
Predictions of regional climate change for 
the next few decades are characterized 
by high uncertainty, but this uncertainty is 
potentially reducible through investments 
in climate science.

F	 aced with the realities of a changing climate,  
	decision makers in a wide variety of organiza- 
	 tions are increasingly seeking quantitative climate 

predictions. Specifically, they require predictions of the 
regional and local changes in climate that will impact 
people, economies, and ecosystems. Such predictions 
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Fig. 1. Global mean, annual mean, 
surface air temperature predic-
tions from 15 different global cli-
mate models under three different 
emission scenarios from 2000 to 
2100 (thin lines): SRES A2 (red), 
A1B (green), and B1 (blue), desig-
nated as high-, medium-, and low-
emissions paths, respectively. The 
same models forced with historical 
forcings are shown as the thin gray 
lines, and the observed global mean 
temperatures from 1950 to 2007 
(Brohan et al. 2006) are shown as 
the thick black line. The multimodel 
mean for each emissions scenario 
is shown with thick colored lines 
demonstrating how uncertainty 
in future emissions gives rise to 
uncertainty in climate predictions. 
The different scenarios give nearly 

identical predictions until around 2025, demonstrating the delayed effect of future emissions. Each model has 
a different response to climate forcings, as seen by the spread in results for one particular scenario (or color). 
The internal (interannual) variability can be seen superimposed on the trend for any one individual prediction. 
All temperatures are shown as anomalies from the 1971–2000 mean.

are available (e.g., Solomon et al. 2007) but are subject 
to considerable uncertainty. Thus, an important issue 
for these decision makers, and for organizations that 
fund climate research, is as follows: what is the scope 
for narrowing the uncertainty through future invest-
ments in climate science? Here, we address this question 
through analysis of twenty-first-century surface air 
temperature predictions (shown in Fig. 1) in the World 
Climate Research Programme’s (WCRP’s) Coupled 
Model Intercomparison Project phase 3 (CMIP3) mul-
timodel dataset, as used in the Intergovernmental Panel 
on Climate Change (IPCC) Fourth Assessment Report 
(AR4; Solomon et al. 2007). This analysis is subject to 
some caveats, which we acknowledge and discuss.
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PARTITIONING UNCERTAINTY. Uncertainty 
in climate predictions arises from three distinct 
sources. The first is the internal variability of the 
climate system, that is, the natural f luctuations 
that arise in the absence of any radiative forcing 
of the planet. Appreciation of these f luctuations is 
an important matter for decision makers because 
they have the potential to reverse—for a decade or 
so—the longer-term trends that are associated with 
anthropogenic climate change. The second is model 
uncertainty (also known as response uncertainty): 

in response to the same radiative forcing, different 
models simulate somewhat different changes in 
climate. The third is scenario uncertainty: uncer-
tainty in future emissions of greenhouse gases, for 
example, causes uncertainty in future radiative 
forcing and hence climate. The method we use to 
separate these different sources of uncertainty, 
using 15 global climate models and three emissions 
scenarios, is described in appendix A.

The relative importance of the three sources of 
uncertainty varies with prediction lead time and 
with spatial and temporal averaging scale (Fig. 2; 
see also Räisänen 2001). The figure shows that for 
time horizons of many decades or longer, the domi-
nant sources of uncertainty at regional or larger 
spatial scales are model uncertainty and scenario 
uncertainty. However, for time horizons of a decade 
or two, the dominant sources of uncertainty on 
regional scales are model uncertainty and internal 
variability. In general, the importance of internal 
variability increases at smaller spatial scales and 
shorter time scales.

There has been recent interest in estimating the 
fractional uncertainty (i.e., the prediction uncer-
tainty divided by the expected mean change) in 
predictions of global mean temperature. Cox and 
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Fig. 3. The relative importance of each source of 
uncertainty in decadal mean surface air temperature 
predictions is shown by the fractional uncertainty 
(the 90% confidence level divided by the mean predic-
tion), for the global mean, relative to the warming 
since the year 2000 (i.e., a lead of zero years). The 
dashed lines indicate reductions in internal variabil-
ity, and hence total uncertainty, that may be pos-
sible through proper initialization of the predictions 
through assimilation of ocean observations (Smith 
et al. 2007).

Fig. 2. The relative importance of the three sources of 
uncertainty changes significantly with region, forecast 
lead time, and the amount of any temporal meaning 
applied. Main panel: Total variance for the global-
mean, decadal mean surface air temperature predic-
tions, split into the three sources of uncertainty. Insets: 
As in the main panel, but only for lead times less than 
20 yr for (left) the global mean and (right) a North 
American mean. The orange regions represent the 
internal variability component. For lead times shorter 
than 5 yr we plot the results using annual mean data 
to highlight how the internal variability component is 
vastly reduced when considering decadal mean data. 
The uncertainty in the regional prediction is larger 
than for a global mean.
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Stephenson (2007, hereafter CS07) used a simple 
climate model to estimate the three different con-
tributions to fractional uncertainty. Knutti et al. 
(2008) used data from CMIP3 and from simpler 
climate models in a similar analysis but only quan-
tified the model uncertainty component. Here, we 
have used the CMIP3 data to estimate the fractional 
uncertainty associated with all three contributions 
(Figs. 3, 4a), and extended the analysis to regional 

scales (Fig. 4b), which are of much greater relevance 
for adaptation planning. Our results for global mean 
temperature are consistent with those of Knutti et al. 
(2008). They also show important similarities to the 
findings of CS07, but there are also some crucial 
differences.

Following CS07, Figs. 3 and 4a both show how 
the contributions to fractional uncertainty vary 
as a function of prediction lead time. In Fig. 3 the 

Fig. 4. The relative importance of each source of uncertainty in decadal mean surface temperature projec-
tions is shown by the fractional uncertainty (the 90% confidence level divided by the mean prediction) for (a) 
the global mean, relative to the warming from the 1971–2000 mean, and (b) the British Isles mean, relative to 
the warming from the 1971–2000 mean. The importance of model uncertainty is clearly visible for all policy-
relevant timescales. Internal variability grows in importance for the smaller region. Scenario uncertainty 
only becomes important at multidecadal lead times. The dashed lines in (a) indicate reductions in internal 
variability, and hence total uncertainty, that may be possible through proper initialization of the predictions 
through assimilation of ocean observations (Smith et al. 2007). The fraction of total variance in decadal mean 
surface air temperature predictions explained by the three components of total uncertainty is shown for (c) a 
global mean and (d) a British Isles mean. Green regions represent scenario uncertainty, blue regions represent 
model uncertainty, and orange regions represent the internal variability component. As the size of the region 
is reduced, the relative importance of internal variability increases.
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mean change is computed relative to the present day1 
(hence, it is zero at a lead time of zero); in Fig. 4a the 
warming is computed relative to a 1971–2000 refer-
ence period, assuming a subsequent (up to the year 
2000) warming due to changing radiative forcing of 
0.22 K (the multimodel mean). The major features of 
Fig. 3 are the following: 1) consistent with Fig. 2, the 
dominant contributions to prediction uncertainty 
are model uncertainty and scenario uncertainty; 2) 
the contribution from internal variability falls very 
rapidly with lead time as the signal of climate change 
strengthens, while the amplitude of internal variabil-
ity remains constant; 3) the contribution from model 
uncertainty falls much more slowly with lead time be-
cause the spread between models increases with lead 
time; and 4) the total fractional uncertainty exhibits 
a minimum at a lead time of around 40 yr associated 
with the changing dominance of the contributions 
from model and scenario uncertainty. The major 
difference in Fig. 4a is that this minimum becomes 
less pronounced because the climate change signal 
is larger and the relative contribution from internal 
variability is smaller.

The figure shown by CS07 is most comparable to 
our Fig. 3. An important similarity between our re-
sults and those of CS07 is that in both cases the total 
fractional uncertainty exhibits a minimum at a lead 
time of 30–50 yr; CS07 note that this feature could be 
important for adaptation planning. However, in their 
analysis the location of this feature is determined by 
the decaying contribution of internal variability and 
is not significantly influenced by model uncertainty. 
Indeed, the most important difference between our 
results and theirs is that in ours the fractional contri-
bution from internal variability is much lower. For ex-
ample, at a lead time of 40 yr they show a value around 
0.4, whereas our value is around 0.1. Uncertainties in 
estimating this quantity are discussed in appendix A. 
Further discussion of the comparison between our 
results and those of CS07 and Knutti et al. (2008) is 
provided in appendix B. Because planners are likely 
to be interested in comparisons to the recent past, 
rather than to a single year such as 2000, our view 
is that Fig. 4a provides the most appropriate (i.e., 
relevant to decision making) depiction of the varia-
tion with lead time of the various contributions to 
prediction uncertainty. Consequently, our remaining 
results are presented relative to a reference period of 
1971–2000.

As we have emphasized, predictions of regional 
change are in many cases of greater relevance to 
decision making than predictions of global mean 
temperature. Figure 4b shows the fractional contribu-
tions to uncertainty in predictions of decadal mean 
temperature for the British Isles. As expected, on 
regional scales, the importance of internal variability 
is considerably enhanced. A minimum in the total 
fractional uncertainty is again present, in this case 
at a lead time of around 65 yr. Our results suggest 
that this feature is likely to be a robust property of 
regional temperature predictions, albeit that the lead 
time at which the minimum is found varies between 
regions (see Fig. 5b).

Figure 4 also shows the contributions to prediction 
variance plotted as a fraction of the total prediction 
variance at each lead time, for the global mean 
(Fig. 4c) and British Isles mean (Fig. 4d) decadal mean 
temperature. This representation again highlights 
the dominance of internal variability and model 
uncertainty at lead times up to a few decades, as well 
as the declining importance with increasing lead 
time of internal variability. The fact that scenario 
uncertainty makes a very small contribution for lead 
times less than about 30 yr was first shown by Stott 
and Kettleborough (2002) for predictions of global 
mean temperature. However, it is important to note 
that the same result holds for predictions of regional 
temperature, as illustrated by Fig. 4d. For longer lead 
times, the relative importance of model and scenario 
uncertainty varies between regions (see Fig. 6).

Figure 5a shows the signal-to-noise ratio2 (S/N, 
the reciprocal of the total fractional uncertainty) 
for predictions of decadal mean temperature for the 
global mean and for various regions. All regions show 
a maximum in S/N (corresponding to a minimum in 
the fractional uncertainty) at some lead time, primar-
ily as a consequence of the declining importance of 
internal variability and the increasing importance 
of scenario uncertainty, but the lead time at which 
the maximum is found varies between ~30 and 
~80 yr. The position of this maximum tends to be 
at shorter lead times for larger regions because the 
internal variability component is smaller. For nearly 
all regions and lead times S/N significantly exceeds 
1, indicating that these predictions should have great 
value for planning purposes. The value of S/N for the 
next few decades is particularly high for Africa (as 
has been noted in previous studies; e.g., Stott 2003). 

1	The present day indicates the year 2000 (i.e., the starting year for the IPCC scenarios), and hence the first decade is the mean 
of 2000–09.

2	The ratio is the climate change signal divided by the total uncertainty. The precise definition is given in appendix A.
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For the mid- and high-latitude regions shown, S/N 
is lower and varies less with lead time. As would be 
expected, S/N for the next few decades is generally 
lower for smaller regions because of the increased 
importance of internal variability. Maps of S/N (e.g., 
Fig. 5b) show the highest values in the tropics and 
considerably lower values at mid-to high latitudes [i.e., 
predictions of temperature change have the lowest 
fractional uncertainty in the tropics; this point was 
illustrated in the IPCC Third Assessment Report 
(Houghton et al. 2001)]. To allow users to explore 
the sensitivity of our analyses to choice of region, 
lead time, and temporal filtering, we have created 
an interactive web site (see http://ncas-climate.nerc.
ac.uk/research/uncertainty/).

THE POTENTIAL TO NARROW UNCER-
TAINTY. The potential for climate science to 
deliver reductions in total prediction uncertainty 
is associated entirely with the contributions from 
internal variability and model uncertainty. The con-
tribution from internal variability is not reducible 
far ahead but, as recently reported by Smith et al. 
(2007), proper initialization of climate predictions 
with observational data should enable some reduction 
of this contribution for forecasts of the next decade 
or so (and can also contribute to reducing model 
uncertainty, as discussed later). This potential is 
illustrated by the dashed lines in Figs. 3 and 4a (details 

in appendix A). Such reductions could prove valuable 
to a wide range of decision makers. By contrast, there 
is potential to reduce the model contribution to pre-
diction uncertainty for all lead times. New observa-
tions, advances in theory, improved modeling, and—
importantly—new methods for bringing together 
models and observations (e.g., Stott and Forest 2007; 
Rodwell and Palmer 2007) can be expected to deliver 
significant progress in this area. These possibilities 
will improve as we gather more observations of the 
climate’s response to increasing greenhouse gas con-
centrations (Stott and Kettleborough 2002).

To quantify the potential for reducing uncertainty 
in predictions of regional climate change, we consider 
the fraction of the total uncertainty in predictions 
of decadal mean surface air temperature that is 
attributable to internal variability, model uncertainty, 
and scenario uncertainty (Fig. 6). For predictions 
of the next decade, internal variability accounts for 
40%–60% of the total uncertainty in most regions, 
with higher values in North Africa and northern 
Europe (Fig. 6, top left). Thus, a 20% reduction in 
this component would (if spatially uniform) lead to a 
reduction of typically 8%–12% in the total prediction 
uncertainty, with—apparently—the largest benefit for 
Europe. For predictions of the fourth decade ahead, 
model uncertainty is the dominant contribution over 
almost all of the globe and accounts for more than 
70% of the total variance at high latitudes (Fig. 6, 

Fig. 5. (a) Signal-to-noise ratio for decadal mean surface air temperature predictions for different regions 
as labeled (90% confidence levels). The time of the highest S/N is when climate forecasts give most “added 
value,” and this varies with the region as shown. Smaller regions generally have lower signal-to-noise ratios, but 
Africa does better than a global mean due to its location in the tropics where model uncertainty and internal 
variability are smaller than average. Greenland has a particularly low signal-to-noise ratio due to uncertainty 
in high-latitude climate feedbacks. (b) Maps of S/N indicate which regions have more confident predictions. 
This example shows this ratio for predictions of the fourth decade ahead (90% confidence levels). The tropical 
regions stand out as having high S/N, whereas Atlantic longitudes have reduced S/N values, perhaps due to 
uncertainty in the response of the Atlantic Ocean thermohaline circulation to radiative forcings.
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middle). The variation with latitude reflects the fact 
that model uncertainty has a clear maximum at high 
latitudes (likely to be a consequence of differences in 
the representation of the climate feedbacks that lead 
to high-latitude amplification of the climate change 
signal), whereas the spatial variation of scenario un-
certainty is more complex (not shown, but it can be 
seen on the previously cited web site). A 20% reduc-
tion in model uncertainty would, if spatially uniform, 
lead to a reduction of significantly more than 10% 
in total prediction uncertainty in many regions. 
For predictions of the ninth decade ahead, scenario 

uncertainty, as expected, is the dominant contribu-
tion over much of the globe (Fig. 6, bottom right), 
but at high latitudes it is still model uncertainty that 
accounts for the largest fraction of variance.

A key result from Fig. 6 is that for predictions of 
the next few decades, model uncertainty and internal 
variability are the dominant contributions. An im-
portant question is how robust this finding is likely 
to be for other variables (e.g., changes in precipitation 
or in the statistics of high-impact events). For any 
given variable (and spatial and temporal scale), the 
relative importance of internal variability and model 

Fig. 6. Maps of the sources of uncertainty for decadal mean surface temperature for various lead times give 
information on where any reduction in uncertainty will have the most benefit. The columns show the total 
variance explained by (left) internal variability, (middle) model uncertainty, and (right) scenario uncertainty 
for predictions of the (top) first, (middle) fourth, and (bottom) ninth decade. It should be noted that (i) even 
on regional scales, the uncertainty due to internal variability is only a significant component for lead times up 
to a decade or two, (ii) the largest differences between models occur at high latitudes where climate feedbacks 
are particularly important, and (iii) even by the end of the century, the emissions scenario is less important 
than model uncertainty for the high latitudes but dominates in the tropics.

1100 august 2009|



uncertainty will differ, but we see no obvious reason 
to suppose—at least for predictions of the next few 
decades—that scenario uncertainty should be more 
important than has been found for decadal mean 
temperature.3 Therefore, we argue that it is likely that 
the uncertainty in regional climate predictions for the 
next few decades is dominated by sources (model un-
certainty and internal variability) that are potentially 
reducible through progress in climate science. This 
inference has important implications for managing 
adaptation to a changing climate, which we discuss 
in the final section of this paper.

DISCUSSION. Our analysis and arguments are 
potentially subject to some criticisms, which we now 
discuss. One potential area of criticism concerns 
the methods we have used to quantify and partition 
uncertainty. We acknowledge that the methods we 
have used (detailed in appendix A) are simple and 
rely heavily on the IPCC “ensemble of opportunity.” 
The estimate of internal variability is based entirely 
on data from the climate models, which exhibit a 
large range in this quantity, although the multi-
model mean is in reasonable agreement with an 
observational estimate (see appendix A). The esti-
mate of model uncertainty incorporates only a very 
simple observational constraint and neglects many 
processes, notably carbon cycle feedbacks, that are 
likely to be important at longer lead times (Knutti 
et al. 2008). The IPCC AR4 projections do not appear 
to sample the full range of model uncertainty that is 
consistent with the observed record (Murphy et al. 
2004; Stainforth et al. 2005; Stott and Forest 2007). 
The estimate of scenario uncertainty is based on only 
three IPCC scenarios, and future changes in land 
use, which may be significant on regional scales, are 
neglected (Feddema et al. 2005). Given these limita-
tions, there is no doubt that our estimates could be 
improved. The key point, however, is that although 
the results shown in this paper would change 
quantitatively, we see no reason to expect them to 
change qualitatively. In particular, uncertainty in 
predictions of regional climate change for the next 
few decades will remain dominated by internal vari-
ability and model uncertainty. We accept that for 
longer lead-time predictions, assessments of the rela-
tive importance of model uncertainty and scenario 
uncertainty may change as a result of including new 
processes in climate models (e.g., better representa-

tion of biogeochemical and ice-sheet feedbacks) and 
improved understanding of scenarios.

A second potential criticism addresses our argu-
ments concerning the potential to narrow uncer-
tainty. It might be argued that there are fundamental 
limits that will restrict this potential severely. In the 
case of internal variability, this is undoubtedly the 
case: although initialization of climate predictions 
should permit some reduction of the contribution 
from internal variability to prediction uncertainty at 
short lead times and large spatial scales, at longer lead 
times and smaller spatial scales any such reduction is 
precluded by chaos. In the case of model uncertainty, 
it is well known that the uncertainty in equilibrium 
climate sensitivity has reduced little since the first 
IPCC assessment report in 1990 (Räisänen 2007), 
and Roe and Baker (2007) recently argued that there 
are fundamental reasons why so little progress has 
been made. However, from the practical perspective 
of predicting climate over the next few decades, it is 
transient rather than equilibrium climate change that 
is of the greatest importance, and Allen and Frame 
(2007) have argued that the limits on narrowing 
uncertainty in predictions of transient change may 
be less serious. Furthermore, narrowing uncertainty 
in regional climate predictions is not just about cli-
mate sensitivity. A much wider range of processes is 
relevant, and improving the representation of these 
processes in models is both a major challenge and 
a real opportunity. Therefore, our response to the 
proposition that there may be limits to the potential 
to narrow uncertainty is that such limits may exist, 
but if so there is no evidence that these limits have yet 
been reached. Thus, the potential to narrow uncer-
tainty is real, and the need is urgent. An additional 
point is that acknowledging that progress in climate 
science may sometimes broaden rather than narrow 
uncertainty (e.g., as in understanding of carbon cycle 
feedbacks) is not a reason to avoid focused attention 
on the requirement and opportunities to narrow 
uncertainty. Indeed, this requirement should be a 
major focus of climate science because of its impor-
tance to society.

A final important point to emphasize is that the 
discussion of prediction uncertainty in this study is 
based on the variance of model predictions (“spread”) 
rather than the variance of prediction errors (“skill,” 
i.e., the difference between predictions and observa-
tions). Research in weather forecasting has shown 

3	The one exception is the contribution to scenario uncertainty associated with anthropogenic emissions of aerosol precursors. 
Aerosol forcing is characterized by a short atmospheric lifetime and large spatial variations. Detailed consideration of this 
contribution is beyond the scope of this study.
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that the relationship between spread and skill is rarely 
simple. As yet there has been very little published 
work on the relationship between spread and skill for 
climate predictions, and this is clearly an area that 
requires greater attention.

CONCLUSIONS AND IMPLICATIONS. Using 
data from a suite of climate models, we have carried 
out a quantitative assessment of the contributions to 
uncertainty in predictions of regional temperature 
change. We have estimated the contributions to the 
total prediction uncertainty from internal variability, 
model uncertainty, and scenario uncertainty. For lead 
times of the next few decades, the dominant contribu-
tions are internal variability and model uncertainty. 
It is well known that the importance of internal vari-
ability increases at shorter time and space scales, but 
our analyses suggest that for decadal time scales and 
regional spatial scales (~2,000 km), model uncertainty 
is of greater importance than internal variability.

Another important finding from our analyses is 
that although the total uncertainty increases with 
lead time, the signal-to-noise ratio for predictions of 
decadal mean temperature exceeds 1 for almost all 
regions and lead times and typically shows a maxi-
mum at a lead time of some decades. Knowledge of 
this maximum, which corresponds to a minimum 
in the fractional uncertainty of the prediction, may 
by useful for some planning purposes (as noted by 
CS07). Note, however, that the signal-to-noise ratio 
is likely to be lower for almost any other climate 
variable.

The contributions to prediction uncertainty from 
internal variability and especially from model uncer-
tainty are potentially reducible through progress in 
climate science. As noted earlier, this conclusion has 
important implications for managing adaptation to a 
changing climate. The key point is that greater uncer-
tainty about future climate is likely to be associated 
with more expensive adaptation: for example, for a 
given adaptation (e.g., building a sea wall), greater un-
certainty, particularly at the high end, implies a need 
to include tolerance for more extreme events. Because 
the costs of adaptation are expected to be very large,4 
the clear implication is that reducing uncertainty in 
climate predictions is potentially of enormous eco-
nomic value. Furthermore, this recognition invites a 
comparison between a) the cost of various degrees of 
adaptation, given current levels of uncertainty, and 

b) the cost of new investments in climate science to 
reduce current levels of uncertainty. Clearly there is 
a need for a great deal of further work to assess more 
fully these costs and benefits, both for specific ap-
plications and more generally. In our view, this work 
should be a high priority. In the face of changing 
patterns of risk, quantifying the economic value of 
progress in climate predictions is an urgent issue for 
society and for scientists.

Finally, our work highlights the importance 
of targeting climate science investments on the 
most promising opportunities to reduce prediction 
uncertainty. In this context, we would highlight 
the importance of developing predictions that are 
initialized with observations of the current climate 
state (e.g., Smith et al. 2007; Meehl et al. 2009). 
The importance of this approach has three major 
dimensions. First, as already discussed, it can con-
tribute to reducing the internal variability component 
of prediction uncertainty. Second, by enabling direct 
comparison between a climate prediction and specific 
observations, it provides a powerful new strategy to 
identify model errors and thereby reduce model-
related uncertainty. Third, it is the natural approach 
to address the key issue that was highlighted at the 
end of the discussion: understanding the relationship 
between spread and skill.
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APPENDIX A: DATA AND METHODS. We 
use the global mean, annual mean, surface air tem-
perature predictions for the twentieth and twenty-
first century (Fig. 1), from 15 different global climate 
models under historical forcings and three different 
future Intergovernmental Panel on Climate Change 

4	The Stern Review (Stern 2006) estimated the cost of doing nothing at 5%–10% of global Gross Domestic Product (GDP) by 
2100, and the costs of mitigation at 1% of global GDP by 2050. The costs of adaptation are highly uncertain, but if they are as 
little as 10% of the costs of mitigation, they would still be ~0.1% of global GDP by 2050.
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Special Report Emissions Scenarios (SRES A1B, 
A2, and B1, giving a total of 45 predictions). These 
future scenarios are summarized in the latest IPCC 
report (Solomon et al. 2007). Although some of the 
models have several realizations of these simulations, 
we use just one ensemble member for each model 
to treat all of the models equally. The particular 
models used in the analysis were chosen purely on 
the basis of data availability (i.e., we only included 
the models for which all three scenario simulations 
were available).

The method used for separating the three compo-
nents of uncertainty was as follows:

•	 Each individual prediction was fit, using ordinary 
least squares, with a fourth-order polynomial over 
the years 1950–2099. The raw predictions X for 
each model m, scenario s and year t can be written 
as

	 	 (1)

where the reference temperature is denoted by 
i, the smooth fit is represented by x, and the 
residual (internal variability) is ε. The reference 
temperatures used were the year 2000 (Fig. 3) and 
the mean of the years 1971 to 2000 (for all other 
analyses), both of which were estimated from the 
smooth fits.

•	 We weight the models by their ability to simu-
late the global mean warming from the mean of 
1971–2000, up to the year 2000. Thus, each model 
is given a weight,

	 	 (2)

where xm,2000 is the model global mean warming 
at the year 2000, relative to 1971–2000, and xobs = 
0.25 K is an observational estimate derived from 
fitting a similar polynomial to the observations. 
These weightings can also be expressed as normal-
ized quantities:

	 	
(3)

This scheme thus downweights those models that 
have warmed by too large or too small an amount. 
More complex weighting schemes exist (e.g., 
Giorgi and Mearns 2002), but we choose to keep 
the methodology simple, especially because the 
weighting does not affect the results greatly.

•	 The internal variability for each model was de-
fined as the variance of the residuals from the fits, 
estimated independently of scenario and lead time. 
The multimodel mean of these variances is taken 
to be the internal variability component,

	 	 (4)

where vars,t denotes the variance across scenarios 
and time and V is constant in time. Future changes 
in internal variability are likely (Solomon et al. 
2007), and decision makers also need such infor-
mation. In this study of surface air temperatures, 
we assume these changes are negligible, although 
we note that there is a small downward trend in in-
ternal variability that merits future investigation. 
The individual models have considerable differ-
ences in this quantity for the global mean surface 
air temperature, with a mean √V

—
 ≈ 0.12 K (range 

0.06−0.20 K) for the twenty-first-century predic-
tions and a mean √V

—
 ≈ 0.13 K (range 0.08 to 0.21 K) 

for data from 1950–2007, which includes volcanic 
forcings. Comparison with the historical record is 
difficult because of incomplete observations and 
knowledge of climate forcings in the twentieth 
century, but a similar polynomial fit to the ob-
served global mean surface air temperature record 
provides an interannual estimate of √V


obs ~ 0.10 K 

(using years 1950 to 2007). An estimate of the 
internal variability on decadal time scales is very 
uncertain, but the models (√V


dec ~ 0.05 K) may 

overestimate natural (√V


obs,


dec ~ 0.02 K) decadal fluc-

tuations (also see Solomon et al. 2007). However, 
the observational variance may be underestimated 
by fitting a polynomial to such a short observed 
time series.

•	 The model uncertainty for each scenario is esti-
mated from the weighted variance (varW ) in the 
different model prediction fits. The multiscenario 
mean is taken as an estimate of the model uncer-
tainty component,

	 	 (5)

where Ns is the number of scenarios. When the ref-
erence temperature is the year 2000, this quantity 
is zero for a lead time of zero years.

•	 The scenario uncertainty is simply the variance 
of the weighted multimodel means for the three 
scenarios:

	 	 (6)
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•	 We assume that there are no interactions between 
the three sources of uncertainty (i.e., they can be 
treated independently); thus, the total variance is 
then

	  ,	 (7)

and the mean change of all the predictions,A1 above 
the reference temperature, is

	 	 (8)

•	 The fractional uncertainty (90% confidence level) 
shown in Figs. 3 and 4 is then

	 	 (9)

The signal-to-noise ratio shown in Fig. 5 is the 
inverse of this quantity.

For different temporal means of the predictions (e.g., 
the decadal means generally considered in the text), 
εm,s,t is smoothed before the variance is calculated in 
Eq. (4). This procedure can also be repeated for any 
region of interest. In the maps derived from model 
data in Figs. 5–7 we consider 180 regions of equal area 
(20° in longitude and 10 latitude bands of varying size 
from ~11° to 37°). This methodology could also be 
extended to any climate variable of interest, although 
it is important to note that intermodel agreement is 
smaller and the relative importance of internal vari-
ability is larger for precipitation and sea level pressure 
than for surface temperature (Solomon et al. 2007; 
Räisänen 2007).

The reliability of these uncertainty estimates needs 
to be considered carefully. As further discussed in 
the main text, it is likely that each estimate should be 
considered as a lower limit on the uncertainty. For the 
case of the internal variability we use a subset of the 
models that have more than one ensemble member 
and fit a smooth polynomial to each ensemble 
member in turn. By comparing the derived internal 
variability it is found that for individual models, the 
internal variability estimates have a spread of ~±10% 
for decadal means. Assuming that a large part of this 
spread is random across models, this spread would 
become insignificant when averaged over the 15 
models considered. As a further check, we also ex-
amined the internal variability in the preindustrial 
control simulations of the models considered. It was 
found that the mean internal variability of global 

mean surface air temperature is √V
—

 ≈ 0.12 K—the 
same as that found from the residuals from our 
polynomial fit. These tests give us confidence that 
our estimates are robust.

The potential reductions in the internal variability 
component through initialization of forecasts shown 
with dashed lines in Figs. 3 and 4a are derived from 
Smith et al. (2007). Using the Met Office’s Decadal 
Prediction System (DePreSys), Smith et al. (2007) 
showed that an initialized forecast of decadal mean, 
global mean surface air temperature reduced forecast 
error variance by 50% in the first decade when com-
pared to uninitialized projections. We assume here 
that this reduction in variance shrinks to zero at a 
lead time of 20 yr; it is an illustrative estimate from 
just one model.

Using this methodology, we can also consider 
how the models have performed over the recent 
past. The multimodel mean temperature response 
in the year 2000, relative to the mean of 1971–2000, 
is shown in Fig. A1a, with the spread between 
models shown in Fig. A1b. A similar polynomial 
fit to the observations from 1950 to 2007 allows an 
estimate of the warming at the year 2000 above the 
1971–2000 mean to be made (Figs. 7c,d). Here we 
have used the HadCRUT3v dataset (Brohan et al. 
2006) of sea surface temperatures and surface air 
temperatures and have regridded to a similar scale 
as the models (Fig. 7c) and just used land-based data 
for comparison (Fig. 7d, not regridded). Because 
of the nonuniform nature of the observations, we 
have required an observation in every month in at 
least 80% of the years since 1950, and for the regrid-
ding, observations for at least three subgrid cells. 
The multimodel mean appears to underestimate 
the warming at high northern latitudes, but with 
a large intermodel spread, possibly due to different 
albedo feedbacks. The lack of observations in the 
Arctic makes detecting any statistically significant 
differences between the observations and the models 
difficult (Gillett et al. 2008). The multimodel mean 
is in reasonable agreement with observations over 
tropical regions, but the observations are naturally 
more noisy as they are just a single realization of the 
climate system.

APPENDIX B : COMPARISON WITH 
PREVIOUS STUDIES. Although our emphasis 
is on estimating the dominant sources of uncertainty 
on regional scales, we can compare our results for the 
global mean with previous studies that also estimated 

A1	 Note that it should not be assumed that the ensemble mean is the best prediction, or even an unbiased prediction.
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the fractional uncertainty of global mean, decadal 
mean, surface air temperature predictions.

CS07 used a very simple model of the climate 
system,

	 	 (10)

where F is the radiative forcing, λ is the climate 
sensitivity, T is the temperature response, and Q 
is the ocean heat uptake, to estimate the fractional 
uncertainty. The model uncertainty was derived by 
changing λ (i.e., by exploring parameter uncertainty 

rather than the structural uncertainty we consider), 
and the scenario uncertainty by changing F.

Their fractional uncertainty was estimated relative 
to the year 2000, allowing a direct comparison with 
our Fig. 3. As discussed in the main text, our results 
show some similarities to and some differences from 
their findings. The most important difference con-
cerns the relative importance of internal variability 
and model uncertainty. A further difference between 
our results is that in CS07 the fractional contribution 
from model uncertainty is zero at a lead time of zero 
and initially increases with lead time, whereas our 

Fig. A1. (a) The multimodel mean surface air temperature warming at the year 2000, relative to the mean 
of 1971–2000. The global model average is 0.22 ± 0.09 K (90% confidence level), but the warming is spatially 
nonuniform, with enhanced warming in the Arctic due to climate feedbacks from ice melt. An estimate from 
observations gives a global average warming of around 0.25 K for the same period. (b) The spread (half of the 
5%–95% uncertainty range) in model projections, showing large model differences in the high latitudes, especially 
the Arctic. (c) Estimated observed warming of surface air temperature over land and sea surface temperature 
over the ocean from the HadCRUT3v dataset (Brohan et al. 2006), regridded onto a 15° × 15° grid. (d) Just 
land-based data, without regridding (a 5° × 5° grid). Gray regions indicate insufficient data. The multimodel 
mean is naturally smoother than the observed estimates, which are based on just one realization of the climate 
system, but the models do seem to underestimate the climate feedbacks at high northern latitudes, although 
this is probably not significant given the spread in model projections for the Arctic.
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results show no such increase. In fact, the behavior 
of the fractional model uncertainty as the lead time t 
approaches zero is by no means obvious. It is neces-
sary to consider uninitialized predictions and initial-
ized predictions separately.

In the case of uninitialized predictions relative to 
the year 2000, at t = 0 (i.e., the year 2000) the frac-
tional uncertainty (uncertainty/signal) is formally 
not defined because the signal is zero. If one argues 
that the signal should be computed relative to some 
earlier reference climate period (e.g., 1971–2000), 
then the model uncertainty should also be computed 
relative to the same reference climate. In this case the 
model uncertainty is equivalent to the uncertainty 
in the warming attributable to changes in radiative 
forcing (Hegerl et al. 2007) and is certainly nonzero. 
This is the approach that we took in calculating 
Fig. 4a.

In the case of initialized predictions, both the 
model uncertainty and the signal are zero at t = 0, 
so the fractional uncertainty is again not defined. 
Whether the fractional uncertainty initially increases 
or initially decreases depends on which term, numer-
ator or denominator, grows most rapidly. To assess the 
rate of growth of model uncertainty, one would need 

large initial condition ensembles for a set of models 
all initialized (to within observational uncertainty) 
from the same initial climate state. We are not aware 
of any research on this question, but a multimodel 
intercomparison is planned to provide input to the 
next IPCC report (Meehl et al. 2009). In view of this 
lack of knowledge, where we attempt schematically to 
illustrate the potential impact of initialization (Figs. 3 
and 4a), we have not attempted to show any impact 
on fractional model uncertainty, and we do not show 
results for lead times less than 5 yr.

Knutti et al. (2008) explored different methods to 
estimate the fractional model uncertainty, and their 
results for the CMIP3 models are similar to those pre-
sented here (compare to their Fig. 3). They also find 
that the model uncertainty component decreases with 
lead time, with a fractional uncertainty of around 0.4 
at a lead time of 20 yr, decreasing to around 0.25 at a 
lead time of 100 yr.
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