
Modeling the Covid19
pandemic in Norway

Final project in IN1900, fall 2021
November 3, 2021

About this project
Here are some useful hints on how to solve this project. Read this carefully
before you start working:

1. Solve the problems in the order they are presented. One problem builds
on the previous one, so they have to be solved in the correct order.

2. Use the version of the ODESolver class found here:
https://sundnes.github.io/solving_odes_in_python/. There are
multiple versions of the ODESolver class found on previous years’ IN1900
pages and in the source code for Langtangen’s book. Since these versions are
almost identical but behave slightly differently, you should avoid confusion
by using the version specified here.

3. Through the course of the project you will implement a number of separate
model components, and then in the end combine these into a fairly complex
model. The final part becomes much easier if each individual component
is working correctly. It is therefore important to follow the instructions
for each class and method very carefully, and to test that each individual
component behaves as expected before moving on to the next step.

4. To simplify the programming a bit, example codes and templates are
provided for some of the functionality. These code segments are provided
here in the project description, and some of them are also available in
template files which can be downloaded from the course website.1 It is
recommended to download and use these files.

5. Some of the provided example codes have missing lines which you have
to fill in yourself. These places are marked either with ... or with triple-
quoted strings in the code. Regular comments (starting with #) are mostly
explanations of the code that is there, and are not supposed to be replaced
by your own code.

6. The total number of points available is 24. The number of points for each
exercise is provided in the headline.

7. The deadline for handing in the project is November 28 at 23.59. The
program files should be uploaded to devilry as usual. Include an example
of how you ran each file ("kjøreeksempel") in the usual way, but it is
not necessary to include plots. If any of your programs do not work
properly, and you are not able to solve the problem, you should still include
a "kjøreeksempel" that includes the error message you got and/or some
comments about what went wrong.

8. As always, collaboration is encouraged, but everyone needs to write and
submit their own python files.

1See files template_seir.py and template_interaction.py in
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h21/ressurser/live_programmering

1

Modeling the spread of a
pandemic

Problem 1. The SEIR model as a function (2 points)
In this exercise we will implement an ODE-based version of the SEIR model
used by the Norwegian Institute of Public Health to describe the spread of
the Covid19 pandemic. The model is described in Chapter 4 of the lecture
notes Solving Ordinary Differential Equations in Python2. The model has six
categories, S, E1, E2, I, Ia, and R, and is referred to as a SEEIIR model in the
lecture notes. However, to simplify the notation and save a bit of typing we will
here refer to it as a SEIR model even though there are two distinct E- and two
distinct I-categories.

a) Copy the entire function SEEIIR_model(u,t) from page 47 of the lecture
notes, or directly from the source code provided with the notes3. Rename the
function to SEIR(u,t), and keep the rest of the function unchanged, with all
model parameters defined as local variables inside the function. Use the following
values for the variables:
beta=0.4; r_ia =0.1; r_e2=1.25
lmbda_1=0.33; lmbda_2=0.5; p_a=0.4; mu=0.2.
Implement a test function test_SEIR() to verify that the function works cor-
rectly. Inside the test function, you should call the SEIR(u,t) function with
arguments t=0 and u=[1,1,1,1,1,1], and verify that the output is a list with
these values:
[-0.156666666666, -0.1733333333333, -0.302, 0.3, -0.068, 0.4].
Remember to compare the values with a tolerance (for instance tol=1e-10)
since the outputs are floats.

b) Make a function solve_SEIR(T,dt,S_0,E2_0) for solving the system of
differential equations. Choose a solver from the ODESolver class hierarchy. The
equations should be solved from time 0 to T, where T and the time step dt
are given as arguments to the function. The other arguments (S_0,E2_0) are
initial conditions for the S and E2 categories. All other initial conditions are
set to zero, so the complete initial condition for the ODE system should be
[S_0, 0, E2_0, 0, 0, 0]. The function should return arrays u,t containin-
ing the solution and the time.

2https://sundnes.github.io/solving_odes_in_python/
3https://github.com/sundnes/solving_odes_in_python/blob/master/docs/src/chapter4/SEEIIR_fun.py

2

0 20 40 60 80 100 120 140

0

1

2

3

4

5
1e6

S
I
Ia
R

Figure 1: Solution of the SEIR model. The plot shows the dynamics of the
categories S, I, Ia,R.

c) Make a function plot_SEIR(u,t) for visualizing the components S(t), I(t),
Ia(t), and R(t) in the same plot. These are often the most interesting variables
in epidemiology. Include a legend with labels for each curve.

d) Use the functions from a)-c) to solve the SEIR model for initial values
S_0=5e6, E2_0=100, all other initial values zero, T=150 and dt=1.0 (the time
is given in days). The resulting plot should be similar to the one in Figure 1.
Filename: seir_func.py

3

Problem 2. Introduce classes in the SEIR model (8 points)
In this exercise we will implement the SEIR model from Problem 1 as a class, and
extend the model with functionality to describe disease spread in a geographical
region. The classes will be implemented in a module called SEIR.py. We will
create three classes:

• Region, which can represent a geographical region. This class holds the
region-specific initial conditions for the categories S,E1, . . . , R. After we
have solved the SEIR model it will also include the individual solution
components as attributes.

• The class ProblemSEIR which defines the ODE model for a given region.

• A solver class SolverSEIR to solve the SEIR system of ODEs for a given
region.

Since the classes will later be put together in a more complex model with multiple
regions, it is important that each class and method is implemented exactly as
specified below.

a) Create a class Region which has three methods; a constructor (__init__),
a method set_SEIR_values(self, u, t), and a method plot(self) for plot-
ting the SEIR values.

The signature of the constructor should look like

def __init__(self,name,S_0,E2_0):
self.name = name
self.S_0 = S_0
self.E1_0 = 0
...

The argument name is a text string specifying the name of the region, and the
other arguments are the initial conditions for the categories S and E2. All
other initial conditions should be set to zero. The constructor shall store the
region name and all six initial conditions as attributes. You should also add an
attribute self.population which is the total population of the region at time
t0 (i.e., the sum of all the initial conditions).

The method set_SEIR_values(self, u, t) takes two arrays as arguments;
u contains the solution of the SEIR system and t contains the time. The method
should pull out the individual SEIR values from the argument u (using array
slicing) and store S, E1, E2, I, Ia, R and t as attributes of the class.

The method plot(self) should plot S, I, Ia, and R in the same plot.
Label the axes with for instance plt.xlabel(’Time(days’) and
plt.ylabel(’Population’) and set the title of the plot to the name of the
region. Specify a label for all the different categories (an example could be
plt.plot(self.t, self.S, label=’Susceptible’)). Do not include calls
to plt.legend() or plt.show() inside the function. We will later use the
method to plot several subplots, and these methods must therefore be called at
the end.

Put the following code as a main block in the bottom of the file:4

4Or use the template file found here:
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h21/ressurser/live_programmering/template_seir.py

4

if __name__ == ’__main__’:
nor = Region(’Norway’,S_0=5e6,E2_0=100)
print(nor.name, nor.population)
S_0, E1_0, E2_0 = nor.S_0, nor.E1_0, nor.E2_0
I_0, Ia_0, R_0 = nor.I_0, nor.Ia_0, nor.R_0
print(f’S_0 = {S_0}, E1_0 = {E1_0}, E2_0 = {E2_0}’)
print(f’I_0 = {I_0}, Ia_0 = {Ia_0}, R_0 = {R_0}’)

u = np.zeros((2,6)) #a dummy solution array
u[0,:] = [S_0, E1_0, E2_0, I_0, Ia_0, R_0]
nor.set_SEIR_values(u,0)
print(nor.S, nor.E1, nor.E2, nor.I, nor.Ia, nor.R)

This code creates a Region instance with the same initial conditions as in Problem
1 and prints the attributes of the class to verify that they are saved correctly.
Then a dummy solution array u is created and passed to the set_SEIR_values
method to verify that it works. Make sure that this code works for your class
and gives the expected output.

b) Write the class ProblemSEIR, which has five methods; __init__,
set_initial_condition, get_population, split_solution, and __call__.

The constructor should take as arguments all the model parameters beta,
r_ia, r_e2, ... and region, which must be an instance of the class Region.
The parameter beta in the SEIR model can be constant or function of time. The
implementation of ProblemSEIR should be such that beta can be given either
as a constant or as a Python function. The constructor should look like this:

def __init__(self, region, beta, r_ia = 0.1, r_e2=1.25, \
lmbda_1=0.33, lmbda_2=0.5, p_a=0.4, mu=0.2):

if isinstance(beta, (float, int)): # is it a number?
self.beta = lambda t: beta # wrap as function

elif callable(beta):
self.beta = beta

"""
Put code here for storing the other parameters
and the region as attributes.
"""
self.set_initial_condition() # method call

The method set_initial_condition(self) shall create and store a list
self.initial_condition containing the initial values of S,E1, E2, I, Ia, and
R (in this particular order). The initial values should be extracted from the class
attribute region, which has all these initial conditions as its own attributes.

The method get_population(self) should simply return the value of the
population of the region, which is stored in the class attribute region.

The method split_solution(self, u, t) calls the method set_SEIR_values(u, t)
of the class attribute region. The purpose of this method is to take a solution
array u and store the individual solution components as attributes in the at-

5

tribute region. Having a separate method for this may not seem very useful at
this point, but it will be very convenient when we extend the class later.

Finally, write a special method __call__(self, u, t) which returns the
right hand side of the ODE system defining the SEIR model, just as the function
in Problem 1. Remember that the attribute self.beta is now a function of
time, and it needs to be treated as such inside __call__ method. Extend the
main block listed above with the following code lines:

problem = ProblemSEIR(nor,beta=0.4)
problem.set_initial_condition()
print(problem.initial_condition)
print(problem.get_population())
print(problem([1,1,1,1,1,1],0))

Make sure that all of these lines work and give the expected output. The output
from the last line should be the same as the expected value specified in the
test_SEIR function in Problem 1.

c) Now we will create a class SolverSEIR with two methods; a constructor
and a method named solve. The constructor should take the arguments
problem (an instance of class ProblemSEIR), T (the final time) and dt, and
store them as attributes. The constructor should also store an attribute called
total_population, which is obtained by calling the get_population method
of problem.

Write a method solve(self, method) that solves the SEIR system of
ODEs by a method of your choice from the ODESolver. Use the following sketch
for this method:

def solve(self, method=RungeKutta4):
solver = method(self.problem)
solver.set_initial_condition(...)
"""
Insert code here to calculate
the number of time steps from T and dt
"""
t = np.linspace(...)
u, t = solver.solve(t)
#Send S, E1, ..., and t back to the region instance:
self.problem.split_solution(u, t)

Add the following code to the main block at the bottom of the file:

solver = SolverSEIR(problem,T=150,dt=1.0)
solver.solve()
nor.plot()
plt.legend()
plt.show()

The resulting plot should look like the one you got in Problem 1
Filename: SEIR.py

6

Problem 3. The SEIR model across regions (8 points)
The problem class from Problem 2 can only model the spread of a disease
within one region. In this exercise we will extend our program with subclasses of
ProblemSEIR and Region that permits people in one region to get infected by
people from another region. The result will be a complex and interesting ODE
model, which is very similar to the models run by Norwegian Institute of Public
Health (FHI) to predict the spread of the Covid19 pandemic. The likelihood of
transmission of disease between regions will depend on the distance between the
regions. We introduce subscripts on the categories to specify which region they
belong to, such that Si(t), E1i(t), E2i(t), Iai(t), Ii(t), and Ri(t) are the number
of people in each category in the i-th region at time t.

If we examine the model equations of the SEIR model it is natural that
the expressions for E2i(t), Iai(t), Ii(t), Ri(t) will be unchanged from the SEIR
model used above, since the transitions in and out of these categories are
independent of interactions with the other categories and therefore do not
involve interactions with other regions. The transition from Si to E1i is different,
since it involves interactions of people in the Si category with people in the
infected categories E2i, Iai, and Ii. We want to extend the model from above
to also take into account interactions with infected people in other regions. We
make two assumptions:

1. People in category Si will interact with and potentially get infected by
people in E2j , Iaj , for j 6= i, but not by Ij , j 6= i. This assumption is
based on the fact that people in the I category are sick (i.e., they have
symptoms) and are likely to be isolated at home and not interact with
people from other regions. (People in the Si group can still be infected by
people in Ii, i.e., by sick people in the same region.)

2. The level of interaction between people in two regions is a function of the
geographical distance between the regions, with longer distance meaning
less interaction. This assumption was probably quite accurate before the
20th century, when travel was generally slow, but is not very accurate
today. However, it is a reasonable simplification that can easily be replaced
by a more realistic model later.

Based on these assumptions, we can derive the following model for disease spread
between regions. We have

dS

dt
=− βSiIi

Ni
− riaβSi

M∑
j=1

Iaj
Nj

e−kdij

− re2βSi

M∑
j=1

E2j
Nj

e−kdij

where M is the number of regions, Nj is the total population of region j, dij
is the distance between the i-th and the j-th region, and k is a parameter that
scales the effect of the interactions between regions. Note that the distance from
a region to itself, dii, is always zero, which leaves this part of the expression
unchanged from the previous SEIR model. This also means that if we have
a single region (M = 1), the model is identical to the standard SEIR model

7

presented above.5
The derivative for the exposed category E1i becomes

dE1i
dt

= −dSi
dt
− λ1E1i,

with dSi/dt given as above. All other parts of the SEIR model remain unchanged.
We will now implement this extended SEIR model as subclasses of the model

classes written in Problem 2.

a) Create a subclass of Region called RegionInteraction. The construc-
torshould take the same parameters as the Region class, and two additional
parameters lat (latitude) and long (longitude). The constructor should convert
these values from degrees to radians, by multiplying by π

180 , and store them as
attributes. Call the superclass’ constructor to store the rest of the parameters
as attributes.6 Create a method distance(self, other) which calculates the
distance between the self region (i) and the other region (j). The distance is
calculated as the arc length between the coordinate points of the two regions:

dij = REarth∆σij ,

where the radius of the Earth is REarth = 6400 (km) and ∆σij is given by

∆σij = arccos (sinφi sinφj + cosφi cosφj cos(|λi − λj |)) .

Here, φi, φi are the latitudes of the two locations, and λi, λj are the corresponding
longitudes. The arccos function is named acos in math and arccos in NumPy.
You will use it with a single number as the argument, so both versions will work.
Warning: Roundoff error may cause problems in the arccos function, since the
arguments may become slightly > 1 when a location is compared with itself,
and this makes the function return a NaN (Not a Number) value. To avoid this
problem, add an if-test inside the distance function to ensure that the argument
to arccos is between 0 and 1. The method should return the distance in units of
km. In a main block at the bottom of the file, add code to test that the distance
function gives the expected output.7 For instance, the code can look as follows:

if __name__ == ’__main__’:
innlandet = RegionInteraction(’Innlandet’,S_0=371385, \

E2_0=0, lat=60.7945,\
long=11.0680)

oslo = RegionInteraction(’Oslo’,S_0=693494,E2_0=100, \
lat=59.9,long=10.8)

print(oslo.distance(innlandet))

The coordinates specified for innlandet are for Hamar, so the output should
be the approximate distance between Oslo and Hamar.

5This property is extremely useful for debugging, since we can run the model with a single
region and check that the result is the same as in Problem 2.

6For simplicity we represent the location of a region by a single pair of coordinates, which
can be, for instance, the center of the region or the location of its capital or other administrative
center.

7Or use the template file found here:
https://www.uio.no/studier/emner/matnat/ifi/IN1900/h21/ressurser/live_programmering/template_interaction.py

8

b) Create a subclass ProblemInteraction of class ProblemSEIR. The signa-
ture of the class’ constructor should look as follows:

def __init__(self, region, area_name, beta, r_ia = 0.1, \
r_e2=1.25, lmbda_1=0.33, lmbda_2=0.5, p_a=0.4,
mu=0.2, k=0.01):

...
#store arguments as attributes

This is almost identical to the constructor of the superclass ProblemSEIR,
but the argument region should in this case be a list of regions, which are
all instances of class RegionInteraction, area_name is a text string con-
taining the name of the total area, and we have introduced an additional
parameter k which scales the interaction between regions. The region ar-
gument could, for instance, be a list of regions corresponding to counties in
Norway, and the area_name would then be ’Norway’. Save the area name
as an attribute, and call the superclass’ constructor to save all the other ar-
guments as attributes. The method get_population(self) should calculate
and return the total population of all the regions in the list region combined.
The method set_initial_condition(self) must create a (not nested) list
self.initial_condition with the initial values from all the regions. Loop
over all the regions in the list self.region to create the list on the form

[S1(0), E11(0), E21(0), I1(0), Ia1(0), R1(0), S2(0), E12(0), E22(0), ..., RM(0)]

If we have M regions the result should be a one-dimensional (non-nested) list
of length 6M . (You should use the + or += operators to add the lists together,
since using append will create a nested list.)

The special method __call__(self, u, t) should return a list with the
derivatives at time t, in the same order as the list self.initial_condition.
This method specifies the right hand side of the total ODE system, with 6M
ODEs, and is the core of our model for pandemic spread. The input argument
u is a list of length 6M that contains the state variables for all the M regions.
Inside __call__ it is convenient to convert this to a nested list of states for the
individual regions, and then loop over this list to compute the corresponding
derivatives (right hand sides). Finally, we put these derivatives back together as
a non-nested list of length 6M . Below is a sketch of what the implementation
can look like:

def __call__(self, u, t):
n = len(self.region)
create a nested list:
SEIR_list[i] = [S_i, E1_i, E2_i, I_i, Ia_i, R_i]:
SEIR_list = [u[i:i+6] for i in range(0, len(u), 6)]
Create separate lists containing E2 and Ia values:
E2_list = [u[i] for i in range(2, len(u), 6)]
Ia_list = ...
derivative = []
for i in range(n):

S, E1, E2, I, Ia, R = SEIR_list[i]
dS = 0

9

for j in range(n):
E2_other = E2_list[j]
Ia_other = Ia_list[j]
dS += ...
"""
Insert code to calculate dS, dE1, dE2,
dI, dIa, dR and put the values at
the end of the derivative list using +=
"""

return derivative

The method split_solution(u,t) should take as first argument a list u
containing the entire solution. This should be split up into individual SEIR lists,
which are then sent to the individual region instances and stored as attributes
there (using the method set_SEIR_values defined in the Region class). One
way to do this is to first convert u from a non-nested list to a nested list containing
the individual SEIR-lists, and then to loop over this list and send each list to
the correct region. The example below shows how it can be done. You do not
have to use this code, but the result should be the same.

def split_solution(self, u, t):
n = len(t)
n_reg = len(self.region)
self.t = t
self.S = np.zeros(n)
self.E1 = ...
SEIR_list = [u[:, i:i+6] for i in range(0, n_reg*6, 6)]
for part, SEIR in zip(self.region, SEIR_list):

part.set_SEIR_values(SEIR, t)
self.S += ...

The attributes self.S, self.E1, self.E2, self.I, self.Ia, and self.R
should be the total values for all the regions combined, i.e., each SEIR-category
summed over all regions.

Create a new method plot(self). The method should create the same
kind of plot as class Region’s method plot(self), as explained in Problem
2. The method in ProblemInteraction should plot the S, I, Ia, and R values
for all the regions combined (i.e., the sum over all regions), and the title of the
plot should be self.area_name. Extend the main block at the bottom of the
file with code to demonstrate that the ProblemInteraction class is working
correctly. For instance, you can add the following code. It may be useful to add
the code line by line, and and make sure you get the expected output before
adding the next line:

problem = ProblemInteraction([oslo,innlandet],’Norway_east’, \
beta=0.4)

print(problem.get_population())
problem.set_initial_condition()
print(problem.initial_condition) #non-nested list of length 12
u = problem.initial_condition
print(problem(u,0)) #list of length 12. Check that values make sense

10

#when lines above work, add this code to solve a test problem:
solver = SolverSEIR(problem,T=150,dt=1.0)
solver.solve()
problem.plot()
plt.legend()
plt.show()

The final plot produced by the code above should show the total number of people
in each category, for the regions oslo and innlandet combined. For instance, the
S category should start from a value of 1064879. If some of the lines do not work
as expected, it may be useful to debug the code by trying a simpler problem,
where region is a list with only one region (for instance [oslo])).

Filename: SEIR_interaction.py

11

Problem 4. Simulate Covid19 in Norway (6 points) In this exercise we will
use the classes ProblemInteraction, SolverSEIR and RegionInteraction
from Problem 3 to simulate scenarios of the Covid19 pandemic in Norway. The
code should be written in a separate file covid19.py, which should import from
SEIR_interaction.py.

a) The file fylker.txt, which is found on the course web site8, contains infor-
mation about all counties in Norway. Write a function read_regions(filename),
which takes a file name as input, reads such a file, and returns a list of
RegionInteraction instances. Check that your function works properly by
creating additional files containing only one or two lines from fylker.txt, and
verify that you get the expected result.

b) Create a function for simulating the Covid19 outbreak in Norway. The
function should create a list of regions, create and solve the problem, and then
plot a subplot of the disease dynamics in each region, and one subplot for the
total progress for all regions combined. The function could look something like
this:

def covid19_Norway(beta, filename, num_days, dt):
"""
Insert code here to do the following:
1. call the read_regins function from a), to read file
and file and create list of RegionInteraction instances
2. create problem, an instance of ProblemInteraction
3. create the solver, an instance of SolverSEIR
4. call the method solve to solve the seir problem
"""
plt.figure(figsize=(9, 12)) # set figsize
index = 1
"""
insert code to loop over all the regions
and do the following:
"""

plt.subplot(4,3,index)
"""
Call plot method from the current region here
"""
index += 1

plt.subplot(4,3, index)
plt.subplots_adjust(hspace = 0.75, wspace=0.5)
"""
Insert a call to the plot method from
problem (the ProblemInteraction instance)
to plot the solution for all the regions combined
"""
plt.legend()

8https://www.uio.no/studier/emner/matnat/ifi/IN1900/h21/ressurser/live_programmering/fylker.txt

12

plt.show()

You may have to adjust the arguments to plt.figure(figsize=(9, 12)) and
subplots_adjust(...) to make the figure look nice, since the size and distance
between subplots depend on the screen resolution. The point of this function is
to create a figure containing four by three subplots, with eleven plots showing the
evolution in each county, and the last one showing all t the counties combined.

Call the function using beta=0.4, num_days =150, dt =1.0, and the
fylker.txt input file. Examine the plot of the total cases to find the approxi-
mate peak for the I category. Estimates from the early phase of the pandemic
indicated that about 20% of the infected cases would need hospital care, and
5% would need a mechanical ventilator. There are around 700 ventilators in
Norwegian hospitals. How does this number compare to your estimate?s

c) Until now we have assumed that β is constant. The β parameter describes
the probability that a contagious person (in E2, I, Ia) meets and infects a
susceptible person. In reality, β depends on numerous factors, including the
infectiousness of the disease itself and the general behaviour of the population.
We will now extend our model to use piecewise constant β.

Epidemiologists often refer to the reproduction number R of an epidemic,
which is the average number of new persons that an infected person infects. The
critical number is R = 1, since if R < 1 the epidemic will decline, while for R > 1
it will grow exponentially. In the simplest models, the relationship between R
and β is R = βτ , where τ is the mean duration of the infectious period. In our
model, which has multiple infectious categories, we have

R = re2β/λ2 + riaβ/µ+ β/µ,

since the mean durations of the E2 period is 1/λ2 and the mean duration of
both I and Ia is 1/µ. The choice of β = 04 gives R = 3.2, which is the value
used by the Institute of Public Health (FHI) to model the early stage of the
outbreak in Norway, from around February 15 to March 14 2020. Since then,
changes in people’s behavior have led to variations in the reproduction number,
and the models run by FHI have used the numbers given in Table 1.

Implement a Python function representing a piecewise constant β correspond-
ing to the values and time intervals in Table 1, with time zero on February 15
2020. You can either precompute each beta value and insert them directly into
the function, or first compute a piecewise constant R which is then converted
to β. The number of days between the dates in Table 1 can be calculated by
hand or you can use the datetime module. The piecewise constant function can
be implemented using a number of if-tests in the usual way. Since there are 22
distinct values this will be a bit tedious to write. If you want you can implement
the piecewise constant function for the first nine periods, from R0 to R8, and
keep it constant after that.

It may be useful to plot β as a function of t, to verify that you have
implemented it correctly, before you try to use it in the model.9

9Recall that we cannot send an entire array as argument to a piecewise constant function
implemented with if-tests. For plotting the function we therefore need to define an array of
zeros and use a for-loop to fill it with the correct values. In the actual model this will not be
an issue, since we will always pass a single number (t) as argument to the piecewise constant
β function, but plotting the function requires a couple of extra lines.

13

Time interval R value
15.02.2020 to 14.03.2020 (R0) 3.2
15.03.2020 to 19.04.2020 (R1) 0.5
20.04.2020 to 10.05.2020 (R2) 0.7
11.05.2020 to 30.06.2020 (R3) 0.7
01.07.2020 to 31.07.2020 (R4) 1.2
01.08.2020 to 31.08.2020 (R5) 1.0
01.09.2020 to 30.09.2020 (R6) 1.0
01.10.2020 to 25.10.2020 (R7) 1.3
26.10.2020 to 04.11.2020 (R8) 1.3
05.11.2020 to 30.11.2020 (R9) 0.81
01.12.2020 to 03.01.2021 (R10) 1.03
04.01.2021 to 21.01.2021 (R11) 0.6
22.01.2021 to 07.02.2021 (R12) 0.8
08.02.2021 to 01.03.2021 (R13) 1.5
02.02.2021 to 24.03.2021 (R14) 1.04
25.03.2021 to 12.04.2021 (R15) 0.76
13.04.2021 to 05.05.2021 (R16) 0.85
06.05.2021 to 26.05.2021 (R17) 1.0
27.05.2021 to 20.06.2021 (R18) 0.7
21.06.2021 to 11.07.2021 (R19) 1.1
12.07.2021 to 03.08.2021 (R20) 1.0
04.08.2021 to 31.08.2021 (R21) 1.2
01.09.2021 - (R22) 0.78

Table 1: Reproduction numbers used in models of the Covid19 pan-
demic in Norway. Source: National institute of public health
(https://www.fhi.no/publ/2020/koronavirus-ukerapporter).

14

Solve the model with the piecewise constant β, from February 15 2020 until
today. How do the numbers compare with the reported number of cases? Try
to experiment with different β values, for instance setting R = 3.2 after some
period of time. What happens? Since R = 3.2 was the estimated reproduction
number in the early stage of the pandemic, it may be seen as representing the
"natural" pandemic spread, when there are no restrictions on travel and social
interactions.

Filename: covid19.py

15

