the factor 1
2 here is used to get by without accumulation of

numerical factors since the algebras for the Pauli and Gell-Mann matrices are:[
1

2
σi,

1

2
σj

]
= iεijk

1

2
σk,

5Note that component fields in the same superfield must have the same charge under all the gauge groups,
i.e. the scalar partner of the electron has electric charge −e, so it cannot be a neutrino.

6Here we should really also include a color index a such that uai is a component in a SU(3)C vector. We
omit these for simplicity.

7And there we have another W.
8In some further insanity some authors prefer H1 and H2 so that you have no idea which is which.
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and [
1

2
λi,

1

2
λj

]
= ifijk

1

2
λk.

These conventions lead to the SM gauge transformations for fermion component fields and
the familiar relations after electroweak symmetry breaking,9 Q = y

2 +T3, where Q is the unit
of electric charge, y is hypercharge and T3 is weak charge, and e = g sin θW = g′ cos θW .

We mentioned earlier that the two Higgs superfields have opposite hypercharge. This is
needed for so-called anomaly cancellation in the MSSM. Gauge anomaly is the possibility
that at loop level contributions to processes such as in Fig. 6.1 break gauge invariance and
ruins the predictability of the theory. This miraculously does not happen in the SM becuase
it has the field content it has, so that all gauge anomalies cancel (we don’t know of a deeper
reason). If we have one Higgs doublet this does not happer for the MSSM. With two Higgs
doublets, with opposite hypercharge, it does.

Figure 6.1: Possible three gauge boson B couplings a one-loop fermion contribution.

6.3 Gauge terms

The pure gauge terms with supersymmetric field strengths are also fairly easy to write down:

LV =
1

2
Tr{WAWA}θ̄θ̄ +

1

2
Tr{CACA}θ̄θ̄ +

1

4
BABAθ̄θ̄ + h.c. (6.3)

where we have used

T (R)L = Tr

[
1

2
σ1 · 1

2
σ1

]
=

1

2
,

and

T (R)C = Tr

[
1

2
λ1 · 1

2
λ1

]
=

1

2
,

in the normalization of the terms, and where the field strengths are given as:

WA = −1

4
D̄D̄e−WDAe

W , W =
1

2
gσaW a, (6.4)

CA = −1

4
D̄D̄e−CDAe

C , C =
1

2
gsλ

aCa, (6.5)

BA = −1

4
D̄D̄DAB , B =

1

2
g′B0. (6.6)

9Getting ahead of ourselves a little here.
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6.4 The MSSM superpotential

With the same gauge structure as in the SM in place we are ready to write down all possible
terms in the superpotential. First, we notice that there can be no tadpole terms (terms
with only one superfield), since there are no superfields that are singlets (zero charge) under
all SM gauge groups. The only alternative would be right-handed neutrino superfields N̄i.

We have seen that possible mass terms must fulfill mijUirUjs = mrs to preserve gauge
invariance. For the abelian gauge group U(1)Y this reduces to Yi + Yj = 0, which is easier
to check so this is where we start. In Table 6.1 we see that the only possible contributions
are particle–anti-particle combinations such as liL l̄iR, but these come from superfields with
different handedness and cannot be used together.

Superfield Li Ē†i Qi Ū †i D̄†i
Particle νiL, liL liR uiL,diL uiR diR
Hypercharge −1 −2 1

3
4
3 −2

3

Superfield L†i Ēi Q†i Ūi D̄i

Anti-particle ν̄iR, l̄iR l̄iL ūiR,d̄iR ūiL d̄iL
Hypercharge 1 2 −1

3 −4
3

2
3

Table 6.1: MSSM superfields with SM fermion content and their hypercharge.

The exception is for the two Higgs superfields that have opposite hypercharge. In order
to also be invariant under SU(2)L we have to write this superpotential term as

Lmass = µHT
u iσ

2Hd, (6.7)

where µ is the Lagrangian mass parameter.10 This is invariant under SU(2)L because, with

the gauge transformations Hd → eig
1
2
σkWk

Hd and HT
u → HT

u e
ig 1

2
σkTWk

, we get

HT
u iσ2Hd → HT

u e
ig 1

2
σkTWk

iσ2e
ig 1

2
σkWk

Hd

= HT
u iσ

2e−i
1
2
gσkWk

ei
1
2
gσkWk

Hd = HT
u iσ

2Hd,

since σkTσ2 = −σ2σk. Usually we ignore the SU(2)L specific structure and write terms like
this as µHuHd, confusing the hell out of anyone that is not used to this convention since we
really do mean Eq. (6.7). Notice that if we write (6.7) in terms of component fields we get

HT
u iσ

2Hd = H+
u H

−
d −H0

uH
0
d ,

which we should have been able to guess because the Lagrangian must also conserve electric
charge.

If you have paid very close attention to the argument above you may have noticed that
there is one more possibility, namely

µ′iLiHu ≡ µ′iLTi iσ2Hu = µ′i(νiH
0
u − liH+

u ),

where µ′ is some other mass parameter in the superpotential. This is clearly an allowable
term (and we will return to it below), however, it also raises a very interesting question:

10Must not be confused with the RGE scale!
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Could we have Li ≡ Hd? Could the lepton superfields Li play the rôle of Higgs superfields,
thus reducing the field content needed to describe the SM particles in a supersymmetric
theory? While not immediately forbidden, this suggestions unfortunately leads to problems
with anomaly cancelation, processes with large lepton flavor violation (LFV) and much too
massive neutrinos, and has been abandoned.

We have now found all possible mass terms in the superpotential. What about the Yukawa
terms? The hypercharge requirement is Yi + Yj + Yk = 0. From our table of hypercharges
only the following terms are viable:

LiLjĒk , LiHdĒj , LiQjD̄k , QiHuŪj , ŪiD̄jD̄k and QiHdD̄i.

For all these terms we can simultaneously keep SU(2)L invariance with the iσ2 construction
implicitly inserted between any superfield doublets.

For SU(3)C to be conserved, we need to have colour singlets. Some of these terms are
colour singlets by construction since they do not contain any coloured fields. The terms with
two quark superfields contain left-handed Weyl spinors for quarks and anti-quarks, which
are SU(3)C singlets if the superfields come in colour–anti-colour pairs. In representation
language they are in the 3 and 3̄ representations of SU(3)C . Written with all indices explicit
we have e.g. LiQjD̄k = LiQ

α
j iσ

2D̄kα, where α is the colour index. The final term ŪiD̄jD̄k

is a colour singlet once we demand that it is totally anti-symmetric in the colour indices:
ŪiD̄jD̄k ≡ εαβγŪiαD̄jβD̄kγ .

Our complete superpotential is then:

W = µHuHd + µ′iLiHu + yeijLiHdEj + yuijQiHuŪj + ydijQiHdD̄j

+λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k, (6.8)

where we have named and indexed the couplings in a natural way.11

6.5 R-parity

The superpotential terms LHu, LLE and LQD̄ that we have written down all violate lepton
number conservation, and ŪD̄D̄ violates baryon number conservation. Allowing such terms
leads to, among other phenomenological problems, processes like proton decay p → e+π0 as
shown in Fig. 6.2.

Figure 6.2: Feynman diagram for proton decay with RPV couplings.

11For some peculiar opinion of what is natural.
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We can estimate the resulting proton life-time by noting that the scalar particle (a strange
squark s̃) creates an effective Lagrangian term λūd̄eu with coupling

λ =
λ′112λ

′′
112

m2
s̃

, (6.9)

where the sparticle mass ms̃ comes from the scalar propagator in the diagram. The resulting
matrix element for the process must then be proportional to |λ|2. Since the mass scale involved
in the problem is the proton mass mp the phase space integration part of a calculation of the
proton decay width must be of the order of m5

p. We then have

Γp→e+π0 ∼ |λ|2m5
p =
|λ′112λ

′′
112|2

m4
s̃

m5
p. (6.10)

The measured lower limit on the lifetime from watching a lot of protons not decay is
τp→e+π0 > 1.6·1033 y or τp→e+π0 > π ·107 s/y×1.6·1033 y = 5.0·1040 s, which gives Γp→e+π0 <
1.3 · 10−65 GeV, so that with we have the following very strict limit on the combination of
two couplings

|λ′112λ
′′
112| < 3.6 · 10−26

( ms̃

1 TeV

)2
. (6.11)

To avoid all such couplings Fayet (1975) [10] introduced the conservation of R-partity.

Definition: R-parity is a multiplicatively conserved quantum number given by

R = (−1)2s+3B+L

where s is a particle’s spin, B its baryon number and L its lepton number.

For all SM particles R = 1, while the superpartners all have R = −1. One usually defines
the MSSM as conserving R-parity. The consequence of this somewhat ad hoc definition is
that in all interactions supersymmetric particles are only created or annihilated in pairs. This
leads to the following very important phenomenological consequences:

1. The lightest supersymmetric particle (LSP) is absolutely stable.

2. Every other sparticle must decay down to the LSP (possibly in multiple steps).

3. Sparticles will always be produced in pairs in collider experiments.

For the MSSM this excludes the terms LHu, LLĒ, LQD̄ and ŪD̄D̄ from the superpotential.

6.6 SUSY breaking terms

We can use our previous arguments on gauge invariance that we used when discussing the
superpotential on the general soft-breaking terms in Eq. (5.28) to determine which terms are
allowed. Terms

− 1

4T (R)
Mθθθ̄θ̄Tr{WAWA},
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are allowed because they have the same gauge structure as the field strength terms. In
component fields these are for the MSSM:

−1

2
M1B̃B̃ −

1

2
M2W̃

aW̃ a − 1

2
M3g̃

ag̃a + c.c

where the Mi are potentially complex-valued. This gives six new parameters. Terms

−1

6
aijkθθθ̄θ̄ΦiΦjΦk,

are allowed when corresponding terms exist in the superpotential (are gauge invariant and
not disallowed by R-parity). In component fields the allowed terms are

−aeijL̃iHdẽ
∗
jR − auijQ̃iHuũ

∗
jR − adijQ̃iHdd̃

∗
jR + c.c.

where the H here refers to scalar parts of the Higgs superfields. The couplings aij are all
potentially complex valued, so this gives us 54 new parameters. The terms

−1

2
bijθθθ̄θ̄ΦiΦj ,

are only allowed for corresponding terms in the superpotential, i.e. −bHuHd + c.c., where b
is potentially complex valued, which gives us 2 new parameters.12 Tadpole terms

−tiθθθ̄θ̄Φi,

are not allowed, as there are no tadpoles in the superpotential. Mass terms

−m2
ijθθθ̄θ̄Φ

†
iΦj ,

are allowed because they have the same gauge structure as kinetic terms. In component fields
they are:

−(mL
ij)

2L̃†i L̃j − (me
ij)

2ẽ∗iRẽjR − (mQ
ij)

2Q̃†i Q̃j − (mu
ij)

2ũ∗iRũjR − (md
ij)

2d̃∗iRd̃jR

−m2
HuH

†
uHu −m2

Hd
H†dHd, (6.12)

where the m2
ij are complex valued, however, also hermetic. This gives rise to 47 new param-

eters. Despite being allowed the MSSM ignores the ”maybe-soft” terms in Eq. (5.28).
In total, after using our freedom to choose our basis wisely in order to remove what

freedom we can, the MSSM has 105 new parameters compared to the SM, 104 of these are
soft-breaking terms and µ is the only new parameter in the superpotential.

6.7 Radiative EWSB

In the SM the vector bosons are given mass spontaneous by electroweak symmetry breaking
(EWSB), which is induced by the shape of the scalar potential for a scalar field Φ:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (6.13)

12The coupling b is sometimes written Bµ where B is a unitless constant that indicates how different the
coupling is from the corresponding coupling in the superpotential.
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where the requirement for EWSB is that λ > 0 and µ2 < 0.13 The first of these requirements
ensures that the potential is bounded from below, i.e. that in the limit of large field values
the potential does not turn to negative infinity. The second ensures that the minimum of
the potential, the vacuum, is not given by zero field values, i.e. that the fields have vacuum
expectation values (vevs).

In supersymmetry we have the scalar potential

V (A,A∗) =
∑
i

∣∣∣∣∂W∂Ai
∣∣∣∣2 +

1

2

∑
a

g2(A∗T aA)2 > 0, (6.14)

when we have extended Eq. (5.20) by including also gauge interactions and vector super-
fields.14 For the scalar Higgs component fields (not superfields!) this gives the MSSM poten-
tial

V (Hu, Hd) = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−d |2) (from F -terms)

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2)2 (from D-terms)

+
1

2
g2|H+

u H
0
d
∗ +H0

uH
−
d
∗|2

+m2
Hu(|H0

u|2 + |H+
u |2) +m2

Hd
(|H0

d |2 + |H−d |2) (from soft breaking terms)

+[b(H+
u H

−
d −H0

uH
0
d) + c.c] (6.15)

This potential has 8 d.o.f. from 4 complex scalar fields H+
u , H0

u, H0
d and H−d .

We now want to do as in the SM and break SU(2)L × U(1)Y → U(1)em in order to give
masses to gauge bosons and SM fermions.15 To do this we need to show that (6.15) has: i) a
minimum for finite, i.e. non-zero, field values, ii) that this minimum has a remaining U(1)em

symmetry and iii) that the potential is bunded from below, which are the essential properties
of Eq. (6.13). We restrict our analysis to tree level, ignoring loop effects on the potential.

We start by using our SU(2)L gauge freedom to rotate away any field value for H+
u at the

minimum of the potential, so without loss of generality we can use H+
u = 0 in what follows.

At the minimum we must have ∂V/∂H+
u = 0, and by explicit differentiation of the potential

one can show that H+
u = 0 then leads to H−d = 0. This is good since it guarantees our item

ii), that U(1)em is a symmetry for the minimum of the potential, since the charged fields then
have no vev. We are then left with the potential

V (H0
u, H

0
d) = (|µ|2 +m2

Hu)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 − (bH0

uH
0
d + c.c.) (6.16)

Since we can absorb a phase in H0
u or H0

d we can take b to be real and positive. This does not
affect other terms because they are protected by absolute values. The minimum must also
have H0

uH
0
d real and positive, to get a as large as possible negative contribution from the b

term. Thus the vevs vu = 〈H0
u〉 and vd = 〈H0

d〉 must have opposite phases. By the remaining

13The Mexican hat or wine bottle potential, depending on preferences.
14The last term is due to the elimination of auxillary d-fields from vector superfields giving a contribution

dada = g2(A∗T aA)2 where T a is the corresponding generator. The sum is taken over all the vector superfields
with their respective couplings g.

15The soft-terms are unable to provide masses to these particles because they deal mostly with scalar fields.
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U(1)Y symmetry, we can transform vu and vd so that they are real and have the same sign.
For the potential to have a negative mass term, and thus fulfill point i) above, we must then
have

b2 > (|µ|2 +m2
Hu)(|µ|2 +m2

Hd
). (6.17)

Since the potential has ����SUSY we must also check that it is actually bounded from below,
our point iii), which was guaranteed for the SUSY vacuum. For large |H0

u| or |H0
d | the

quartic gauge term blows up to save the potential, except for |H0
u| = |H0

d |, the so-called d-flat
directions. This means that we must also require

2b < 2|µ|2 +m2
Hu +m2

Hd
. (6.18)

Negative values of m2
Hu

(or m2
Hd

) help satisfy (6.17) and (6.18), but they do not guarantee
EWSB. If we assume that mHd = mHu at some high scale (GUT) then (6.17) and (6.18)
cannot be simultaneously be satisfied at that scale. However, to 1-loop the RGE running of
these mass parameters is:

16π2βm2
Hu
≡ 16π2dm

2
Hu

dt
= 6|yt|2(m2

Hu +m2
Q3

+m2
u3) + ...

16π2βm2
Hd

≡ 16π2
dm2

Hd

dt
= 6|yb|2(m2

Hd
+m2

Q3
+m2

d3) + ...

where yt and yb are the top and bottom quark Yukawa couplings, and mQ3 = mQ
33, mu3 = mu

33,
md3 = md

33 in our previous notation. Because yt � yb, mHu runs down much faster than mHd

as we go to the electroweak scale, and may become negative, see Fig. 6.3. It is this property
that is termed radiative EWSB (REWSB). Thus, in the MSSM with soft terms there is an
explanation why EWSB happens, it is not put in by hand in the potential as it is in the SM!

Figure 6.3: Sketch of the RGE running of the two soft Higgs mass parameters m2
Hu

and m2
Hd

as a function of the energy scale
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To get the familiar vector boson masses, we need to satisfy the electroweak constraint:

v2
u + v2

d ≡ v2 =
2m2

Z

g2 + g′2
≈ (174 GeV)2,

which comes from experiment. Thus we have one free parameter coming from the Higgs vevs.
We can write this as

tanβ ≡ vu
vd
,

where by convention 0 < β < π/2. Using the condition for the existence of an extremal point
(minimum)

∂V/∂H0
u = ∂V/∂H0

d = 0, (6.19)

b and |µ| can be eliminated as free parameters from the model, however, not the sign of µ.
Alternatively, we can choose to eliminate m2

Hu
and m2

Hd
. You can look at this as giving

away the freedom of these parameters to the vevs, and then fixing one vev by the electroweak
constraint, and using tanβ for the other.

Let us make a little remark here on the parameter µ. We have what is called the µ
problem. The soft terms all get their scale from some common mechanism at some common
high energy scale, it is assumed, however, µ is a mass term in the superpotential (the only
one) and could a priori take any value, even MP . Why is µ then of the order of the soft terms
allowing us to achieve REWSB?16

6.8 Higgs boson properties

Of the 8 d.o.f. in the scalar potential for the Higgs component fields three are Goldstone
bosons that get eaten by Z and W± to give masses. The remaining 5 d.o.f. form two neutral
scalars h, H, two charged scalars H± and one neutral pseudo-scalar (CP-odd) A.17 At tree
level one can show that these have the masses:

m2
A =

2b

sin 2β
= 2|µ|2 +m2

Hu +m2
Hd
, (6.20)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2 2β

)
, (6.21)

m2
H± = m2

A +m2
W . (6.22)

As a consequence mA and tanβ can be used to parametrize the Higgs sector (at tree level),
and H, H± and A are in principle unbounded in mass since they grow as b/ sin 2β. However,
at tree level the lightest Higgs boson is restricted to

mh < mZ | cos 2β|. (6.23)

In contrast we have the Higgs boson discovery with a mass of mh = 125.7 ± 0.3 (stat.) ±
0.3 (sys.) GeV from the LHC [11].

16This problem can be solved in extensions of the MSSM such as the Next-to-Minimal Supersymmetric
Standard Model (NMSSM).

17In addition to the scalars, the Higgs supermultiplets contain four fermions, H̃0
u, H̃0

d , H̃+
u and H̃−d (higgsi-

nos). These will mix with the fermion partners of the gauge bosons (gauginos).
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Fortunately there are large loop-corrections or the MSSM would have been excluded al-
ready.18 Because of the size of the Yukawa couplings the largest corrections to the mass
come from stop and top loops (see Fig. 5.1 for the relevant Feynman diagrams). In the limit
mt̃R

,mt̃L
� mt, and with stop mass eigenstates close to the chiral eigenstates (more on this

later), we get the dominant loop correction:

∆m2
h =

3

4π2
cos2 α y2

tm
2
t ln

(
mt̃L

mt̃R

m2
t

)
, (6.24)

where α is a mixing angle for h and H with respect to the superfield component fields H0
u

and H0
d , given by

sinα

sinβ
= −m

2
H +m2

h

m2
H −m2

h

, (6.25)

at tree level.
With this and other corrections the bound is weaker:

mh ≤ 135 GeV,

assuming a common sparticle mass scale of mSUSY ≤ 1 TeV. Higher values for the sparticle
masses give large fine-tuning and weaken the bound very little because of the logarithm
in Eq. (6.24). The bound can be further weakened by adding extra field content to the
MSSM, e.g. as in the NMSSM, but for mSUSY ≈ 1 TeV there is an upper pertubative limit of
mh ≈ 150 GeV.

It is very interesting to discuss what the Higgs discovery implies for low-energy super-
symmetry. As can be seen from the above it requires rather large squark masses even in the
favourable scenario with tanβ > 10. A naive estimate from Eq. (6.24) gives mt̃ > 1 TeV.
However, this does not take into account negative contributions to the Higgs mass from heavy
gauginos, and possible increases in the stop contribution due to tuning of the mixing of the
chiral eigenstates in the mass eigenstates.

Since the lightest stop quark is expected to be the lightest squark in scenarios with common
GUT scale soft masses—because of the large downward RGE running of mQ

33 due to the large
top Yukawa coupling—the expected sparticle spectrum lies mostly above 1 TeV, with the
possible exception of gauginos/higgsinos. This points to so-called Split-SUSY scenarios
with heavy scalars and light gauginos, and a relatively large degree of fine-tuning. If one can
live with this little hierarchy problem, it will explain why no signs of supersymemtry have
been seen yet at the LHC. With squark masses above 1 TeV any hints of SUSY are not likely
to come before the machine has been upgraded to 14 TeV in 2014.

If you are willing to accept fine-tuning of the stop mixing instead, or come up with a good
reason for why the mixing should be just-so to give a maximal Higgs mass, you can keep
fairly light stop quarks. With the addition of light higgsinos and a light gluino the model is
then technically natural, these scenarios are called Natural SUSY and should be within the
current or near future reach of the LHC.

In Split-SUSY scenarios with a neutralino dark matter candidate (see below) the lightest
neutralino typically has a significant higgsino component. This means that its should be
relatively accessible in direct detection experiments due to its large coupling to normal matter,

18It is worth pointing out that the MSSM, despite its many parameters, is a falsifiable theory in that had the
Higgs boson mass been ∼ 15 GeV higher, which is allowed in the SM, the MSSM would have been excluded.
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and in the indirect search for neutrinos from captured dark matter annihilation in the Sun.
Both types of experiments may very soon see first indications of a signal if this scenario is
indeed realised in nature.

To do calculations with the Higgs bosons in the MSSM we need the Feynman rules that
result from the relevant Lagrangian terms. Since these have been listed elsewhere we will not
repeat them here, but recommend in particular the PhD-thesis of Peter Richardson [12], where
they can be found in Appendix A.6, including all interactions with fermions and sfermions.
These can also be found, together with all gauge and self-interactions, in the classic paper by
Gunion and Haber [13]. Note that in this paper a complex Higgs singlet appears which can
safely be ignored.

6.9 The gluino g̃

The gluino is a color octet Majorana fermion. As such it has nothing to mix with in the
MSSM (even with RPV) and at tree level the mass is given by the soft term M3. The
one complication for the gluino is that it is strongly interacting so M3(µ) runs quickly with
energy. It is useful to instead talk about the scale-independent pole-mass, i.e. the pole of the
renormalized propagator, mg̃. Including one loop effects due to gluon exchange and squark
loops, see Fig. 6.4, in the DR scheme we get:

mg̃ = M3(µ)

1 +
αs
4π

15 + 6 ln
µ

M3
+
∑
all q̃

Aq̃

 ,
where the squark loop contributions are

Aq̃ =

∫ 1

0
dxx ln

(
x
m2
q̃

M2
3

+ (1− x)
m2
q

M2
3

− x(1− x)− iε
)
.

Due to the 15-factor the correction can be significant (colour factor).

Figure 6.4: One loop contributions to the gluino mass.

Complete Feynman rules for gluinos can be found in Appendix C of the classic MSSM
reference paper of Haber & Kane [14]. A more comprehensible alternative may be Appendix
A.3 from the PhD-thesis of M. Bolz [15]. This also provides a description of how to handle
clashing fermion lines that can appear with Majorana fermions.
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6.10 Neutralinos & Charginos

We have a bunch of fermion fields that can mix because electroweak symmetry is broken and
we do not have to care about SU(2)L×U(1)Y charges, only the U(1)em charges matter. The
candidates are:

B̃0, W̃ 0, W̃±, H̃+
u , H̃0

u, H̃−d and H̃0
d .

The only requirement we have is that only fields with equal electromagnetic charge can mix.
The neutral (Majorana) gauginos mix as

γ̃ = N ′11B̃
0 +N ′12W̃

0 (photino) (6.26)

Z̃ = N ′21B̃
0 +N ′22W̃

0 (zino) (6.27)

where the mixing is inherited from the gauge boson mixing. More generally, they also mix
with the higgsinos to form four neutralinos:19

χ̃0
i = Ni1B̃

0 +Ni2W̃
0 +Ni3H̃

0
d +Ni4H̃

0
u, (6.28)

where Nij indicates size of the component of each of the fields in the gauge eigenstate basis

ψ̃0T =
(
B̃0, W̃ 0, H̃0

d , H̃
0
u

)
. (6.29)

In this basis the neutralino mass term can be written as

Lχ−mass = −1

2
ψ̃0TMχ̃ψ̃

0 + c.c.

where the mass matrix is found from the Lagrangian to be

Mχ̃ =


M1 0 − 1√

2
g′vd

1√
2
g′vu

0 M2
1√
2
gvd − 1√

2
gvu

− 1√
2
g′vd

1√
2
gvd 0 −µ

1√
2
g′vu − 1√

2
gvu −µ 0


In this matrix, the upper left diagonal part comes from the soft terms for the B̃0 and the
W̃ 0, the lower right off diagonal matrix comes from the superpotential term µHuHd, while
the remaining entries come from Higgs-higgsino-gaugino terms from the kinetic part of the
Lagrangian, e.g. H†ue

1
2
gσW+g′BHu.

With the Z-mass condition on the vevs we can also write

1√
2
g′vd = cosβ sin θWmZ , (6.30)

1√
2
g′vu = sinβ sin θWmZ , (6.31)

1√
2
gvd = cosβ cos θWmZ , (6.32)

1√
2
gvu = sinβ cos θWmZ . (6.33)

19The neutral higgsinos are also Majorana fermions despite coming from scalar superfields. Unlike the
(s)fermion superfields the Higgs superfields have no H̄ chiral partners to supply the left-right Weyl spinor
combinations required for Dirac fermions. Thus the neutralinos are Majorana fermions.
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The mass matrix can now be diagonalized to find the χ̃0
i masses.20 If N is the diagonal-

ization matrix, then NMχ̃N
−1 = D, where D = (mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) is the diagonal matrix

containing the neutralino masses.
One particularly interesting solution to the diagonalization is in the limit where EWSB is

a small effect, mZ � |µ±M1|, |µ±M2|, and when M1 < M2 � |µ|, µ ∈ R. Then χ̃0
1 ≈ B̃0,

χ̃0
2 ≈ W̃ 0, χ̃0

3,4 ≈ 1√
2
(H̃0

d ± H̃0
d) and

mχ̃0
1

= M1 +
m2
Z sin2 θW sin 2β

µ
+ . . . (6.34)

mχ̃0
2

= M2 −
m2
W sin 2β

µ
+ . . . (6.35)

mχ̃0
3,4

= |µ|+ m2
Z

2µ
(sgnµ∓ sin 2β) + . . . (6.36)

Since the LSP is stable in R-parity conserving theories the lightest neutralino is an excel-
lent candidate for dark matter. In particular since a 100 GeV neutralino has a natural relic
density close to the measured dark matter density of the Universe. We will return to this
issue later.

From the charged fermions we can make charginos χ̃±i that are Dirac fermions with mass
terms

Lχ±−mass = −1

2
ψ̃±TMχ±ψ̃

± + c.c.

where ψ̃±T = (W̃+, H̃+
u , W̃

−, H̃−d ) and

Mχ̃± =


0 0 M2 gvd
0 0 gvu µ
M2 gvu 0 0
gvd µ 0 0

 .
Here the M2 terms come from the soft terms for the W±, the µ terms come from the super-
potential as above, while the remainder come from the kinetic terms. We have

gvd =
√

2 cosβ mW , (6.37)

gvu =
√

2 sinβ mW . (6.38)

The eigenvalues of this matrix are doubly degenerated (to give the same masses to particles
and their anti-particles), and are given as:

mχ̃±1,2
=

1

2

(
|M2|2 + |µ|2 + 2m2

W ∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin2 β|2
)
.

In the limit of small EWSB discussed above we have χ̃±1 ≈ W̃± and χ̃±2 ≈ H̃+
u /H̃

−
d with

mχ̃±1
= M2 −

m2
W

µ
sin 2β, (6.39)

mχ̃±2
= |µ|+ m2

W

µ
sgnµ. (6.40)

20Note that we are perfectly happy with negative or even complex eigenvalues, as this is just a phase for
the corresponding mass eigenstate in (6.28). Redefinition of fields can rotate away either the M1 or M2 phase,
to make the parameter real and positive, but not both and not the µ-phase, which gives rise to problematic
CP-violation. Therefore these are often just assumed to be real in order not to violate experimental bounds.
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Note that in this limit mχ̃0
2
≈ mχ̃+

1
.

We should mention that some authors prefer other symbols for the neutralinos and
charginos. Common examples are Ñi or Z̃i for neutralinos, and C̃i or W̃i (again!) for charginos.

Feynman rules for charginos & neutralinos can again be found in Haber & Kane [14].

6.11 Sleptons & Squarks

There are multiple contributions to sfermion masses from the MSSM Lagrangian. We make
the following list:

i) Under the reasonable assumption that soft masses are (close to) diagonal21 the sfermions

get contributions −m2
F F̃
†
i F̃i and −m2

f f̃
∗
iRf̃iR from the soft terms.22

ii) There are so-called hyperfine terms that come from d-terms 1
2

∑
g2
a(A

∗T aA)2 in the scalar
potential that give Lagrangian terms of the form (sfermion)2(Higgs)2 when one of the
scalar fields A is a Higgs field. Under EWSB, when the Higgs field gets a vev these
become mass terms. They contribute with a mass

∆F = (T3F g
2 − YF g′2)(v2

d − v2
u) = (T3F −QF sin2 θW ) cos 2β m2

Z ,

where the weak isospin, T3, hypercharge, Y , and electric charge, Q, are for the left-
handed supermultiplet F to which the sfermion belongs. However, these contributions
are usually quite small.

iii) There are also so-called F -term contributions that come from Yukawa terms in the su-
perpotential of the form yfFHK̄. From the contribution

∑ |Wi|2 to the scalar potential
these give Lagrangian terms y2

fH
0∗H0f̃∗iLf̃iL and y2

fH
0∗H0f̃∗iRf̃iR. With EWSB we get

the mass terms m2
f f̃
∗
iLf̃iL and m2

f f̃
∗
iRf̃iR since mf = vu/d yf . These are only significant

for large Yukawa coupling yf .

iv) Furthermore, there are also F -terms that combine scalars from the µHuHd term and
Yukawa terms yfFHK̄ in the superpotential. These give Lagrangian terms−µ∗H0∗yf f̃Lf̃

∗
R.

With a Higgs vev this gives mass terms −µ∗vu/d yf f̃∗Rf̃L + c.c.

v) Finally, the soft Yukawa terms of the form af F̃Hf̃
∗
R with a Higgs vev give mass terms

afvu/df̃Lf̃
∗
R + c.c.23

For the first two generations of sfermions, terms of type iii)–v) are small due to small
Yukawa couplings. Then the sfermion masses are e.g.

m2
ũL

= m2
Q1

+ ∆ũL, (6.41)

m2
d̃L

= m2
Q1

+ ∆d̃L, (6.42)

m2
ũR

= m2
u1 + ∆ũR. (6.43)

21This is of course to avoid flavor changing neutral currents (FCNCs).
22Here, and in the following, F̃i represents an SU(2)L doublet with generation index i, while f̃iR represents

a singlet.
23We often assume that af = A0yf in order to further reduce the FCNC, meaning that there is a global

constant A0 with unit mass relating the Yukawa couplings and the trilinear A-term couplings.
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Mass splitting between same generation slepton/squark is then given by

m2
ẽL
−m2

ν̃L
= m2

d̃L
−m2

ũL
= −1

2
g2(v2

d − v2
u) = − cos 2β m2

W ,

since they have the same hypercharge, see Table 6.1. For tanβ > 1 this gives m2
ẽL
> m2

ν̃L
and

m2
d̃L
> m2

ũL
.

The third generation sfermions t̃, b̃ and τ̃ have a more complicated mass matrix
structure, e.g. in the gauge eigenstate basis (t̃L, t̃R) for stop quarks the mass term is

Lstop = −
(
t̃L t̃R

)
m2
t̃

(
t̃L
t̃R

)
,

where the mass matrix is given by

m2
t̃

=

[
m2
Q3

+m2
t + ∆ũL v(a∗t sinβ − µyt cosβ)

v(at sinβ − µ∗yt cosβ) m2
u3 +m2

t + ∆ũR

]
, (6.44)

where the diagonal elements come from i), ii) and iii), while the off-diagonal elements come
from iv) and v). To find the particle masses, we must diagonalize this matrix, writing it in
terms of the mass eigenstates t̃1 and t̃2, aquiring also a mixing matrix for the mass eigenstates
in terms of the gauge eigenstates t̃L and t̃R:(

t̃1
t̃2

)
=

[
ct̃ −s∗t̃
st̃ ct̃

](
t̃L
t̃R

)
, (6.45)

where m2
t̃1
< m2

t̃2
are the eigenvalues of (6.44) and |ct̃|2 + |st̃|2 = 1. The matrices for b̃ and t̃

have the same structure.

6.12 Gauge coupling unification

We have already discussed the 1-loop β-functions of gauge couplings in a generic model, which
were given in Eq. (5.43). With the MSSM field content and the gauge couplings:24

g1 =

√
5

3
g′, g2 = g, g3 = gs,

we arrive at

βgi |1−loop =
1

16π2
big

3
i , (6.46)

with

bMSSM
i =

(
33

5
, 1,−3

)
.

The values of bi are found from the Casimir invariant and the Dynkin index of the gauge
group representations

C(A)SU(3) = 3, C(A)SU(2) = 2, C(A)U(1) = 0,

24The normalisation choice for g1 may seem a bit strange, however, this is the correct numerical factor when
breaking e.g. SU(5) or SO(10) down to the SM group. This factor might be different with a different unified
group.



6.12. GAUGE COUPLING UNIFICATION 73

using the definition C(A)δij = (T aT b)ij , and

T (R)SU(3) =
1

2
, T (R)SU(2) =

1

2
, T (R)U(1) =

3

5
y2,

from the definition T (R)δab = Tr{tatb}, e.g. b3 = 1
2 · 12− 3 · 3 = −3 because we have twelve

quark/squark scalar superfields transforming under SU(3)C .

At one-loop order we can do a neat rewrite using αi ≡ g2i
4π . Since

d

dt
α−1
i = −2

4π

g3
i

d

dt
gi,

we have:

βα−1
i
≡ d

dt
α−1
i = −8π

g3
i

1

16π2
g3
i bi = − bi

2π
.

Thus α−1 runs linearly with t at one loop.
By running the α−1

i from the EW scale measured values to high energies it is observed that
in the MSSM the coupling constants intersect at a single point, which they do not naturally
do in the SM. See Fig. 6.5, taken from Martin [16]. The assumption is then that a unified
gauge group, e.g. SU(5) or SO(10), is broken at that scale, called the grand unifications scale
or GUT-scale, down to the SM gauge group. This scale is mGUT ≈ 2 · 1016 GeV, about two
orders of magnitude below the Planck scale.

Something funny happens to the gaugino mass parameters Mi if we look at their running.
The one-loop β functions turn out to be

βMi |1−loop ≡
d

dt
Mi =

1

8π2
g2
iMibi. (6.47)

As a consequence all three ratios Mi/g
2
i are scale independent at one loop. To see this let

R = Mi/g
2
i , then

βR ≡
dR

dt
=

d
dtMig

2
i −Mi

d
dtg

2
i

g4
i

=
1

8π2 g
2
iMibi · g2

i −Mi · 2gi · 1
16πg

3
i bi

g4
i

= 0. (6.48)

If we now assume the coupling constants unify at the GUT scale to the coupling gu, and that
the gauginos have a common mass at the same scale m1/2 = M1(mGUT) = M2(mGUT) =
M3(mGUT), it follows that

M1

g2
i

=
M2

g2
2

=
M3

g2
3

=
m1/2

g2
u

, (6.49)

at all scales! (At one-loop.) This is a very powerful and predictive assumption. It leads to
the following relation

M3 =
αs
α

sin2 θWM2 =
3

5

αs
α

cos2 θWM1, (6.50)

which numerically predicts
M3 : M2 : M1 = 6 : 2 : 1

at a scale of 1 TeV. Comparing to our previous discussion for neutralinos and charginos this
predicts the masses mg̃ ' 6mχ̃0

1
, mχ̃0

2
' mχ̃±1

' 2mχ̃0
1
. However, it is important to remember

that this often used relationship is based on the conjecture of gauge coupling unification!
In Fig. 6.6, again taken from Martin [16], we show the running of the gaugino mass

parameters Mi (solid black), the Higgs mass parameters m2
Hd/u

(dot-dashed green), the third

generation sfermion soft terms md3 , mQ3 , mu3 , mL3 and me3 (dashed red and blue, listed
from top to bottom) and the corresponding first and second generation terms (solid lines).
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Figure 6.5: RGE evolution of the inverse gauge couplings α−1
i (Q) in the SM (dashed lines)

and the MSSM (solid lines). In the MSSM case, the sparticle mass thresholds are varied
between 250 GeV and 1 TeV and α3(mZ) between 0.113 and 0.123 to create the bands shown
by the red and blue lines. Two-loop effects are included.

6.13 Excercises

Exercise 6.1 Using the explicit form of the SU(3)C transformations with the Gell-Mann
matrices, show that with our definition of the superpotential term ŪiD̄jD̄k this is invariant
under SU(3)C .

Exercise 6.2 Show how you can eliminate the parameters |µ| and b by using the properties
of the minimum of the potential in Eq. (6.16).
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Figure 6.6: RGE evolution of scalar and gaugino mass parameters in the MSSM with typical
minimal supergravity-inspired boundary conditions imposed at 2× 1016 GeV. The parameter
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sgn(µ) = +. The parameter µ2 +m2
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runs negative, provoking EWSB.
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Chapter 7

Sparticle phenomenology

In this chapter we discuss the phenomenology of supersymmetric models and how to search for
supersymmetry in experiments. We begin by returning to supersymmetry breaking in order
to define some reasonable and (partially) motivated subsets of the 124 MSSM parameters
which can be used to define more constrained models. We then discuss supersymmetry at
hadron and lepton colliders, and finally look at precision measurements that are indirectly
sensitive to the existence of sparticles.

7.1 Models for supersymmetry breaking

Let us take a little closer look at the models we use to motivate supersymmetry breaking,
����SUSY-models, and what their phenomenological consequences are. This is important to keep
in mind as most searches for supersymmetry are interpreted under certain assumptions on
the ����SUSY-mechanism.

Generically such models can be illustrated as shown in Fig. 7.1. There is one or more
hidden sector (HS) scalar superfield X — by hidden we mean that it has no or very small
direct couplings to the MSSM fields — that has an effective (non-renormalizable) coupling to
the MSSM scalar fields Φi of the form

LHS = − 1

M
(θ̄θ̄)XΦiΦjΦk, (7.1)

where M is some large scale, e.g. the Planck scale, that suppresses the interaction. Figure
7.2 shows an interaction that can lead to such terms, where M is the mass scale of some
mediating particle Y . If the hidden sector is constructed so that X develops a vev for its
auxillary F -component field, FX ,

〈X〉 = θθ〈FX〉, (7.2)

it breaks supersymmetry, see the discussion of Eq. (5.25). Then (7.1) will produce a soft-term
of the form of the second term in Eq. (5.28),

Lsoft = −〈FX〉
M

AiAjAk, (7.3)

with the soft mass

msoft =
〈FX〉
M

.

77
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This has reasonable limits in that msoft → 0 as 〈FX〉 → 0, which is the limit of no ����SUSY,
and msoft → 0 as M →∞, where the scale of the HS interaction is decoupled (the mediating
particle Y becomes too heavy to have any influence). We will now look at two possible ways
to construct such a hidden sector called Planck-scale Mediated Supersymmetry Breaking
(PMSB) and Gauge Mediated Supersymmetry Breaking (GMSB).

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Figure 7.1: A generic illustration of how to generate soft breaking terms [16].

Figure 7.2: Interactions leading to effective 4-particle couplings in our example.

7.1.1 Planck-scale Mediated Supersymmetry Breaking (PMSB)

In Planck-scale mediated ����SUSY (PMSB) we blame some gravity mechanism for mediating
the ����SUSY from the hidden sector to the MSSM so that the scale of the breaking is M =
MP = 2.4 · 1018 GeV. Then we need to have1

√
〈F 〉 ∼ 1010 − 1011 GeV in order to get

msoft ' 100 − 1000 GeV, which is of the right magnitude not to re-introduce the hierarchy
problem. The complete soft terms can then be shown to be

Lsoft = −〈FX〉
MP

(
1

2
faλ

aλa +
1

6
y′ijkAiAjAk +

1

2
µ′ijAiAj +

〈FX〉∗
M2
P

xijkA
∗
iAjAk + c.c.

)
−|〈FX〉|

2

M2
P

kijAiA
∗
j . (7.4)

Incidentally, we can now see why we assumed the maybe-soft breaking terms to be unimpor-
tant, as in this model they are suppressed by 〈FX〉∗/M2

P compared to the other masses. If
one assumes a minimal form for the parameters at the GUT scale, motivated by the wish for
unification, i.e. f = fa, y

′
ijk = αyijk, µ

′
ij = βµ, kij = kδij then all the soft terms are fixed by

1The use of
√
〈F 〉 is just a conventional shorthand notation for the magnitude of the vev of whichever

F -term that breaks supersymmetry. This is called the supersymmetry breaking scale.
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just four parameters

m1/2 = f
〈FX〉
MP

, m2
0 = k

|〈FX〉|2
M2
P

, A0 = α
〈FX〉
MP

, B0 = β
〈FX〉
MP

.

The resulting phenomenology is called minimal supergravity, mSUGRA/CMSSM, min-
imal in the sense of the form of the parameters, and is the most studied, but perhaps not
best motivated, version of the MSSM. Often B0 and |µ| are exchanged for tanβ at low scales
using the EWSB condition in Eq. (6.19), so it is common to say that there are four and a
half parameters in the model: m1/2, m0, A0, tanβ and sgnµ.

7.1.2 Gauge Mediated Supersymmetry Breaking (GMSB)

An alternative to PMSB is gauge-mediated ����SUSY where soft terms come from loop diagrams
with messenger superfields that get their own mass by coupling to the HS ����SUSY vev, and
that have SM gauge interactions. By dimensional analysis we must have

msoft =
αi
4π

〈F 〉
Mmessenger

.

If now
√
〈F 〉 and Mmessenger are roughly comparable in size then

√
〈F 〉 ' 10 TeV can give a

viable sparticle spectrum. Notice that there is now a lot less RGE running for the parameters
since the soft masses are given at a rather low scale.

One way of thinking about how these mass terms appear is that the messenger field(s)
get masses from HS vevs and contribute to e.g. gaugino mass terms through diagrams such
as the one in Fig. 7.3, where messenger scalars and fermions run in the loop. Note that
scalars can only get mass contributions like this at two-loop order. To keep GUT unification
messengers are often assumed to have small mass splittings and come in N5 complete 5 + 5
representations of SU(5).

Figure 7.3: Diagram for GMSB. The messenger scalars and fermions run in the loop.

The minimal parametrization of GMSB models is in terms of Λ = 〈F 〉
Mmessenger

, Mmessenger,

N5 and tanβ for the EWSB criterion (instead of µ). This gives the soft masses

Mi =
αi
4π

ΛN5, (7.5)

m2
j = 2Λ2N5

∑
C(A)i

(αi
4π

)2
. (7.6)

While this looks independent of Mmessenger, the messenger scale sets the starting point of the
RGE running of the sparticle masses, and thus influences their magnitude. One should notice
that this gives the same hierarchy of gaugino masses as in mSUGRA, M3 > M2 > M1, since
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(7.5) is ordered in terms of the strength of the gauge couplings αi. The origin of the hierarchy
is different since in mSUGRA it comes from the running of the parameters down from the
GUT scale.

7.2 Supersymmetry at hadron colliders

Let us first point out some more or less obvious points.2

1) Hadron colliders collide quarks and gluons. This means that we get large cross sections
only for QCD charged sparticles, i.e. squarks and gluinos, provided their masses are low
enough.

2) As discussed earlier, with R-parity conservation (RPC) sparticles are produced in pairs
and both decay to the LSP.

3) Illustrated in Fig. 7.4 these sparticles can decay to the LSP in many different, and po-
tentially complicated, cascades. The possible decays for a particular MSSM model point
called SPS1a is shown in Fig. 7.5. We should realize that many of these decays are hard
to distinguish from ordinary SM (background) processes, or just undetectable.

4) Standard Model backgrounds have much, much bigger cross sections. Figure 7.6 shows
the expected backgrounds and signals produced in different channels at the 14 TeV LHC
for different particle masses.

5) R-parity conservation gives you missing transverse energy /ET at hadron colliders due
to the escaping LSPs, i.e. an imbalance in the directional sum of all energy deposits
transverse to the beam direction. There is no logitudinal energy balance in a hadron
colllider because the energies of the colliding partons are not known.

The consequences of the above is that we search for events with jet activity—squarks/gluinos
decaying to the LSP—and missing energy from two LSPs. One simple way to do this is to
define the effective mass

Meff =
∑

pjet
T + /ET , (7.7)

and search for deviations from SM expectations. Figure 7.7 shows a simulation of such
a supersymmetry signal at the LHC for a benchmark MSSM model called LHC Point 2.
However, there are models where this is ineffective. Imagine a scenario where only the lightest
stop t̃1 is copiously produced. If mt̃1

− mχ̃0
1
< mW then t̃1 → cχ̃0

1 or t̃1 → blνχ̃0
1 decays

dominate, where all final state particles have low energy (pT ), so-called soft particles. This
is very difficult to discover with standard techniques.

One alternative to jets and lots of missing energy is to look for leptons (and some small
missing energy) from gaugino pair production and decays. Searching the lepton and miss-
ing energy channels is a very effective way to isolate any production of sparticles from SM
backgrounds, but for setting bounds it is bad since the only model independent production is
Drell-Yan production, e.g. qq → (Z/γ)∗ → χ̃0

1χ̃
0
2, χ̃

+
1 χ̃
−
1 , l̃
∗
L l̃L, l̃

∗
R l̃R, and q′q → W ∗ → χ̃0

2χ̃
±
1 ,

which all have low cross sections due to the smaller electroweak coupling and the smaller
anti-quark content of the proton. The expected bounds from such searches for the mSUGRA
model is compared to other searches in Fig. 7.8.

2You might find these very obvious, they are, however, quite important and some theory people seem
oblivious to them.
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Figure 7.4: Diagram of a possible collision process in the LHC for an RPC model. Illustration
by C. Lester [17].
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Figure 7.5: Possible sparticle cascades for the SPS1a model point. Only decays with branching
rations above 5% are shown. The line width indicates relative branching ratios. The plot was
generated using PySLHA 3.0.1 [18].
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Figure 7.6: Plot of the expected signals for various processes at the 14 TeV LHC plotted
against the mass of the particles. The current Run II of the LHC has collected around 4 fb−1

of data, so the fb scale indicates processes where O(1) events are expected.

You may ask, why not look for the production of χ̃0
1χ̃

0
1? To first order the answer might

be that with nothing else in the event, we cannot measure the missing energy as that re-
quires an imbalance in momentum. However, given sufficient QCD radiation from the initial
quark/gluon3 a single jet recoiling against missing energy could potentially be measured, and
this, so-called mono-jet search, is indeed a search channel for dark matter production at the
LHC. However, for neutralino dark matter this does not work all that well for other reasons.
The Zχ̃0

i χ̃
0
j vertex shown in Fig. 7.9 has the Feynman rule

ig

2 cos θW
γµ
[(
Ni3N

∗
j3 −Ni4N

∗
j4

)
PL − (N∗i3Nj3 −N∗i4Nj4)PR

]
, (7.8)

which depends only on the higgsino components of the neutralinos, Ni3 and Ni4. This can
be understood from the fact that there are no ZZZ or Zγγ vertices in the SM that can be
supersymmetrized, only a Zhh vertex. For the photon there is no tree level coupling to the
neutralinos at all since there are no direct couplings between the higgs and the photon in the
SM. Thus, only neutralinos with significant higgsino components can be produced this way.
To top it off, a light higgsino with a mass dominated by the µ parameter would have very
similar values of Ni3 and Ni4, thus canceling the coupling.

Should some excess be discovered in any search, we need some smoking duck in order
to confirm that this is indeed supersymmetry. We would like to identify and measure the

3For an e+e− collider this would be photon radiation from the initial electron/positron.
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Figure 7.7: Plot of the differential cross section with respect to effective mass, plotted against
the effective mass of the final state particles as given in (7.7). The colored data points
represent different SM processes, and the histogram is the sum of all SM contributions,
while the white circles represent a possible supersymmetry scenario. The position of the
supersymmetry signal maximum is correlated to the masses of χ̃ and q̃, but there is large
variance.

masses of as many new particles as possible, and hopefully also their spin. To do this, a
multitude of techniques have been invented, all facing the problem of how to deal with the
loss of information from the LSP. Figure 7.11 shows an example of one such technique where
sequential two-body decays of sparticles are used. For the generic decay chain shown in
Fig. 7.10 with three sequential two-body decays we can measure the invariant mass between
two detectable end-products, a and b, mab. Even if the particle A at the end of the chain
is invisible one can show that the invariant mass distribution for mab has a triangular shape
with a sharp endpoint at the maximum

(mmax
ab )2 =

(
m2
C −m2

B

) (
m2
B −m2

A

)
m2
B

, (7.9)

where we have assumed that a and b are massless.4 A measurement of this endpoint position
gives us one realtionship between the three unknown (sparticle) masses. If we have a chain
with three sequential two-body decays we can repeat this measurement with three more

4A more complicated expression covers the massive case.
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Figure 7.8: Plot of the projected discovery reach for different values of m1/2 and m0 in the
mSUGRA model with 100 fb−1 or 300 fb−1 of data at the Compact Muon Spectrometer
(CMS). The light blue area represents theoretical restrictions on the parameter space. The
dark blue area is the parameter space that was probed by the Tevatron. The red lines
represents a pure jets pluss 6 ET search at 14 TeV. The blue lines represent searches using
leptons. The dotted lines show the masses of different sparticles in this parameter space.

Figure 7.9: Coupling Zχ̃0
i χ̃

0
j .
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possible invariant mass combinations, arriving at four equations with four unknown, which
can in principle at least be solved for the masses involved.

D C B A

c b a

Figure 7.10: Generic cascade decay D → Cc→ Bb→ Aabc [19].

As alternatives to these standard searches we have searches for decaying LSPs when R-
parity is violated, or the production of single sparticles.5 There is the possibility of massive

5Single sparticle production requires rather large RPV couplings for the LQD̄ or ŪD̄D̄ operators, of the
order of λ > 10−2.
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Figure 7.11: Invariant mass distribution of opposite sign same flavour (OSSF) dileptons for
the mSUGRA benchmark model point SPS1a [20].

metastable charged particles (MMCPs), typically in scenarios with a gravitino LSP, where
the next-to-lightest supersymmetric particle (NLSP) is charged and long-lived because the
decay to the gravitino is via a very weak gravitational coupling. The latter also includes
so-called R-hadrons if the NLSP has color charge, which means that it will hadronize after
production and be a short-lived but very massive meson or baryon. We should also mention
the searches for the extra Higgs states predicted in the MSSM.6

7.3 Current bounds on sparticle masses

With the LHC running and collecting data the details in this section are continuously be-
coming out-of-date. We will still try to make some general remarks on the current limits.
Most of these limits are from Run I of the LHC at 8 TeV with analysis using up to 20 fb−1

of data. This is strongest current limits are on the squark and gluino masses simply because
of the production cross section. Bounds on EW gauginos and sleptons exist, but these are

6But we really don’t have time.
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either model dependent (depend on squark/gluino mass assumptions and cascade decays), or
weaker if the rely only on electroweak production. Direct bounds from the LHC experiments
ATLAS and CMS now superseed bounds from other colliders (Tevatron and LEP) in almost
all channels.

7.3.1 Squarks and gluinos

In Fig. 7.12 we show the most recent limits from ATLAS in the jets plus missing energy
channel, using all currently available data at the highest energy of 8 TeV. The limit has been
interpreted within the mSUGRA model, where the parameters tanβ and A0 have been chosen
in order to give relatively large Higgs masses for small values of m1/2 and m0. The figure also
shows the corresponing first and second generation squark masses, the gluino mass and the
higgs mass for these parameter values. From ATLAS we then have the following approximate
bounds in mSUGRA: mq̃ > 1600 GeV and mg̃ > 1100 GeV.

 [GeV]
0

m

1000 2000 3000 4000 5000 6000

 [
G

e
V

]
1

/2
m

300

400

500

600

700

800

900

 (1
4
0
0
 G

e
V

)

q ~

 (1
8
0
0
 G

e
V

)

q ~

 (2
2
0
0
 G

e
V

)

q ~

 (1000 GeV)g
~

 (1200 GeV)g~

 (1400 GeV)g~

 (1600 GeV)g~

 (1800 GeV)g~
H

 (1
2
4
 G

e
V

)

H
 (1

2
5
 G

e
V

)

H
 (1

2
6
 G

e
V

)
>0µ, 0= ­2m

0
 = 30, AβMSUGRA/CMSSM: tan

=8 TeVs, 
­1

 L dt = 20.3 fb∫
0­lepton combined

ATLAS Preliminary

)
theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

Stau LSP

Figure 7.12: Plot of the excluded area in the m1/2-m0 plane of the mSUGRA parameter
space for tanβ = 30, A0 = −2m0 and µ > 0 . The limit is the red line. The green area is
theoretically forbidden because it has a charged LSP (the stau) [21].

Notice that in the figure the direct squark mass bound is almost equivalent to the mass
required for a sufficiently heavy higgs, thus the direct search does not yet constrain the squarks
masses significantly more than the indirect constraint from the higgs mass.

An important question is how these bounds change as we move away from the mSUGRA
assumptions. By pushing the gluino up in mass using M3 the production cross section falls
significantly. Limits of at most mq̃ > 850 GeV assuming only squark production were quoted
in the summer 2013 conferences, and the limit falls away entirely if mχ̃0

1
> 300 GeV becuase
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the decay products of the squark (quarks) have too little energy.7 Should one squark gener-
ation or flavour be significantly lighter than the others this means a further reduction in the
production cross section and thus an even weaker bound. It is also fairly clear that removing
R-parity, meaning that the LSP decays, also weakens the above conclusions due to the possi-
ble absence of significant missing energy. Thus, despite popular optinion, the generic squark
mass bounds outside of specific scnearios like mSUGRA, are currently still fairly weak, in
particular compared to indirect bounds via the higgs.

The gluino mass bound is somewhat more robust. Pushing up squark masses and assuming
only gluino production gives mg̃ > 1200 GeV (when also including CMS results), however,
the limit again disappears for mχ̃0

1
> 480 GeV.

7.3.2 Sbottom

The above bounds on the first and second generation squarks do not apply to the third
generation as they are generically lighter and can have more complicated decay signatures.
In Fig. 7.13 we see current best limits from ATLAS on the lightest sbottom taken from [22].
Note that this limit assumes 100% branching ratio for b̃1 → bχ̃1

0. If this branching ratio is
reduced to 60% the excluded upper limit on the sbottom mass for mχ̃0

1
< 150 GeV is reduced

to 520 GeV. Similarly for mb̃1
= 250 GeV, the upper limit on mχ̃0

1
is reduced by 30 GeV.

 [GeV]
1

b
~m

100 200 300 400 500 600 700 800

 [
G

e
V

]
0 1

χ∼
m

0

100

200

300

400

500

600

 fo
rb

id
de

n

0

1χ∼
 b

 
→ 

1b~

­1
CDF 2.65 fb

­1
D0 5.2 fb

=7 TeVs, 
­1

ATLAS 2.05 fb

0

1
χ∼ b → 

1
b
~

Sbottom pair production, 

=8 TeVs,  
­1

 Ldt = 20.1 fb∫
ATLAS  

)
theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

All limits at 95% CL

Figure 7.13: Plot of the excluded area in the (mb̃1
,mχ̃0

1
) plane. The limit from ATLAS is

the red line, while the green and blue colored areas are excluded from different Tevatron
experiments [22].

7The technical term for this is soft decay products.
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7.3.3 Stop

For the stop there are many possible competing decay chanels, meaning that any limit set
is very model dependent. The two main decay categories for the lightest stop are via the
chargino, if available, t̃1 → bχ̃±1 , and directly to the neutralino t̃1 → tχ̃0

1/Wbχ̃0
1/cχ̃

0
1, where

the dominant decay mode depends on the stop–neutralino mass difference. A summary of
(the many) current ATLAS limits for the stop is found in Fig. 7.14. It is important to notice
the surviving possibility of quite light stops in conjunction with a light neutralino or chargino.

Figure 7.14: Plot of the excluded area in the (mt̃1
,mχ̃0

1
) plane for the two main decay cate-

gories. References for the individual analysis given in figure.

7.3.4 Sleptons

As mentioned above the mass bounds on sleptons will be very dependent on the assumed
production mechanism. The most model independent bounds come from assuming only elec-
troweak pair production as in [23], which presents the results of a search for two opposite-sign
same-flavour (OSSF) leptons with missing energy. The result for degenerate right- and left-
handed smuons and selectrons, assuming 100% branching ratio in the neutralino, is shown in
Fig. 7.15. Individual selectron and smuon limits are significantly weaker. Limits from this
kind of search in complete models, such as mSUGRA, are typically much weaker than those
that come from searches for jets and missing energy, e.g. see Fig. 7.8.

There are currently no constraining searches for direct pair production of staus.
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Figure 7.15: Plot of the excluded area in the (ml̃,mχ̃0
1
) plane for mass degenerate right- and

left-handed smuons and selectrons [23].

7.3.5 Charginos and neutralinos

As for the sleptons, bounds are dependent on the production process assumed. With chargino
pair production, χ̃+

1 χ̃
−
1 , the search for two OSSF leptons discussed in the previous subsection

again applies because the chargino can decay via a slepton or sneutrino [23]. We show the
results assuming ml̃ = mν̃ = (mχ̃±1

+mχ̃0
1
)/2, and again 100% branching ratio, in Fig. 7.16.

We can also search for χ̃0
2χ̃
±
1 production with three leptons and missing energy. The

results from [24], where 100% branching ratio into vector bosons is assumed, are shown in
Fig. 7.17.
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Figure 7.16: Plot of the excluded area in the (mχ̃±1
,mχ̃0

1
) plane [23].

7.4 Supersymmetry at lepton colliders

Most lepton colliders are e+e−-colliders, although plans are being made for a muon collider
where there is less bremsstrahlung because of the higher muon mass, meaning that higher
energies can be reached. The highest energy so-far at an e+e−-collider was 209 GeV CoM-
energy at LEP2 in 2000.

Most supersymmetry searches at lepton colliders rely on pair production from e+e− →
γ∗/Z∗ to set limits, and for R-parity conserving supersymmetry we (again) rely on misisng
energy /E as an essential signature, however, since the longitudinal momentum is now exactly
known full energy conservation can in principle be used. In practice this is challenging at
high energies because of collinear Bremsstrahlung. This will be a particularly difficult for a
future 0.5−3.0 TeV CoM International Linear Collider (ILC) or the Compact LInear Collider
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(CLIC) project.8

We can estimate the amplitude of the sfermion pair production process shown in Fig. 7.18.
We can write down the matrix element as:

M = vieγµu
−igµν
k2 + iε

[−ie · ef (p1 − p2)ν ], (7.10)

which gives a squared matrix element of, assuming that the CoM s is much greater than mZ

and taking into account both the photon and the Z:

|M|2 '
g4e2

f

8 cos θW

st+ (m2
f̃
− t)2

s2
× (1 + (4 sin2 θW − 1)2). (7.11)

8For more information on these projects see the websites for the International Linear Collider http://www.
linearcollider.org/ and the Compact LInear Collider http://clic-study.org/

http://www.linearcollider.org/
http://www.linearcollider.org/
http://clic-study.org/
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We take safely take (1 + (4 sin2 θW − 1)2) ' 1. The complete differential cross-section is then:

dσ

dt
=

1

32π

1

s2
|M|2. (7.12)

This cross section is small due to the coupling factor g4 and sfermion mass suppression.

Figure 7.18: Feynman diagram for the pair production of left-handed sfermions in the s-
channel at a linear collider.

For charginos and neutralinos, as in the case of hadron colliders, the production cross
section depends on their wino, bino and higgsino components. The selectron and electron
sneutrino have a special rôle for e+e− colliders due to t-channel diagrams. Figure 7.19 shows
the t-channel diagrams that are important in pair production at a e+e− collider. We show an
example of the slepton pair production cross section including the Z-resonance at low energies
and the t-channel contributions from neutralinos in Fig. 7.20. Neutralino pair production with
t-channel selectron exchange does not suffer from the same problems as neutralino pair pro-
duction at a hadron collider in the s-channel. However, the process depends on the selectron
mass as m−4

ẽ for large mass values.

Figure 7.19: The t-channel diagrams for pair production of selectrons and electron sneutrinos
a) and gauginos b).
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Should a signal be found the parameters of the new particles can be precisely measured
at a lepton collider. either through threshold scans of cross section where the cross section is
measured as a function of

√
s. Or, through kinematical distributions, e.g. in e+e− → l̃+ l̃− →

l+l−χ̃0
1χ̃

0
1 the energy distribution for the final state leptons is a uniform distribution between

Emin and Emax where

Emax/min =

√
s

4

(
1−

m2
χ̃0
1

m2
l̃

)1±
(

1−
4m2

l̃

s

)1/2
 . (7.13)

7.4.1 Current bounds at lepton colliders

The below bounds are all from the LEP (Large Electron Positron) collider, running from
1989 until 2000, which outdated all previous bounds with a top energy of

√
s = 209 GeV,

recording an integrated luminosity of 233 pb−1 above 204 GeV. Results exist from all four LEP
experiments ALEPH, DELPHI, L3 and OPAL.9 The numbers are all taken from the PDG
(Particle Data Group) review [25]. While these bounds often come from pair-production of
the relevant sparticles, and thus are less modell dependent than the hadron collider bounds,
there remains some model dependence in many results, which, unfortunately, is sometimes
ignored in the litterature. Complicating matters is a reliance by the LEP experiments on
theoretical assumptions such as GUT-scale coupling and gaugino mass unification.

• Selectron: mẽL > 107 GeV and mẽR > 73 GeV (ALEPH 2002) in searches for acoplanar
di-electrons.10 The limit is the result of a scan over MSSM parameter space assuming a
common m0 and m1/2 at GUT scale. Interpreted in mSUGRA with A0 = 0 the bounds
are 152 GeV and 95 GeV, respectively. Due to strict limits on the measured Z-width,
there is a model independent limit of mẽL/R > 40 GeV.11

• Smuon: mµ̃R > 94 GeV (DELPHI 2003). The limit is obtained as in the MSSM scenario
for the selectron.

• Stau: mτ̃1 > 81.9 GeV (DELPHI 2003) assuming exclusive τ̃1 → τ χ̃0
1 andmτ̃1−mχ̃0

1
> 15

GeV.

• Sneutrinos: From the Z-width we can obtain the model independent limit mν̃ > 44.7
GeV. From collider experiments we have mν̃ > 94 GeV (DELPHI 2003) in neutralino
& slepton searches. This assumes mẽR −mχ̃0

1
> 10 GeV.

• Neutralino: mχ̃0
1
> 46 GeV (DELPHI 2003). This limit is derived from the direct

searches for χ̃±1 χ̃
0
2 and χ̃0

1χ̃
0
2. This assumes gauge coupling unification and a common

gaugino mass m1/2 at GUT scale. Even in the Z-decays, the contribution depends on
the higgsino part in the lightest neutralino, so mχ̃0

1
' 0 GeV is in principle allowed [26].

• From the Z-width we can extract a strict limit ofmχ̃±1
≥ 45 GeV. We also havemχ̃±1

≥ 94

GeV (DELPHI 2003), assuming GUT scale universality of m0 and m1/2 and using
multiple direct search channels from production of charginos, neutralinos and sleptons.
It also assumes either no third generation mixing or mχ̃±1

−mχ̃0
1
> 6 GeV.

9Most of which are silly acronyms of course.
10The observant reader will notice that two electrons are always in the same plane, however, when experi-

mentalists say acoplanar, they mean not in one plane with the beam axis.
11Similar model independent limits around half the Z-mass exists for all sparticles that couple to the Z.
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7.5 Precision observables

A different way to exclude supersymmetric models is their indirect effect on very accurately
measured SM processes, so-called precision observables, through loop diagrams with sparti-
cles. We will here discuss four of the most sensitive probes: electroweak precision observables,
the value of the anomolous magnetic moment of the muon (g−2)µ, the flavour changing neu-
tral current (FCNC) process b→ sγ and the very rare (and FCNC) process Bs → µµ.

7.5.1 Electroweak precision observables

When we talk about electroweak precision observables, we study parameters such as MW

(or MZ), ΓW , ΓZ , mt and sin θW , as well as the Higgs mass mh and the properties of the
Higgs such as its couplings to all the other particles (gauge and Yukawa couplings) and its
self-coupling.

Up to last year we studied all of these as functions of the unknown Higgs mass, looking for
devations that could be a sign of supersymmetry. We show a fit to all available electroweak
data and direct exclusion bounds in Fig. 7.21 by the Gfitter collaboration just before the
LHC started taking data, a fit pretty much indicating that the most probable SM Higgs mass
was 125 GeV.

Figure 7.22 shows a similar plot for mSUGRA. At that time the absolute minimum of the
fit, even taking into account the different number of parameters, gave a better a better fit
for mSUGRA, minχ2

mSUGRA < minχ2
SM, but this changed quickly when the Higgs was found

because of the position of the two minima.

Now all the parameters of the SM—neutrinos excepted—have been determined to some
precission. Thus the SM is a completely constrained system. If we now do a electroweak fit the
situation looks like that in Fig. 7.23, where we show the global fit compared to the measured
values of the W and top masses. Clearly what we are seeing here is (still?) consistent with
the SM.

7.5.2 (g − 2)µ

The anomalous magnetic moment of the muon, (g − 2)µ, has been very precisely measured
by the E821 experiment at BNL [28] to be:

gµ = 2.00116592089(63),

or, in terms of aµ which is the devation from 2,

a(exp)
µ = 11659208.9(6.3) · 10−10,

where the parenthesis indicates the uncertainty on the last digits. Figure 7.24 a) shows the
lowest order µ → µγ diagram. Loop corrections to this diagram give aµ. In the SM we find
the prediction

aSM
µ = 11659183.0(5.1) · 10−10,

giving a difference with respect to the experimental value of

δaµ ≡ aexp
µ − aSM

µ = (25.9± 8.1) · 10−10,
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a value which is 3.2σ away from zero. This is probably the clearest discrepancy that exists
today between the SM and measurements.

However, we should be aware that one of the SM contributions, the so called hadronic
vacuum polarization as shown in Figure 7.24 b), involves hadronic loops where one has to
rely on experimental information on low energy e+e− → γ∗ → hadrons in order to estimate
a contribution of aHVP

µ = 10.5(2.6) · 10−10, which is of the same order of magnitude as the
discrepancy, and may be prone to errors in the interpretation.

One-loop corrections to (g − 2)µ in the MSSM are shown in Figure 7.24 c) and d). These
contribute opposite sign terms aµ(χ̃0) and aµ(χ̃−). A thorough analysis shows that we need
µ > 0 in order to give a positive contribution that will close the gap between the experimnetal
value and the prediction. In order to get a sufficiently large contribution the loop masses must
be less than 500− 600 GeV for tanβ = 40− 50 and 200− 300 GeV for tanβ ' 10.

7.5.3 b→ sγ

The process b → sγ is a FCNC process which must proceed through loops. Figure 7.25 a)
shows the SM process. This is suppressed by the smallness of the CKM entries, and the large
masses mW and mt.

The process has been measured in decays of the type B → Xsγ, e.g. in B → Kγ, and
calculated at NNLO to be Br(B → Xsγ)SM = (3.36±0.23) ·10−4 for Eγ ≥ 1.6 GeV [29, 30].12

Supersymmetry may contribute, e.g. with diagrams such as Fig. 7.25 b) where the m2
bsb̃
∗s̃

mass term that changes a b̃1 to a s̃ is a soft breaking off-diagonal term, often denoted δ23.
The main MSSM contributions are expected to come from chargino–stop13 and charged higgs–
top loops, as shown in Figs. 7.25 c) and d), respectively. However, there is little room for
effects from superymmetry since the current experimental world average is Br(B → Xsγ) =
(3.55± 0.26) · 10−4 (PDG 2010). This means that either the charged Higgs is heavy enough
and the stop-scharm soft mass term small enough, or that there are cancellations between
the contributions.

7.5.4 Bs → µ+µ−

The process Bs → µ+µ− is another FCNC process as either the bottom or the strange quark
must change flavour in order to couple to the muons. The SM process is shown in Fig. 7.26
a), involving an intermediary Z-boson. There is additional suppression from a CKM factor
in one of the W -vertices, in order to change a third generation quark to a second generation
quark, or vice versa. On top of this, it also suffers from what is called helicity suppression
in the SM. The Z-boson is spin-1, while the starting point meson Bs is spin-0 (pseudoscalar),
meaning that the spins of the quarks are opposite. At some point in the diagram the helicity
(chirality) must “flip”. This introduces an extra suppression proportional to m2

µ/M
2
Bs

, making
the expected rate extremely small and sensitive to supersymmetry contributions. We get a
similarly supressed process for Bd with a d̄-quark instead of the s̄ in the initial state.

The predicted SM branching ratios for these processes are [32]:

Br(Bs → µ+µ−) = (3.65± 0.23) · 10−9, (7.14)

Br(Bd → µ+µ−) = (1.06± 0.09) · 10−10. (7.15)

12For the process b→ dγ the SM calculation yields BR(B → Xdγ) = 1.73+0.12
−0.22 · 10−5.

13We usually expect a higher generation off-diagonal terms to be larger due to RGE running controlled by
Yukawa couplings.
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First evidence for the Bs decay was shown by the LHCb collaboration in 2012. The final
observation required combining Run I data from both LHCb and CMS, and was published in
2014 [33]. The current values are:

Br(Bs → µ+µ−) = 2.8+0.7
−0.6 · 10−9, (7.16)

Br(Bd → µ+µ−) = 3.9+1.6
−1.4 · 10−10, (7.17)

where one should keep in mind that the Bd decay has only evidence at 3.2σ significance.
In the MSSM there are contributions from process such as shown in Fig. 7.26 b). These

contributions are proportional to tan6 β, which makes the decay process highly sensitive to
scenarios with large tanβ. To see this dependence, notice that µ couples to the mediating
heavy higgses H/A0 through the Yukawa term yl22L2HdE2 in the superpotential, and the
Yukawa constant in this term, yl22 = yµ, is connected to the fermion mass through mµ =
yµv cosβ. Thus this vertex is proportional to 1/ cosβ or tanβ, giving a factor tan2 β in the
amplitude squared.14

Furthermore, a chargino(higgsino)–stop loop can couple the strange and bottom quarks
to the higgs. These couplings are proportional to the bottom Yukawa coupling yb, from the
superpotential terms yd33Q3HdD̄3, which appears in the stop–chargino–bottom vertex, and
the yu32Q3HdD̄2, which appears in the strange–chargino–stop vertex. Both these Yukawa
couplings are proportional to yb and thus to 1/ cosβ, giving a further factor of tan4 β in
the amplitude squared. This tanβ dependence makes Bs → µ+µ− an excellent channel for
discovering supersymmetry, and puts very stringent bounds on the sparticle masses in large
tanβ scenarios.

7.6 Excercises

Exercise 7.1 From relativistic kinematics, show Eq. (7.9). Hint: the choice of rest frame is
very important in order to simplify the calculation.

Exercise 7.2 Find the total cross section for the process qq̄ → q̃q̃∗ via an s-channel gluon
shown in Fig. 7.27.

14Remember that in the limit of large tanβ

cosβ = ± 1√
1 + tan2 β

= ± 1

tanβ
√

1 + 1
tan2 β

' ± 1

tanβ
. (7.18)
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Figure 7.20: Cross sections for selectron pair production as a function of energy. The cross
sections for ẽ∗LẽL (solid line), ẽ∗RẽR (dashed line), and ẽ∗LẽR (dashed dotted line) are shown
separately. The particular model point has a common slepton mass of mẽL/R = 35 GeV.
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Figure 7.21: Plot of the total ∆χ2 from all precision variable measurements and the direct
exclusions bounds for the SM Higgs from LEP and the Tevatron, as a function of the Higgs
mass.
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Figure 7.22: Plot of the ∆χ2 from all precision variable measurements for mSUGRA as a
function of the Higgs mass. The yellow area shows the experimentally excluded area, while
the brown shows the theoretically inaccessible area.
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Figure 7.24: Diagrams for muon interaction with an electromagnetic field. Loop corrections to
the tree level diagram a) give the value of aµ. Diagram b) shows hadronic vacuum polarization
where the blob contains QCD fields. Diagrams c) and d) show the lowest order MSSM
contributions to aµ.
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Figure 7.25: Diagrams for the process b→ sγ. a) shows the SM diagram while b), c) and d)
show MSSM contributions.
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Figure 7.26: Diagrams for the process Bs → µ+µ−. Diagram a) shows one of the leading SM
contributions, while b) shows one contribution from the MSSM taken from [31].
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Figure 7.27: Strong SUSY production of two squarks through a gluon.



Chapter 8

Supersymmetric dark matter

8.1 Evidence for dark matter (DM)

The history of dark matter goes back quite a long way. Today we have evidence for the
existence of dark matter through several effects where we observe its gravitational influence
on ordinary matter. We list the evidence below:

1) Kinematics (Zwicky 1933 [34]): The motion of galaxies (velocity dispersion) cannot be
explained by the visible matter. This was also observed on the scales of galaxies in their
rotation curves (Rubin 1970 [35]).

2) Gravitational lensing (Tyson 1996 [36]). First observed in galactic clusters. Clusters
show evidence of lensing not explained by luminous matter. Dark matter dynamics (non-
interacting) are demonstrated by the Bullet cluster (Clowe 2006 [37]).

3) Large scale structures (clusters, superclusters, filaments and voids): The 2dFGRS (2-
degree Field Galaxy Redshift survey Colles 2001 [38]) and SDSS (Sloan Digital Sky
Survey Tegmark 2004 [39]) give a relative matter density of Ωm ≡ ρm

ρc
= 0.29 where

ρc = 1.05 · 10−5h2 GeV/cm3 is the critical energy density for a flat universe.1 They also
imply that the majority of DM must be cold (non-relativistic), because warm DM would
suppress clustering.

4) Big-Bang Nucleosynthesis (BBN): The formation of light elements in the period t = 1 −
1000 s after the Big Bang. Measurements of Early Universe abundance of light elements,
mainly D and He, points to a baryonic matter density of Ωb ≈ 0.04. This gives Ωleftover ≈
0.25.

5) Supernovae (Riess 1998 [40] and Perlmutter 1999 [41]): Measurements of type Ia super-
novae (SNe Ia) were used as standard candles to show an accelerated expansion of the Uni-
verse. This fixes ΩΛ−Ωm ' k where ΩΛ is the energy density of dark energy/cosmological
constant.

6) Cosmic Microwave Background (CMB) (Penzias & Wilson 1965 [42]): The temperature
variation of the CMB over the sky of the order of 0.0002 K is sensitive to all cosmological
parameters, and gives ΩΛ + Ωm ' k, where k is some constant.

1h is defined through the Hubble constant H0 as H0 = 100h km/Mpc/s.

105
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The evidence above can be used to constrain a minimal model of the Universe that can
explain all the current measurements, the ΛCDM concordance model of cosmology, which
has just a handful of ingredients such as baryonic and dark matter, radiation (photons) and
dark energy. In Fig. 8.1 we show the effects of the SNe, CMB and large scale structure data
(BAO) on this model.

Figure 8.1: Limits from different experiments on the dark energy density, ΩΛ, compared to
the total mass density in the universe, Ωm.

A maximum likelihood fit to a selected subset of the measurements gives the parameters
for the model shown in Table 8.1.

Parameter ΩΛ Ωmh
2 Ωbh

2 H0 [km/Mpc/s] t0 [Gy]

Value 0.685+0.018
−0.016 0.1426± 0.0025 0.02205± 0.00028 67.3± 1.2 13.817± 0.048

Table 8.1: Measured values for cosmological parameters [43].
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8.2 WIMP magic

The very existence of a stable Weakly2 Interacting Massive Particle (WIMP) χ automatically
gives an additional component to the total energy density of the Universe. WIMPs are found
in a number of theories, for example the lightest neutralino of the MSSM, the lightest Kaluza-
Klein particle of a theory with extra dimensions or an inert Higgs boson.

This is due to the in equilibrium thermal production of the WIMP through the process
SM × SM → χχ, and the reverse annihilation process χχ → SM × SM , in the early hot
Universe (T � mχ). As the temperature decreases to T < mχ and there is not enough
energy in an average collision for the production of χ to occur, only the reverse process can
take place, and the comoving density3 falls with the temperature of the Universe.

The WIMPs then experience what is called a chemical decoupling, or loss of chemical
equilibrium, due to the expansion of the Universe. This is when the WIMPs become so
dillute, because of the expansion, that they in effect no longer interact inelastically, and this
roughly happens when the expansion rate becomes larger than the rate of anihilation. The
WIMPs then get a constant (comoving) density, we say that they experience a freeze-out
at this temperature Tc. With weak-scale masses and couplings the freeze-out happens at
Tc ≈ 0.05mχ, however, this is before or at the same time as kinetic decoupling where the
WIMPs effectively lose elastic interactions, meaning that χ freezes-out with non-relativistic
velocities and become so-called cold dark matter.

The exact time (temperature) of freeze-out is controlled by the annihilation cross section
of χ, larger cross sections keep chemical equilibrium for longer, in turn resulting in lower
dark matter relic abundance. This abundance, in number density, can be found from the
Boltzmann equation

dnχ
dt

= −3Hnχ − 〈σv〉(n2
χ − neqχ 2), (8.1)

where neqχ and nχ are the chemical equilibrium and actual comoving number densities, H is
Hubble’s constant for the expansion rate, and 〈σv〉 the velocity averaged annihilation cross
section for χχ→ SM×SM . In practice one must also often take into account co-annihilation
with other particles with mass within 10% − 20% of the χ, and numerical codes such as
DarkSUSY [44] or MicrOMEGAs [45, 46] are used.

For weak scale particles a rough approximation to the resulting dark matter density is

Ωχh
2 = 0.1× 3× 10−26 cm3s−1

〈σv〉 ,

and since the annihilation cross section can be shown to be

〈σv〉 ≈ α2
weak

m2
weak

≈ 10−25 cm3s−1, (8.2)

the predicted DM density is

Ωχh
2 ≈ 0.1×

(
gweak
gχ

)4( mχ

mweak

)2

.

2Weak as in electro-weak, meaning on the same scale as the weak force.
3Taking the expansion of the universe into account by looking at the number of particles in a volume

expanding at the same rate.
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Figure 8.2: Ilustration of the freeze-out of the comoving number density of a WIMP, where
the black line represents a model without chemical decoupling, and the dotted lines represent
different freeze out temperatures for different velocity averaged annihilation cross sections.

When compared to the value in Table 8.1 this is called the WIMP-miracle.

For a more detailed discussion of the WIMP miracle, see the standard cosmology book by
Kolb and Turner [47].

8.3 Dark matter candidates in supersymmetry

With R-parity conservation in place we have seen that any neutral LSP can be DM. Without
R-parity only super-weakly coupling particles like gravitinos and axinos are candidates. Below
we briefly discuss the various possibilities.
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8.3.1 Neutralino

As soon as you have a stable neutralino LSP, you usually get into trouble trying to explain
why there is so little dark matter. The neutralino in the standard mSUGRA bino like χ̃0

1

scenario gives a problematically high Ωχh
2 due to current lower bounds on the χ̃0

1 mass and
the measured higgs mass. This is called the bulk region scenario which can be seen in
Fig. 8.3 in the lower left corner. Alternatives to the bulk region scenario use co-annihilation
or resonant annihilation to increase 〈σv〉 and thus decrease the dark matter density.

Figure 8.3: Generic illustration of the allowed neutralino DM regions (puke green) in the
(m0,m1/2)-plane for mSUGRA. Except for the low m0 and m1/2 regions the area outside of
the allowed region gices too much drk matter. The dashed line shows the Higgs mass limit
which pushes towards larger values of m1/2, while the dotted line represents the limit from
the anomalous magnetic moment of the muon.

The stau-coannihilation region, where τ̃1χ̃
0
1 → SM ×SM is an efficient process, exists
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for small m0 with mτ̃1 − mχ̃0
1
≤ 10 GeV, which makes this scenario difficult to discover at

collider experiments due to the production of soft (low-energy) taus. This is shown as the
lower strip in Fig. 8.3 which follows the lower theoretical bound (brown) where the stau
becomes the LSP.

The stop-coannihilation region, where t̃1χ̃
0
1 → SM × SM , exists for large values of

|A0|, small m0 and m1/2, and typically has mt̃1
−mχ̃0

1
≤ 25 GeV. Again, this is difficult to

discover because of the soft decay products of the stop.

The higgs funnel region for 2mχ̃0
1

= mA,H and large tanβ, where the neutralino has
resonant annihilation through a heavy Higgs boson, is shown in Figure 8.3 as the diagonal
structure roughly in the middle of the plot, rising as a funnel upwards.

The focus point region for large m0 and low µ gives an higgsino-wino LSP with a more
efficient higgsino annihilation channel for the LSP and thus a lower dark matter density within
experimental bounds. This leads to so-called split-SUSY, as the sfermion masses need to be
pressed up quite a bit. The focus point region can be seen in Fig. 8.3 following the upper
theoretical bound where EWSB breaks down.

8.3.2 Sneutrinos

The left handed sneutrino ν̃L is happily excluded as a DM particle due to the large cross
section for ν̃Lq → ν̃Lq via Z-exchange.4 The large cross means that it should already have
been seen by direct detection experiments. It is also problematic to get mν̃L < ml̃L

due to
hyperfine-splitting. However, ν̃R couples very weakly and is still a viable candidate.

8.3.3 Gravitino

The gravitino is not a WIMP as it is never in chemical equilibrium. It can be created from
NLSP decays giving, in RPC scenarios,

ΩG̃ =
mG̃

mNLSP
ΩNLSP ,

however, these scenarios are problematic, because the NLSP is long-lived and creates po-
tential trouble in BBN by injecting energy that changes the production of light elements.
Alternatively, it can be created in non-thermal production as shown in Fig. 8.4 at reheating
after inflation. The reverse process g̃G̃ → gg is not efficient as the density of gravitinos and
gluinos is never high enough given the small the cross section. This type of dark matter
creation process is often called freeze-in. For the gravitino this gives a new magic formula:

ΩG̃h
2 ≈ 0.5 ·

(
TR

1010 GeV

)(
100 GeV

mG̃

)( mg̃

1 TeV

)2
, (8.3)

where TR is the reheating temperature. This is valid also for RPV scenarios. There the
gravitino coupling ∝ 1

MP
makes the gravitinos very long-lived, but not absolutely stable. One

can also imagine an axino scenario, that would work just like the gravitino.

4For the neutralinos this problem only exists for a higgsino χ̃0
1 LSP, as the wino and bino do not couple to

the Z
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Figure 8.4: One possible diagram for the non-thermal production of gravitinos.

8.3.4 Others

One could even imagine color charged supersymmetric particles as DM, in particular the
gluino, which, if stable, after hadronization form so-called R-hadrons. These have very
strict limits from direct searches, but these limits are somewhat obfuscated by complications
in R-hadron scattering.

8.4 Direct detection

In addition to the direct production of dark matter at colliders and the corresponding searches
for missing energy, there are two other main ways to search for dark matter, direct and indirect
detection. Here we briefly discuss direct detection.

Direct detection seeks to make weak DM interactions with SM matter visible by very low
background searches in large volumes, using galactic halo DM interacting with ordinary mat-
ter. This is very dependent on the χ scattering cross section on nucleons (quarks), which can
be calculated in a given model, but also the DM halo density distribution and velocity dis-
tribution, which have large uncertainties. This can be expressed in the differential scattering
rate with respect to the recoil energy Er of a scattered nucleon with mass M

dN

dEr
=

σρDM
2µ2mχ

|F (q)|2
∫ vesc

vmin

f(~v)

v
d3v, (8.4)

where σ is the DM scattering cross section off the nucleus in question, ρDM is the DM halo
density at Earth, µ is the dark matter and nucleus reduced mass, F (q) is a nuclear form factor
dependent on the scattering momentum transfer q =

√
2MEr, f(~v) is the velocity distribution

in the halo, vmin =
√
MEr/2µ2 is the minimal velocity that gives a recoil energy Er and vesc

is the escape velocity from the halo.

There two main tactics followed in order to try to directly detect DM:

• Suppress (almost) all backgrounds, which is used in experiments such as XENON and
CDMS.

• Look for an annular modulation, due to the Earth’s movement in the galactic rest
frame, in a small dark matter signal on top of a constant background, used in DAMA
and CoGeNT.
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Figure 8.5 shows results from the most important direct detection experiments. Observe
that while DAMA and CoGeNT both have signals for detection, these are already excluded
by XENON and not compatible with each other.

Figure 8.5: Plot of different exclusion and detection results for direct detection of DM in the
WIMP mass versus WIMP–nucleon cross section plane. The grey area shows the expected
mass and cross section in MSSM models, where we assume gauge unification at the GUT-scale.

8.5 Indirect detection

In indirect detection we look for annihilation or decay products from DM in multiple final
(messenger) states in cosmic rays. Search channels must be stable SM particles, so that they
can reach the Earth (or satelites in orbit). The messengers should also have as low back-
grounds from ordinary astrophysical processes as possible, this makes searches with electrons
and protons difficult. The remaining candidates are photons, neutrinos, positrons, antiprotons
and antideuterons.

• Photons: These can either come from direct production processes such as χχ →
γγ, Zγ, which is easier to detect because the spectrum is a sharp line spectrum at
exactly the mass of the DM, or γ from brehmsstrahlung or pion decays, which is a
broad spectrum and hard to detect, but is expected to make up the majority of photons
from dark matter. Photons from dark matter have the advantage that they point to
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the source so we can focus on areas with large ρDM , and thus reducing potential back-
grounds relative tot he signal. We can also look for photons that are extragalactic in
origin (but then we have to account for red-shifting the spectrum).

Dark matter annihilating in our own galaxy into photons should result in a flux at Earth
given by

dΦ

dEdΩ
=

1

8πm2
χ

dNγ

dE
〈σv〉

∫
l.o.s.

ρ2
DM (l)dl, (8.5)

where Nγ(E) gives the number of photons with energy E in a single annihilation event.
We see that the flux depends on the square of the DM density since annihilation requires
two DM particles to be present. For decaying DM the corresponding expression is
proportional to ρDM .

There have been som indications of an excess of photons above expected backgrounds
from the galactic centre (a.k.a. the Hooperon [48]), however, no unambigeous DM signal
has been confirmed. Current limits from the Fermi-LAT experiment seems to rule out
most possible models a DM explanation for this excess, are sets a cross section limit
close, and for some masses beyond, to the canonical limit

〈σv〉 = 3× 10−26 cm3s−1,

see Fig. 8.6.

Figure 8.6: Results from Fermi-LAT indirect gamma-ray searches in the χχ → bb̄ channel.
Grey line shows limit from Milky Way halo search, black line from Milky Way dwarf spheroidal
galaxy search with six years of data [49].
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• Neutrinos: These also point to the source and can be extragalactic in origin just like
the photons. The same flux calculation can be used, starting from the neutrino spectrum
from dark matter annihilation. The astrophysical background is smaller, however, the
neutrino signal is difficult to detect. The current leading experiment is IceCube at the
South Pole. One interesting possibility is that DM matter scatters on ordinary matter
sufficiently strongly that DM accumulates at the centre of the Sun (or possibly the
Earth). When these DM particles annihilate the only decay products that can escape
the Sun’s interior are neutrinos.

• Positrons: Charged particles propagate in a complicated way through the galactic mag-
netic field, and they are therefore impossible to track back to the source. Sources outside
of our own Galaxy cannot contribute significantly to the flux at Earth. This source has
large astrophysical backgrounds, so experiments search for small excesses, mostly at
high energies. Some potential excess has been seen by Fermi-LAT and PAMELA.

• Antiprotons: As the positrons these propagate in a complicated manner, but the
backgrounds are under better control. PAMELA has set strict limits.

• Antideuterons: These have very low backgrounds because, however, the physics of
the formation is quite complicated and hard to calculate. AMS-02 will provide new
data soon.

8.6 Excercises

Exercise 8.1 Show that χχ→ Z → ff̄ gives

σv ≈
g4E2

χ

128πm2
Z

, (8.6)

which in the low-velocity limit can be shown to be

〈σv〉0 ≈ 10−25 cm3s−1.
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