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Chapter 1

Modeling the spread of a
pandemic

About this project
Here are some useful hints on how to solve this project:

1. Solve the problems in the order they are presented. One problem builds
on the previous one, so they have to be solved in the correct order.

2. Use the version of the ODESolver class found here:
https://sundnes.github.io/solving_odes_in_python/.
There are multiple versions of the ODESolver class found on previous years’
IN1900 pages and in the source code for Langtangen’s book. Since these
versions are almost identical but behave slightly differently, you should
avoid confusion by using the version specified here.

3. Through the course of the project you will implement a number of separate
model components, and then in the end combine these into a fairly complex
model. The final part becomes much easier if each individual component
is working correctly. It is therefore important to follow the instructions
for each class and method very carefully, and to test that each individual
component behaves as expected before moving on to the next step.

4. The total number of points available is 24. The number of points for each
exercise is provided in the headline.

5. The deadline for handing in the project is November 22 at 23.59. The
program files should be uploaded to devilry as usual. Include an example
of how you ran each file ("kjøreeksempel") in the usual way, but it is
not necessary to include plots. If any of your programs do not work
properly, and you are not able to solve the problem, you should still include
a "kjøreeksempel" that includes the error message you got and/or some
comments about what went wrong.
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Problem 1.1. The SEIR model as a function (2 points)
In this exercise we will implement an ODE-based version of the SEIR model
used by the Norwegian Institute of Public Health to describe the spread of
the Covid19 pandemic. The model is described in Chapter 4 of the lecture
notes Solving Ordinary Differential Equations in Python1. The model has six
categories, S,E1, E2, I, Ia, and R, and is referred to as a SEEIIR model in the
lecture notes. However, to simplify the notation and save a bit of typing we will
here refer to it as a SEIR model even though there are two distinct E- and two
distinct I-categories.

a) Copy the entire function SEEIIR_model(u,t) from page 47 of the lecture
notes, or directly from the source code provided with the notes2 Rename the
function to SEIR(u,t), and keep the rest of the function unchanged, with all
model paraemters defined as local variables inside the function. Use the following
values for the variables:
beta =0.5; r_ia =0.1; r_e2=1.25; lmbda_1=0.33; lmbda_2=0.5; p_a=0.4; mu=0.2.
Implement a test function test_SEIR() to verify that the function works cor-
rectly. Inside the test function, you should call the SEIR(u,t) function with
arguments t = 0 and u = [1, 1, 1, 1, 1, 1], and verify that the output is a list with
these values:
[-0.19583333333333333, -0.13416666666666668, -0.302, 0.3, -0.068, 0.4].
Remember to compare the values with a tolerance (for instance tol =1e-10)
since the outputs are floats.

b) Make a function solve_SEIR(T,dt,S_0,E2_0) for solving the system of
differential equations. Choose a solver from the ODESolver class hierarchy. The
equations should be solved from time 0 to T, with time step dt and initial
conditions [S_0, 0, E2_0, 0, 0, 0]. The function should return arrays u,t
containining the time and the solution.

c) Make a function plot_SEIR(u,t) for visualising the components S(t), I(t),
Ia(t), R(t) in the same plot. These are usually the most interesting variables in
epidemiology. Include a legend with labels for each curve.

d) Use the functions from a)-c) to solve the SEIR model for initial values
S_0=5e6, E2_0=100, all other initial values zero, T=100 and dt=1.0 (the time
is given in days). The resulting plot should be similar to the one in Figure 1.1.

Filename: seir_func.py

1https://sundnes.github.io/solving_odes_in_python/
2https://github.com/sundnes/solving_odes_in_python/blob/master/docs/src/chapter4/SEEIIR_fun.py
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Figure 1.1: Solution of the SEIR model. The plot shows the dynamics of the
categories S, I, Ia, and R.

Problem 1.2. Introduce classes in the SEIR model (8 points)
In this exercise we will implement the SEIR model from exercise 1.1 as a class,
and extend the model with functionality to describe disease spread in a particular
geographical region. The classes will be implemented in a module called SEIR.py.
We will create three classes:

• Region, which can represent a geographical region with specific initial
conditions for the categories S,E1, . . . , R.

• The class ProblemSEIR which defines the ODE model for a given region.

• A solver class SolverSEIR to solve the SEIR system of ODEs for a given
region.

Since the classes will later be put together in a more complex model with multiple
regions, it is important that each class is implemented exactly as specified below.

a) Create a class Region which has three methods; a constructor, a method
set_SEIR_values(self, u, t), and a method plot(self) for plotting the
SEIR values.

The signature of the constructor should look like

def __init__(self,name,S_0,E2_0):
...

The argument name is a text string specifying the name of the region, and the
others are the initial conditions for the categories S and E2. All other initial
conditions should be set to zero. The constructor shall store the region name
and all six initial conditions as attributes. You should also add an attribute
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self.population which is the total population of the region at time t0 (i.e.,
the sum of all the initial conditions).

The method set_SEIR_values(self, u, t) should take out the SEIR
values from the argument u and store S,E1, E2, I, Ia,R and t as attributes of
the class.

The method plot(self) should plot S, I, Ia, and R in the same plot. Label
the axes with for instance plt.xlabel(’Time(days’) and plt.ylabel(’Population’)
and set the title of the plot to the name of the region. Specify a label for all the
different categories (an example could be
plt.plot(self.t, self.S, label=’Susceptible’)). Do not include calls
to plt.legend() or plt.show() inside the function. We will later use the
method to plot several subplots, and these methods must therefore be called at
the end. Put the following code as a main block in the bottom of the file: 3

if __name__ == ’__main__’:
nor = Region(’Norway’,S_0=5e6,E2_0=100)

print(nor.name, nor.population)
S_0, E1_0, E2_0 = nor.S_0, nor.E1_0, nor.E2_0
I_0, Ia_0, R_0 = nor.I_0, nor.Ia_0, nor.R_0
print(f’S_0 = {S_0}, E1_0 = {E1_0}, E2_0 = {E2_0}’)
print(f’I_0 = {I_0}, Ia_0 = {Ia_0}, R_0 = {R_0}’)
u = np.zeros((2,6))
u[0,:] = [S_0, E1_0, E2_0, I_0, Ia_0, R_0]
nor.set_SEIR_values(u,0)
print(nor.S, nor.E1, nor.E2, nor.I, nor.Ia, nor.R)

This code creates a Region instance with the same initial conditions as in
Problem 1.1 and prints the attributes of the class. Make sure that this code
works for your class and gives the expected output.

b) Write the class ProblemSEIR, which has five methods; __init__, set_initial_condition,
get_population, solution, and __call__.

The constructor should take in all the model parameters beta, r_ia, r_e2, ...
and a region, which must be an instance of the class Region. The parameter
beta in the SEIR model can be constant or function of time. The implementation
of ProblemSEIR should be such that beta can be given either as a constant or
as a Python function. The constructor should look like this:

def __init__(self, region, beta, r_ia = 0.1, r_e2=1.25,
lmbda_1=0.33, lmbda_2=0.5, p_a=0.4, mu=0.2):

if isinstance(beta, (float, int)): # number?
self.beta = lambda t: beta # wrap as function

elif callable(beta):
self.beta = beta

"""
Put code here for storing the region and the other
parameters as attributes.

3Or use the template file found here:
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h20/ressurser/live_programmering/template_seir.py
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"""
self.set_initial_condition() # method call

The method set_initial_condition(self) shall store a list
self.initial_condition containing the initial values of S(0), E1(0), E2(0),
I(0), Ia(0), and R(0) (in this particular order). The initial values should be
extracted from the class attribute region.

The method get_population(self) should simply return the value of the
population of the region, which is stored in the class attribute region.

The method solution(self, u, t) calls the method set_SEIR_values(u, t)
of the class attribute region. (The purpose of this method is to take a solu-
tion array u and store the individual solution components as attributes in the
attribute region.)

Finally, write a special method __call__(self, u, t) which returns the
right hand side of the ODE system defining the SEIR model, just as the function
in Problem 1.1. Remember that the attribute self.beta is now a function of
time, and it needs to be treated as such inside __call__ method.

Extend the main block from above with the following code lines:

problem = ProblemSEIR(nor,beta=0.5)
problem.set_initial_condition()
print(problem.initial_condition)
print(problem.get_population())
print(problem([1,1,1,1,1,1],0))

Make sure that all of these lines work and give the expected output. The output
from the last line should be the same as the output in the test_SEIR function
in Problem 1.1.

c) Now we will create a class SolverSEIR with two methods; a constructor and
a method named solve. The constructor should take the parameters problem
(which must be an instance of class ProblemSEIR), T (final time) and dt, and
store them as attributes. The constructor should also store an attribute called
total_population, which is obtained by calling the get_population method
of problem.

Write a method solve(self, method) that solves the SEIR system of
ODEs by a method of your choice from the ODESolver. Use the following sketch
for this method:

def solve(self, method=RungeKutta4):
solver = method(self.problem)
solver.set_initial_condition(...)
#calculate the number of time steps from T and dt
t = np.linspace(...)
u, t = solver.solve(t)
# Send the values of S, E1, E2, I, Ia, R, and t
# from the Problem class to the Region class:
self.problem.solution(u, t)

Add the following code to the main block at the bottom of the file:
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solver = SolverSEIR(problem,T=100,dt=1.0)
solver.solve()
nor.plot()
plt.legend()
plt.show()

The resulting plot should look like the one you got in Problem 1.1.

Filename: SEIR.py
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Problem 1.3. The SEIR model across regions (8 points)
The problem class from exercise 1.2 can only model the spread of a disease
within one region. In this exercise we will extend our program with subclasses of
ProblemSEIR and Region that permits people in one region to get infected by
people from another region. The likelihood of transmission of disease between
regions will depend on the distance between the regions.

We introduce subscripts on the categories to specify which region they belong
to, such that Si(t), E1i(t), E2i(t), Iai(t), Ii(t), and Ri(t) are the number of people
in each category in the i-th region at time t. If we examine the model equations
of the SEIR model it is natural that the expressions for E2i(t), Ia(t), Ii(t), Ri(t)
will be unchanged from the SEIR model used above, since the transitions in and
out of these categories are independent of interactions with the other categories
and therefore do not involve interactions with other regions. The transition from
Si to E1i is different, since it involves interactions of people in the Si category
with people in the infected categories E2i, Iai, and Ii. We want to extend the
model from above to also take into account interactions with infected people in
other regions. We make two assumptions:

1. People in category Si will interact with and potentially get infected by
people in E2j , Iaj , for j 6= i, but not by Ij , j 6= i. This assumption is
based on the fact that people in the I category are sick (i.e., they have
symptoms) and are likely to be isolated at home and not interact with
people from other regions. (People in the Si group can still be infected by
people in Ii, i.e., by sick people in the same region.)

2. The level of interaction between people in two regions is a function of the
geographical distance between the regions, with longer distance meaning
less interaction. This assumption was probably quite accurate before the
20th century, when travel was generally slow, but is not very accurate
today. However, it is a reasonable simplification that can easily be replaced
by a more realistic model later.

Based on these assumptions, we can derive the following model for disease spread
between regions. We have

dSi
dt

=− βSiIi
Ni
− riaβSi

M∑
j=1

Iaj
Nj

e−dij

− re2βSi

M∑
j=1

E2j
Nj

e−dij ,

where M is the number of regions, Nj is the total population of region j, and
dij is the distance between the i-th and the j-th region. Note that the distance
from a region to itself, dii, is always zero, which leaves this part of the expression
unchanged from the previous SEIR model. This also means that if we have
a single region (M = 1), the model is identical to the standard SEIR model
presented above. The derivative for the exposed category E1 becomes

dE1i
dt

= −dSi
dt
− λ1E1i.

We will now implement this extended SEIR model as subclasses of the model
classes written in Problem 1.2.
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a) Create a subclass of Region called RegionInteraction. The constructor
should take the same arguments as the Region class, and two additional pa-
rameters lat (latitude) and long (latitude). The constructor should convert
these values from degrees to radians, by multiplying by π

180◦ , and store them as
attributes. Call the superclass’ constructor to store the rest of the parameters
as attributes.4

Create a method distance(self, other) which calculates the distance
between the self region (i) and another region (j). The distance is calculated
as the arc length between the coordinate points of the two regions:

dij = REarth∆σij ,

where the radius of the Earth is REarth = 64 given in units of 105 m and ∆σ is
given by

∆σij = arccos
(

sinφi sinφj + cosφi cosφj cos (|λi − λj |)
)
.

Here, φi, λi are the latitudes and longitudes of the two locations, respectively.
The arccos function is named acos in math and arccos in NumPy. You will use
it with a single number as an argument, so both versions will work. Warning:
Roundoff error may cause problems in the arccos function, since the arguments
may become slightly > 1 when a location is compared with itself, and this makes
the function return a NaN (Not a Number) value. To avoid this problem, add
an if-test inside the distance function to ensure that the argument to arccos is
between 0 and 1. The method should return the distance in units of 105 m.

In a main block at the bottom of the file, add code to test that the distance
function gives the expected output.5 For instance, the code can look as follows:

if __name__ == ’__main__’:
innlandet = RegionInteraction(’Innlandet’,S_0=371385, E2_0=0, \

lat=60.7945,long=11.0680)
oslo = RegionInteraction(’Oslo’,S_0=693494,E2_0=100, \

lat=59.9,long=10.8)
print(oslo.distance(innlandet))

b) Create a subclass ProblemInteraction of class ProblemSEIR. The signa-
ture of the class’ constructor should look as follows:

def __init__(self, region, area_name, beta, r_ia = 0.1, r_e2=1.25,
lmbda_1=0.33, lmbda_2=0.5, p_a=0.4, mu=0.2):
...
#store arguments as attributes

This is almost identical to the constructor of the superclass ProblemSEIR, but the
argument region should in this case be a list of regions, which are all instances
of class RegionInteraction, and area_name is a text string containing the

4For simplicity we represent the location of a region by a single pair of coordinates, which
can be, for instance, the center of the region or the location of its capital or other administrative
center.

5Or use the template file found here:
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h20/ressurser/live_programmering/template_interaction.py
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name of the total region. For instance, the list region argument could be a
list of regions corresponding to counties in Norway, and the area_name would
then be ’Norway’. Save the area name as an attribute, and call the superclass’
constructor to save all the other arguments as attributes.

The method get_population(self) should calculate and return the total
population of all the regions in the list region combined.

The method set_initial_condition(self) must create a (not nested)
list self.initial_condition with the initial values from all the regions. Loop
over all the regions in the list self.region to create the list on the form

[S1(0), E11(0), E21(0), I1(0), Ia1(0), R1(0), S2(0), E12(0), E22(0), ..., RM (0)]
If we have M regions the result should be a one-dimensional (non-nested) list
of length 6M . (You should use the + or += operators to add the lists together,
since using append will create a nested list.)

The special method __call__(self, u, t) should return a list with the
derivatives at time t, in the same order as the list self.initial_condition.
This method specifies the right hand side of the total ODE system, with 6M
ODEs, and is the core of our model for pandemic spread. The input argument
u is a list of length 6M that contains the state variables for all the M regions.
Inside __call__ it is convenient to convert this to a nested list of states for the
individual regions, and then loop over this list to compute the corresponding
derivatives (right hand sides). Finally, we put these derivatives back together as
a non-nested list of length 6M . Below is a sketch of what the implementation
can look like:
def __call__(self, u, t):

n = len(self.region)
# create a nested list:
# SEIR_list[i] = [S_i, E1_i, E2_i, I_i, Ia_i, R_i]:
SEIR_list = [u[i:i+6] for i in range(0, len(u), 6)]
# Create separate lists containing E2 and Ia values:
E2_list = [u[i] for i in range(2, len(u), 6)]
Ia_list = ...
derivative = []
for i in range(n):

S, E1, E2, I, Ia, R = SEIR_list[i]
dS = 0
for j in range(n):

E2_other = E2_list[j]
Ia_other = Ia_list[j]
dS += ...

# calculate dE1, dE2, dI, dIa, dR
# put the values in the end of derivative

return derivative

The method solution should take a list u containing the entire solution,
and split it up into individual SEIR lists that should be sent to all the regions.
One way to do this is to first convert u from a non-nested list to a nested list
containing the individual SEIR-lists, and then to loop over this list and send
each list to the correct region. The example below shows how it can be done.
You do not have to use this code, but the result should be the same.
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def solution(self, u, t):
n = len(t)
n_reg = len(self.region)
self.t = t
self.S = np.zeros(n)
self.E1 = ...
SEIR_list = [u[:, i:i+6] for i in range(0, n_reg*6, 6)]
for part, SEIR in zip(self.region, SEIR_list):

part.set_SEIR_values(SEIR, t)
self.S += ...

The attributes self.S, self.E1, self.E2, self.I, self.Ia, and self.R
should be the total values for all the regions combined, i.e., each SEIR-category
summed over all regions.

Create a new method plot(self). the method should create the same kind
of plot as class Region’s method plot(self), as explained in Problem 1.2. The
method in ProblemInteraction should plot the S, I, Ia, and R values for all
the regions combined (i.e., the sum over all regions), and the title of the plot
should be self.area_name.

Extend the main block at the bottom of the file with code to demonstrate
that the ProblemInteraction class is working correctly. For instance, you can
add the following code. It may be useful to add the code line by line, and and
make sure you get the expected output before adding the next line:

problem = ProblemInteraction([oslo,innlandet],’Norway_east’, beta=0.5)
print(problem.get_population())
problem.set_initial_condition()
print(problem.initial_condition) #non-nested list of length 12
u = problem.initial_condition
print(problem(u,0)) #list of length 12. Check that values make sense

#when lines above work, add this code to solve a test problem:
solver = SolverSEIR(problem,T=100,dt=1.0)
solver.solve()
problem.plot()
plt.legend()
plt.show()

The final plot produced by the code above should show the total number
of people in each category, for the regions oslo and innlandet combined. For
instance, the S category should start from a value of 1064879. If some of the
lines do not work as expected, it may be useful to debug the code by trying an
even simpler problem, where region is a list with only one region (for instance
[oslo])).
Filename: SEIR_interaction.py

10



Problem 1.4. Simulate Covid19 in Norway (6 points)
In this exercise we will use the classes ProblemInteraction, SolverSEIR and
RegionInteraction from Problem 1.3 to simulate scenarios of the Covid19
pandemic in Norway. The code should be written in a separate file covid19.py,
which should import from SEIR_interaction.py.

a) The file fylker.txt, which is found on the course web site6, contains
information about all counties in Norway. Write a function that takes a file name
as input, reads such a file, and returns a list of RegionInteraction instances.
Check that your function works properly by creating additional files containing
only one or two lines from fylker.txt, and verify that you get the expected
result.

b) Create a function for simulating the Covid19 outbreak in Norway. The
function should create a list of regions, create and solve the problem, and then
plot a subplot of the disease dynamics in each region, and one subplot for the
total progress for all regions combined. The function could look something like
this:

def covid19_Norway(beta, filename, num_days, dt):
# read file and create list of RegionInteraction instances
# create problem, an instance of ProblemInteraction
# create the solver, an instance of SolverSEIR
# call the method solve
plt.figure(figsize=(9, 12)) # set figsize
index = 1
# for each part in problem’s attribute region:

plt.subplot(4,3,index)
# Call plot method from current part
index += 1

plt.subplot(4,3, index)
plt.subplots_adjust(hspace = 0.75, wspace=0.5)
# Call plot method from problem
plt.legend()
plt.show()

You can adjust the arguments to plt.figure(figsize=(9, 12)) and
subplots_adjust(...) to make the figure look nice. Call the function using
beta =0.5, num_days =100, dt =1.0, and the fylker.txt input file. Ex-
amine the plot of the total cases to find the approximate peak for the I category.
Estimates from the early phase of the pandemic indicated that about 20% of
the infected cases would need hospital care, and 5% would need a mechanical
ventilator. There are around 700 ventilators in Norwegian hospitals. How does
this number compare to your estimate?

c) Until now we have assumed that β is constant. The β parameter describes
the probability that a contagious person (in E2, I, Ia) meets and infects a
susceptible person. In reality, β depends on numerous factors, including the

6https://www.uio.no/studier/emner/matnat/ifi/IN1900/h20/ressurser/live_programmering/fylker.txt
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Time interval R value
February 15 to March 14 4.0
March 15 to April 20 0.5
April 21 to May 10 0.4
May 11 to June 30 0.8
July 1 to July 31 0.9
August 1 to August 30 1.0
September 1 - 1.1

Table 1.1: Reproduction numbers used by the Norwegian Institute of Public
Health (FHI) to model the spread of the Covid19 pandemic.

infectiousness of the disease itself and the general behaviour of the population.
We will now extend our model to use piecewise constant β.

Epidemiologists often refer to the reproduction number R of an epidemic,
which is the average number of new persons that an infected person infects. The
critical number is R = 1, since if R < 1 the epidemic will decline, while for R > 1
it will grow exponentially. In the simplest models, the relationship between R
and β is R = βτ , where τ is the mean duration of the infectious period. In our
model, which has multiple infectious categories, we have

R = re2β/λ2 + riaβ/µ+ β/µ,

since the mean durations of the E2 period is 1/λ2 and the mean duration of for
I, Ia is 1/µ. The choice of β = 0.5 used above gives R = 4.0, which is the value
used by the Institute of Public Health (FHI) to model the early stage of the
outbreak in Norway, from around February 15 to March 14. Since then, changes
in people’s behavior have led to variations in the reproduction number, and the
models run by FHI have used the numbers given in Table 1.1.

Implement a Python function representing a piecewise constant β correspond-
ing to the values and time intervals above, with time zero on February 15. You
can either precompute each beta value and insert them directly into the function,
or compute a piecewise constant R which is then converted to β. The number of
days between the dates in Table 1.1 can be calculated by hand or you can use the
datetime module. It may be useful to plot β as a function of t, to verify that
you have implemented it correctly, before you try to use it in the model. Solve
the model with the piecewise constant β, from February 15 until today. How do
the numbers compare with the reported number of cases? Try to experiment
with different β values, for instance assuming R = 4.0 after September 1st. What
happens? Since R = 4.0 was the estimated reproduction number in the early
stage of the pandemic, it may be seen as representing the "natural" pandemic
spread, when there are no restrictions on travel and social interactions.

Filename: covid19.py
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