
Exercises for IN1900

Cecilie Glittum, Eirill Strand Hauge, Simen Moe,
Ella Wolff Kristensen, Kristian Wold and Joakim Sundnes
November 2, 2020

Preface

This document contains a number of programming exercises made for the course
IN1900. The chapter numbers and titles correspond mainly to the chapters of the
book “Introduction to Scientific Programming in Python” by Joakim Sundnes.
The book is a short and updated version of the more extensive book “A primer
on Scientific Programming with Python” by Hans Petter Langtangen, and this
exercise collection is meant to be a supplement to the exercises in that book.
Most of the exercises are new, some are modified versions of exercises from the
book of Langtangen, and some are pure copies of exercises from that book, but
updated to Python 3. Most of the exercises are motivated by applications in
science and applied mathematics.

The exercise collection was first used in the IN1900 course in 2018, but has
been substantially updated and extended first in 2019 and then in 2020. If you
find typos or have other comments or questions about the exercises, please send
them to Joakim Sundnes: sundnes@simula.no.

1

Chapter 1

Introduction to Python

The first chapter of the book the book “Introduction to Scientific Programming
in Python” does not contain much programming, but is inteded to get people
started by writing and running a very small Python program. The exercises
included here serve the same purpose. The programming itself is trivial, but if
you are new to Python and programming these exercises are very to verify that
you have installed the necessary tools and that they are working correctly.

Problem 1.1. Write a Hello, World! program
Write a Python program that prints the words "Hello, World!" to the screen.
Save the program in a file hello.py and run it from the terminal, or from an
IDE (such as Spyder) if you prefer. Verify that the expected output is printed
in the terminal

Filename: hello.py

Problem 1.2. Check your Python version
Open a terminal window, for instance Terminal on MacOS or Powershell on
Windows. Type the words

python --version

in the terminal. You should then see your Python version printed in the terminal,
most likely Python 3.7.x, where x is some number. Next, simply type

python

in the same terminal window. This will open an interactive Python session. Your
Python version is again displayed first, followed by a special prompt where you
can type Python commands. Try to type a simple mathematical expression such
as 2+2 and press return. The type the line print("Hello")! and press return.
Verify that it works as expected, and look for typos in the line you wrote if you
get an error message. Finally, write quit() or exit() to end the session.

2

Chapter 2

Computing with Formulas

The exercises in this chapter concern with programming of mathematical formu-
lae, and correspond to Chapter 2 in the book by Sundnes and Chapter 1 in the
book by Langtangen.

Problem 2.1. Throw a ball
When throwing a ball in the air, the position of the ball can be calculated using
the acceleration of the ball. When neglecting air resistance, the acceleration will
be the negative of the gravitational constant, −g. The height of the ball relative
to its starting point is

y(t) = v0t−
1
2gt

2,

where v0 is the initial velocity of the ball and t is the time after the throw. The
ball reaches its maximum height at time

tmax = v0

g
.

Write a program computing the maximum height of the ball, that is y(tmax),
when v0 = 8.2m/s and g = 9.81m/s2. Print the result.

Filename: ball.py

Problem 2.2. Growth of a bank deposit Let r be a bank’s interest rate in
percent per year. An initial amount P will then grow to

A = P (1 + r/100)n

after n years. Write a program that computes how much money 1000 euros have
grown to after three years with 5 percent interest rate, and prints the amount in
the terminal.

Filename: interest_rate.py

Problem 2.3. Population growth
The growth of a population can often be described by a logistic function

N(t) = B

1 + Ce−kt ,

where B is the carrying capacity of the species in the environment, i.e., the
maximum size of the population that the environment can sustain indefinitely.

3

The constant k tells us something about how fast the population grows, while C
is given by the initial conditions. Let us consider a bacterial colony where the
carrying capacity is B = 50000, and k = 0.2h−1 (where h is the unit of hours).
The population is 5000 at t = 0. Use the initial condition to determine C and
write a program that finds the number of bacteria in the colony after 24 hours.

Hint: To find C you insert t = 0 in the expression above, and solve the
resulting equation for C. This gives a formula for calculating C as a function of
N and B, and this formula can be used directly in your program.

Filename: population.py

Problem 2.4. Solve the quadratic equation
Given a quadratic equation

ax2 + bx+ c = 0,

the two roots are

x1 = −b+
√
b2 − 4ac

2a , x2 = −b−
√
b2 − 4ac

2a .

Make a program evaluating the roots of

6x2 − 5x+ 1 = 0.

Print out both roots with two decimals.
Filename: find_roots.py

Problem 2.5. Forces in the hydrogen atom
There are two kinds of forces acting between the proton and the electron in the
hydrogen atom; Coulomb force and gravitational force. The Coulomb force can
be expressed as

FC = ke
e2

r2 ,

where ke is Coulomb’s constant, e is the elementary charge, and r is the distance
between the proton and the electron.

The gravitational force can be expressed as

FG = G
mpme

r2 ,

where G is the gravitational constant, mp is the mass of the proton, me is the
mass of the electron, and r is the distance between the particles.

We can use these expressions for FC and FG to illustrate the difference in
strength of these two forces, i.e., the electromagnetic force and gravitational force.
Use the values ke = 9.0·109 Nm2C−2, e = 1.6·10−19 C, G = 6.7·10−11 Nkg−2m2,
mp = 1.7·10−27 kg andme = 9.1·10−31 kg. You can take the distance between the
proton and electron to be approximately the Bohr radius r = a0 = 5.3 · 10−11 m.

Make a program that computes both the Coulomb force and the gravitational
force between the proton and the electron. Write out the forces in scientific
notation with one decimal in units of Newton (N = kgm/s2). Also print the
ratio between the two forces.

Filename: hydrogen.py

4

Problem 2.6. Type in program text
Type the following program in your editor, save it to a file formulas_shapes.py
and run the program. If thes program does not work, check that you have typed
the code correctly.

from math import pi

h = 5.0 # height
b = 2.0 # base
r = 1.5 # radius

area_para = h*b
print(f’The area of the parallelogram is {area_para:.3f}’)
area_square = b**2
print(f’The area of the square is {area_square:g}’)
area_circle = pi*r**2
print(f’The area of the circle is {area_circle:.3f}’)
volume_cone = 1.0/3*pi*r**2*h
print(’The volume of the cone is {volume_cone:.3f}’)

Filename: formulas_shapes.py

5

Chapter 3

Loops and Lists

The exercises of this chapter are about loops and list, and correspond to Chapter
3 in the book by Sundnes and Chapter 2 in the book of Langtangen.
Problem 3.1. Multiply by five
Write a code printing out 5 · 1, 5 · 2, ..., 5 · 10, using either a for or a while loop.

Filename: multiplication.py
Problem 3.2. Multiplication table
Write a new code based on the one from Problem 3.1. This code should print
the whole miltiplication table from 1 · 1 to 10 · 10.

Hint: You may want to consider using one loop inside another.
Filename: mult_table.py

Problem 3.3. Stirling’s approximation
Stirling’s approximation can be written ln(x!) ≈ x ln x − x. This is a good
approximation for large x. Write out a nicely formatted table of integer x values,
the actual value of ln(x!), and Stirling’s approximation to ln(x!).

Filename: stirling.py
Problem 3.4. Errors in summation
The following code is supposed to compute the sum s =

∑M
k=1

1
(2k)2 , forM = 3.

s = 0
M = 3

for i in range(M):
s += 1/2*k**2

print(s)

The program has three errors and therefore does not work. Find the three errors
and write a correct program. Put comments in your program to indicate what
the mistakes were.

There are two basic ways to find errors in a program:
1. Read the program carefully line by line, and think about the consequences

of each statement. Look for inconsistencies in the form of variables being
used before they are defined, and perform the calculations in the statements
by hand to see how variables change their value.

6

2. Run the program and check for errors. In a Python program there may be
errors of two different types. The first is an error that Python itself will
notice, and make the program stop with an error message. The message
will indicate which line the error occurs, and alghough the error messages
may be a little cryptic these errors are usually quite easy to find and
correct. The second type are errors where the program seems to run and
complete normally, but the result is not what we want. These errors are
often harder to find, and a good method to find them is often to add print
statements in the code to write intermediate values of variables to the
screen, and compare these values with hand calculations.

Try the first method first (code inspection) and find as many errors as you can.
Thereafter, try the second method, by for instance adding a print statement
inside the for-loop to print the value of k and s.

Filename: sum_for.py

Problem 3.5. Sum as a while loop Write the (corrected) for loop from the
previous exercise as a a while loop. Check that the two loops compute the same
answer.

Filename: sum_while.py

Problem 3.6. Binomial coefficient
The binomial coefficient is indexed by two integers n and k and is written

(
n
k

)
.

It is given by the formula (
n

k

)
= n!
k!(n− k)! . (3.1)

We can write this out, and get(
n

k

)
=
n−k∏
j=1

k + j

j
. (3.2)

Use Eq. (3.2) and a for loop to find the binomial coefficient for n = 14 and
k = 3. Compute the same value using Eq. (3.1) and check that the results are
correct.

Hint: The
∏

sign is a product sign. Thus
∏n−k
j=1

k+j
j = k+1

1
k+2

2 . . . k+(n−k)
(n−k) .

When checking the result you will need math.factorial.
Filename: binomial.py

Problem 3.7. Table showing population growth
Consider again the bacterial colony from Problem 2.3. We now want to study
how the population grows with time, by calculating the number of individuals
for n+ 1 uniformly spaced t values throughout the interval [0, 48]. Set n = 12
and write a for loop which computes and stores t and N values in two lists t
and N. Thereafter, traverse the two lists with a separate for loop and write out
a nicely formatted table of t and N values.

Filename: population_table.py

Problem 3.8. Nested list

7

a) Compute two lists of t and N values as explained in Problem 3.7. Store the
two lists in a new nested list tN1 such that tN1[0] is the list containing t-values
and tN[1] correspond to the list containing N -values. Write out a table with t
and N values in two columns by looping over the data in the tN1 list. Each t
and N value should be written in the table as integers.

b) Make a nested list tN2 where tN2[i] contains the i-th element of both the
t-list and the N -list. Loop over the tN2 list and write out the t and N values in
the table as integers. The ouput should look exactly as in exercise a), although
the underlying structure of the lists is different.

Filename: population_table2.py

Problem 3.9. Calculate Cesaro mean
Let (an)∞n=1 be a sequence of numbers, sk =

∑k
n=0 an = a0 + . . . ,+ak, and

SN = 1
N − 1

N−1∑
k=0

sk.

Let (an)∞n=1 be the sequence with an = (−1)n. Calculate SN for
N = 1, 2, 3, 4, 5, 10, 50 and print the results in a table.

Filename: cesaro_mean.py

Problem 3.10. Catalan numbers
A number on the form

Cn = 1
n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n!

is called a Catalan number. Compute and print the first 10 Catalan numbers.
Filename: catalan.py

Problem 3.11. Molar Mass of Alkanes
Alkanes are saturated hydrocarbons with the chemical formula CnH2n+2. If
there are n Carbon atoms in the alkane, there will be m = 2n + 2 Hydrogen
atoms. The molar mass of the hydrocarbon is MCnHm = nMC +mMH, where
MC is the molar mass of Carbon and MH is the molar mass of Hydrogen.

Use a for-loop or a while-loop to compute and print out the molar mass
of the alkanes with two through nine Carbon atoms (n ∈ [2, 9]). The output
should specify the chemical formula of the alkane as well as the molar mass. An
example on how the formatted output should look like for n = 2 is given below.

M(C2H6) = 30.069 g/mol

You can set the molar masses of the atoms to be MC = 12.011 g/mol and
MH = 1.0079 g/mol

Hint: An output of a chemical formula like the one above can be constructed
using a formatted string (f-string). If we have n=2 and m=2*n+2, the first part
of the output above is given by the f-string :d:df’M(CnH6 =...’.

Filename: alkane.py

Problem 3.12. Simulate a program by hand
Consider the following program for computing with interest rates:

8

initial_amount = 100
r = 5.5 # interest rate
amount = initial_amount
years = 0
while amount <= 1.5*initial_amount:

amount = amount + r/100*amount
years = years + 1

print(years)

a) Use a calculator or an interactive Python shell and work through the program
calculations by hand. Write down the value of amount and years in each pass
of the loop.

b) Change the program to make use of the operator += wherever possible.

c) Explain with words what type of mathematical problem that is solved by
this program.

Filename: interest_rate_loop.py

Problem 3.13. Matrix elements

This exercise involves no programming.
The answers should be written in a text file called matrix.txt

Consider a two dimensional 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

In Python, the matrix A can be represented as a nested list A, either as a
list of rows or a list of columns. Find the indices i, j of the Python list A such
that A[i][j] = a11 and the indices k, l such that A[k][l] = a32 for the two
following cases:

a) When A is represented as a list of rows. This means that A contains three
lists, where each list corresponds to a row in A.

b) When A is represented as a list of columns. This means that each element
in A contains a list with the elements of a column in A.

Filename: matrix.txt

9

Chapter 4

Functions and Branching

The main topics of this chapter are functions and branching (if-tests), corre-
sponding to Chapter 4 in the book by Sundnes and Chapter 3 in the book of
Langtangen.

Problem 4.1. Implement a function for population growth
Consider again the function

N(t, k, B,C) = B

1 + Ce−kt .

Implement N as a python function population(t, k, B, C) that returns the
number of individuals in a population after a time t.

Use a for loop to write out a nicely formatted table of t and N values for
the time interval t ∈ [0, 48] using the parameter values from Problem 3.7.

Filename: pop_func.py

Problem 4.2. Sum of integers
We consider the sum

∑n
i=1 i = 1 + 2 + · · ·+ n of positive integers up to n. It

can be shown that the sum is equal to n(n+1)
2 .

a) Write a function sumint(n) that returns the sum of all positive integers
up to n.

b) Write a function implementing n(n+1)
2 .

c) Write test functions for both a) and b) testing for specific known values.
Filename: sumint.py

Problem 4.3. Implement the factorial

a) The factorial can be implemented by a so called recursive function call. Use
a recursive function call to implement a function myfactorial(n) that returns
n!.

10

b) Write a test function where you call the myfactorial function and check
the value of the returned object for one value of n using math.factorial.

Filename: factorial.py

Problem 4.4. Compute the area of an arbitrary triangle An arbitrary tri-
angle can be described by the coordinates of its three vertices: (x1, y1), (x2, y2), (x3, y3),
numbered in a counterclockwise direction. The area of the triangle is given by
the formula

A = 1
2 |x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1|

Write a function triangle_area(vertices) that returns the area of a triangle
whose vertices are specified by the argument vertices, which is a nested list
of the vertex coordinates. Copy and paste the following test function into your
code, and call the test function to verify that your triangle_area function
works:

def test_triangle_area():
"""
Verify the area of a triangle with vertices
(0,0), (1,0), and (0,2).
"""
v1 = [0,0]; v2 = [1,0]; v3 = [0,2]
vertices = [v1, v2, v3]
expected = 1
computed = triangle_area(vertices)
tol = 1E-14
success = abs(expected - computed) < tol
msg = f"computed area={computed} != {expected}(expected)"
assert success, msg

Filename: triangle_area.py

Problem 4.5. Half-wave rectifier
In a half-wave rectifier the positive part of a signal passes, while the negative
part is blocked. Thus, for a signal passing through a half-wave rectifier, the
negative values are set to zero. A sine signal that has passed through a half-wave
rectifier will look as follows:

f(x) =
{

sin x if sin x > 0
0 if sin x ≤ 0.

Implement f(x) as a Python function f(x) and make a test function for testing
the implementation of f(x). The test function should test for at least two values
of x, one that gives sin x < 0 and one where sin x > 0.

Filename: half_wave.py

Problem 4.6. Primality checker
Recall that a prime number is a number greater than 1 that has exactly 2 divisors.
Said differently, a number greater than one is a prime if it is divisible by only
itself and one. A number that is not prime is called composite. Every number n
can be written as a unique product of primes (e.g. 12 = 2 · 2 · 3), this is called
the prime factorization of n.

11

a) Make a function that takes a number n, and returns true if it’s prime, and
false if it’s not. Use the program to find all prime numbers up to 100.

Hint: You will only need to check divisibility for numbers up to and including√
(n), because any greater divisor will imply that there is a divisor less than this.

b) Make a function that instead finds the prime factorization of the input
number. It should print “prime” and return nothing if the number is prime,
and both print and return the factorization if it’s composite. Find the prime
factorization of 5525612.

c) Make test functions for the two functions above where you check for small
values of n.

d) Compare the runtime of the two functions with the number 33425626272.
Is the difference big? If so, why do you think one is faster than the other? The
following code returns the mean time it takes for your program to run once:

import timeit
timeit.timeit(’your_func(args)’, \

’from __main__ import your_func’,number=1)

Filename: prime.py

Problem 4.7. Eulers totient function
Two numbers n andm are called relatively prime if they have no common divisors
except for 1. That is, no number greater than one should divide both numbers
with no residue.

a) Make a function that takes two numbers and returns true if they’re relatively
prime and false if they’re not.

b) Euler’s totient function is defined as

φ(d) = #{Numbers less than d which are relatively prime to d}.

Implement Eulers totient function and print φ(d) for d = 10, 50, 100, 200.

c) Make a test function for both a) and b).
Filename: euler.py

Problem 4.8. Simple Statistical Functions
In this problem you will implement two statistical functions and test them by
comparing the results with statistical functions from the numpy module. We will
trust that the functions from the numpy module are correct, and will use them
as benchmark values in the test functions. When you import the numpy module
you should follow the convention of renaming it np, as shown below.

import numpy as np

12

a) The mean of a set of numbers x1, x2, x3, ..., xN is defined as

x = 1
N

N∑
i=1

xi,

where N is the size of the set. Implement a function mean(x_list) that returns
the mean value of a list of numbers.

b) Make a test function test_mean() that tests the function from a). Compare
the returned value with the result from numpy.mean. (Such that
expected =np.mean(x_test_values)).

c) The standard deviation of a set of numbers x1, x2, x3, ..., xN is defined as

sN =

√√√√ 1
N

N∑
i=1

(xi − x)2
.

Implement a function standard_deviation(x_list) which returns the stan-
dard deviation of a list of numbers. The mean value of the list will be nec-
essary to calculate the relative deviation. Obtain the mean value inside the
standard_deviation function by calling the function you made in a).

d) Make a test function test_standard_deviation() that tests the function
from c). Compare the returned value with the result from numpy.std. (Such
that expected =np.std(x_test_values)).

You may use the list below as an example for your test functions.

x_test_values = [0.699, 0.703, 0.698, 0.688, 0.701]

Filename: statistics.py

Problem 4.9. Münchhausen Numbers
A Münchhausen number is a number such that the sum of every digit to the
power of itself equals the original number. E.g. 11 = 1 is a Münchhausen number,
and 55 + 33 + 22 = 3156 6= 532, so 532 is not.

Make a function that checks if a number is Münchhausen. Find a Münch-
hausen number different from one.

Hint: There is only one such number different from 1 and also under one
million

Filename: m_numbers.py

13

Chapter 5

User Input and Error
Handling

The exercises of this chapter are about user input and error handling. They
correspond to Chapter 5 in the book by Sundnes and Chapter 4 in the book of
Langtangen.
Problem 5.1. Quadratic with user input
Consider the usual formula for computing solutions to the quadratic equation
ax2 + bx+ c = 0 given by

x± = −b±
√
b2 − 4ac

2a .

Write a program that asks the user to input values for a, b, and c, using input
(or raw_input if you are using Python 2). Compute the corresponding solutions
and print them.

Filename: quadratic_roots_input.py
Problem 5.2. Quadratic with command line
Modify the program from 5.1 such that a, b and c are read from the command
line.

Filename: quadratic_roots_cml.py
Problem 5.3. Quadratic with exceptions
Extend the program from 5.2 with exception handling such that missing command
line arguments are detected. In the except IndexError block, instead of exiting
the program you should use input to ask the user for the missing input data.

Filename: quadratic_roots_error.py
Problem 5.4. Quadratic with raising Error Consider the program from
Problem 5.1. Not all inputs yield real solutions. Modify the program such that
it raises a ValueError if the input values for a, b and c yield complex roots.
(That is if b2 − 4ac < 0). Provide a suitable error message. Run your program
with different values of the coefficients to verify that it prints out real roots and
that a ValueError is raised when the roots are complex. An example of values
that provide complex roots could be a = 1, b = 1, c = 1, while a = 1, b = 0,
c = −1 will give real roots.

Filename: quadratic_roots_error2.py

14

Problem 5.5. Estimating harmonic series
Let f(x) be the function

f(x) =
∞∑
n=1

xn

n
= x+ x2

2 + x3

3 + . . .

Write a program that approximates f(x) (that is, evaluates fN (x) =
∑N
n=1

xn

n)
with values of x and N given as command line arguments. Run the program for
x = 0.9, x = 1, and N = 10000. Print the results.
Remark. For x = 1 this is known as the harmonic series. Despite the low values
for large N , the series does not converge, but diverges very slowly. Try to run
the program for different values of N to see how big you can get the value of
f(1).

Filename: harmonic.py

Problem 5.6. Estimating harmonic series extended
Using the program from Problem 5.5, consider the following values for x and N
in a text file

x: 0.9 1
N: 500 1000 10 100 50000 10000 5000

a) Write a function to read a file containing information in the above format
that returns two lists containing the values of x and N .

b) Write a test function for a) that generates a file in the given format and
checks that the values returned by the function is correct.

c) Use the program from Problem 5.5 to evaluate fN (x) for the different values
of x and N . Create a function that writes the information to a file in a table
format with the first column containing the values of N in increasing order, and
the second and third the values of fN (x) at 0.9 and 1 respectively.

Filename: harmonic_table.py

Problem 5.7. Read isotope file
Isotopes of a chemical element in its ground state have the same number of
protons but differ in the number of neutrons. The weight of isotopes of the same
chemical element will therefore be different.

The molar mass, M , of a chemical element, can be calculated by summing
over all its isotopes M =

∑
imiwi, where mi is the weight of the i-th isotope

and wi the corresponding natural abundance.
The file Oxygen.txt, which is given below, contains the information on

Oxygen’s isotopes (16O, 17O and 18O).

Isotope weight [g/mol] Natural abundance
(16)O 15.99491 0.99759
(17)O 16.99913 0.00037
(18)O 17.99916 0.00204

15

Write a script in Python to read the file Oxygen.txt and extract the weights
and the natural abundance of all the isotopes of Oxygen. Use these to calculate
the molar mass of Oxygen. Print out the result with four decimals and provide
the correct units.

Filename: read_file_isotopes.py

Problem 5.8. A result on prime numbers
A famous result concerning prime numbers states that the number of primes
below a natural number n, denoted π(n), is approximately given by

π(n) ≈ n

log(n) .

That is, the fraction p(n) = π(n)/ n
log(n) tends to 1 as n → ∞. The following

table contains the exact values of π(n) for some values of n.

n: 10**20 10**4 10**2 10**1 10**12 10**4 10**6 10**15
pi(n): 2220819602560918840 1229 25 4 37607912018 168

78498 29844570422669

a) Write a function that reads the file given above and returns two tuples
containing sorted values of n and π(n). It is important that the correspondence
in the orderings are correct, that is, the same as in the table above.

b) Write a test function that generates a file with the format above and tests
that the returned values are correct. It should test that the order of the elements
are in correspondence as in the file.

Hint: The == operator on tuples will take the order into account. The same
operator on lists will not.

c) Create a function that writes the values of n and p(n) to a file in a table
format in increasing order with the values of n in the first column and the
corresponding values of p(n) in the second column.

Bonus problem There are better approximations to π(n), for example the
function

Li(n) =
∫ n

2

1
log(t)dt

Approximate the integral for different values of n and modify the program to
write these into a third column.

Hint: Implement an algorithm for approximating the integral (e.g. the
trapezoidal rule) and compute the difference as before.

Filename: primes.py

16

Problem 5.9. Conversion from other bases
Recall that a binary number is a sequence of zeros and ones which converted to
the decimal system becomes

∑
i 2i where i is a term in the sequence containing

a 1 (e.g. 100101 = 25 + 22 + 20 = 37).

a) Write a function that takes a binary number and converts it to a decimal
number. If the argument is not a binary number, a message should be printed
and nothing returned.

Hint: Let the number in the argument be of type string to avoid problems
with numbers starting with a zero.

b) Let the binary number from a) be taken as a command line argument.
Use exceptions (IndexError) to handle missing input. Print the conversion of
100111101.

c) Extend the program with a function to also handle numbers written in base
3.

Hint: An example of a ternary number(a number in base 3) converted to a
decimal number: 1201 = 1 · 33 + 2 · 32 + 0 · 31 + 1 · 30.

Filename: base_conversion.py

Problem 5.10. Read temperatures from two files
We consider data sets from the Norwegian Meteorological Institute, containing
daily temperatures of any month of any year at Blindern (Oslo). There is one
file for each month, and each file typically looks like this:

Year: 1997. Month: April. Location: Blindern(Oslo)
9.0 12.3 15.8 13.4 11.0 16.2 13.3
12.9 14.0 14.1 12.0 17.3 15.5 15.4
...

The observations are given chronologically, and the temperatures are given in
degrees Celsius. There are no empty lines in the bottom of the file. Two example
files, temp_oct_1945.txt and temp_oct_2014.txt, can be downloaded from
the course website. The files contain daily temperature observations from October
1945 and October 2014, respectively.

a) Write a function extract_data(filename) that reads any such file and
returns a list of the temperatures from the given month. Write a program that
uses the function to read the two given files and store the temperatures in lists
oct_1945 and oct_2014. Calculate the average, maximum and minimum value
of the temperatures of both months, and print the results. You may use the
numpy.mean(), numpy.max() and numpy.min() methods to do the calculations.

b) Write a function write_formatting(filename, list1, list2), which
writes the data in list1 and list2 as two nicely formatted columns to a file
with name filename. You can assume that the two lists have equal length.
Finally, call the function such that the file temp_formatted.txt is created,
using the lists oct_1945 and oct_2014.
Filenames: temp_read_write.py, temp_formatted.txt

17

https://www.uio.no/studier/emner/matnat/ifi/IN1900/h20/ressurser/live_programmering

Problem 5.11. Why we test for specific exception types
The simplest way of writing a try-except block is to test for any exception.
For example, consider the simplel program

import sys

try:
C = float(sys.arg[1])

except:
print("Please provide C as a command-line argument")
sys.exit(1)

print(f"Successfully read the number {C} from the command-line")

Write or copy these statements into a program file and run it from the
terminal. Try to run the program without providing a command-line argument,
by providing a number, and by providing some random text. What is the
problem? The fact that a user can forget to supply a command-line argument
when running the program was the original reason for using a try block. Find
out what kind of exception that is relevant for this error and test for this specific
exception and test the program again. What is the problem now? Correct the
program.

Filename: unnamed_exception.py

18

Chapter 6

Array Computing and
Curve Plotting

The topics of this chapter are array-computing and plotting. The exercises
correspond to Chapter 6 in the book by Sundnes and Chapter 5 in the book of
Langtangen.

Problem 6.1. Fill arrays; loop version
We study the function

f(x) = ln(x).

We want to fill two arrays x and y with the values of x and f(x), respectively.
Use 101 uniformly spaced x values in the interval [1, 10]. First create arrays x
and y with the correct length, containing all zeros. Then compute and fill in
each element in x and y with a for loop.

Filename: fill_log_arrays_loop.py

Problem 6.2. Fill arrays; vectorized version
Vectorize the code in Problem 6.1 by creating the x values using the linspace
function from the numpy package and evaluating f(x) with an array argument.
Since the calculation should be vectorized, you should not use any form of loop
in the code.

Filename: fill_log_arrays_vectorized.py

Problem 6.3. Plot the population growth
Again, we’re considering a population undergoing logistic growth. The number
of individuals in the population is given by

N(t, k, B,C) = B

1 + Ce−kt .

Plot this function for t ∈ [0, 48] with a carrying capacity B = 50000, C = 9 from
the initial condition that we have 5000 individuals at t = 0 and a steepeness of
k = 0.2.

Filename: population_plot.py

Problem 6.4. Oscillating spring

19

A rock of mass m is hung from a spring, and pulled down a length A. When
released, the rock will oscillate up and down with a vertical position given by

y(t) = Ae−γt cos
(√

k

m
t

)
,

Here, y is the vertical position of the rock, k is the spring constant, and γ is
a friction coefficient representing air resistance. Set k = 4 kg s−2 and γ = 0.15
s−1, m = 9 kg, and A = −0.3 m.

a) Create arrays t_array and y_array of size 101, both initially filled with
zeros. Use a for loop to fill them with time values in the range from 0 to 25
seconds, and the corresponding y(t) values.

b) Vectorize your program by using the NumPy’s linspace function to gen-
erate the t_array, and send it into a function y(t) to generate the y_array.
Your program should now be free of for loops.

c) Plot the position of the rock against time in the given time interval. Use
the arrays from both exercise a) and b), and confirm that they give the same
result. Put the correct units on both axes.

Filename: oscillating_spring.py

Problem 6.5. Plot Stirling’s approximation
Stirling’s approximation is

ln(x!) ≈ x ln x− x.

a) Make two functions stirling(x) and exact(x), returning Stirling’s ap-
proximation and the exact value of ln(x!), respectively. Plot both the approxi-
mation and the exact curve in the same figure.

Hint: To implement a vectorized version of the exact function, you can use
scipy.special.gamma(x). This function is a “generalized factorial” which can find
the “factorial” of float numbers. It works such that n! = gamma(n + 1). You
can also just consider integer values and plot the value of ln(x!) for each integer
x in the interval you’re considering. Keep in mind that math.factorial is not
vectorized.

b) Use a while loop and find the minimal value of x for the relative error to
be less than 0.1%.

Hint: Relative error is given as (a− ã)/a, where a is the exact value and ã
is the approximation. Also, do not start with x smaller than or equal to 1, why?

Filename: stirling_plot.py

Problem 6.6. Plotting roots of a complex number
The n’th roots of a complex number z = reiθ can be found by

ωk = n√
z = n√

rei θ+2πk
n ,

20

for k = 0, 1, ..., n− 1. The roots can be rewritten to separate the real component
xk and the imaginary component yk, such that ωk = xk + iyk. Through the
relation between the exponential function and the sine functions we get

xk = r
1
n cos θ + 2πk

n

and
yk = r

1
n sin θ + 2πk

n
,

for k = 0, 1, ..., n− 1.

a) Write a function that takes the angle θ, the radius r and the degree n of
the roots as parameters. The function should calculate and return all of the n’th
roots of a complex number reiθ, as two lists or arrays corresponding to the real
part x = x0, x1, ..., xn−1 and the complex part y = y0, y1, ..., yn−1 of the roots.
An example of a function call on the function you will write is given below.

x, y = roots(r, theta, n)

b) Consider the complex number z = 10−4ei2π. Use the function from a) to
get all the roots of order n = 6, n = 12 and n = 24. Plot the roots as points,
and plot all the three orders of roots in the same plot. Label the different orders
of roots. And example of code for plotting the roots of order n = 6 is given
below.

plt.plot(x_n_6, y_n_6, "o", label="n = 6")

Filename: roots.py

Problem 6.7. Fermi-Dirac distribution
The Fermi-Dirac distribution says something about the probability of an energy
state being occupied by a particle, or more precisely a fermion, e.g. an electron.
It is a function of energy and temperature given by

f(E, T) = 1
1 + e(E−µ)/kT , (6.1)

where E is energy, T is temperature, k is Boltzmann’s constant and µ is the
so-called chemical potential. Use k = 8.6 · 10−5eVK−1 and µ = 4.74eV and
make a program that visualizes the Fermi-Dirac distribution on the interval
E ∈ [0, 10]eV when T = 0.1K. (eV is a unit of energy, 1eV = 1.6 · 10−19J.)

Filename: Fermi_Dirac.py

Problem 6.8. Animate the temperature dependence of the Fermi-
Dirac distribution
Make an animation of the Fermi-Dirac distribution f(E, T) from Problem 6.7
We’re interested in studying how the distribution changes when we raise the
temperature. Plot f as a function of E on [0, 10] for a set of temperatures
T ∈ [0.1, 3 · 104]. Also make an animated GIF file. Remember to label your axes
and include a legend to show the value of the temperature.

Hint: A suitable resolution can be 1000 intervals (1001 points) along the E
axis, 60 intervals (61 points) in temperature, and 6 frames per second in the

21

animated GIF file. Use the recipe in Section 5.3.4 and remember to remove the
family of old plot files in the beginning of the program.

Filename: Fermi_Dirac_movie.py

Problem 6.9. Bump functions
Consider the function

f(x) =
{
ke
− 1

1−x2 −1 < x < 1
0 otherwise.

a) Plot the function with k = 1 on the interval −2 ≤ x ≤ 2 by implementing a
vectorized version in your program.

b) Animate the function on the same interval as above when k decreases from
1 to 0.

Filename: bump.py

Problem 6.10. Band structure of solids
Electrons in solids are waves. These waves have different wave lengths λ. Often,
waves are characterised by their wave number k = 2π/λ, and the wave number
is associated with the energy of the electron. The energies of electrons in solids
have a band structure, i.e., there are different bands of energies separated by a
band gap.

The file bands.txt contains k-values and corresponding energies for the
three first bands of a solid. Have your program read the values for k and the
energies and plot the energy bands as functions of k in the same figure. You will
see that some energies can never be obtained by electrons in the solids. These
areas of non-allowed energies are called the band gaps.

Filename: band_structure.py

Problem 6.11. Half-wave rectifier vectorized
In Problem 4.5, we implemented a function illustrating a sine signal after it had
passed through a half-wave rectifier. Vectorize this function and plot f(x) for
x ∈ [0, 10π].

Hint: The numpy.where(condition, x1, x2) function returns an array
of the same length as condition, whose element number i equals x1[i] if
condition is True, and x2[i] otherwise.

Filename: half_wave_vec.py

Problem 6.12. Singularity plot
In this problem we consider the function

f(r, θ) =
(
e

1
r cos θ cos

(
−1
r

sin θ
)
,−e 1

r sin
(
−1
r

sin θ
))

with 0.01 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Create arrays of r and θ values on the unit
circle centered at the origin with n uniformly spaced values. Fix axes between
-0.5 and 0.5 for x and y and visualize the function for n = 10, 50, 100, 500. You
can use the following to generate the correct values for r and θ:

theta = np.linspace(0,2*np.pi,100)
r = np.linspace(0.01,1,100)
r, theta = np.meshgrid(r,theta)

22

Remark. If we had an ideal computer that could calculate every value in an
interval and plot it, then the image we have plotted would touch every single
value in the plane, except for at most one! In our program we have 0.01 < r < 1.
The remarkable thing is that the same is true if we replace the inequality with
0 < r < ε for any ε > 0. Not only that, but all those points are hit an infinite
number of times!

Filename: ess_sing.py

Problem 6.13. Approximate |x|
The absolute value f(x) = |x| can be written as a sum

f(x) = π

2 −
4
π

∞∑
n=1

cos((2n− 1)x)
(2n− 1)2 .

Write a function abs_approx(x,N) that calculates the first N terms and of
the sum and returns f(x). Use the function to compute the approximation for
N = 1, 2, 3, 4 and plot it against the exact function. Let the x-axis be [−π, π]
with a suitable y-axis.

Filename: approx_abs.py

Problem 6.14. Plotting graphs
A graph is a collection of lines and points in the plane such that each line
connects two points. In this exercise we will create functions for plotting graphs
on a set of points.

a) Make a function plot_line(p1,p2) that takes two points as input argu-
ments and plots the line between them. The two input arguments should be
lists or tuples specifying x- and y-coordinates, i.e., p1 =(x1,y1). Demonstrate
that the function works by plotting a vertical and a horizontal line.

b) A complete graph is a graph such that any two points has a line that
connects them. Make a function complete_graph(points) that takes a list of
points and plots the complete graph on those points. To verify that the function
works, first choose the four corners of the square ((0, 0), (1, 0), (0, 1), (1, 1)) and
then the points (1, 0), (α, α), (0, 1), (−α, α), (−1, 0), (−α,−α), (0,−1), (α,−α),
with α =

√
2/2. The resulting complete graphs should look like the ones in

Figure 6.1.
Hint: Modify the plot_line function from question a) so that it only calls

plot() but not show(). The complete graph can then be drawn by looping
over the points and calling plot_line for each pair, and finally calling show()
after the loop.

Filename: graph1.py

Problem 6.15. Plotting graphs
Given a natural number n, make a function that plots the following graph:

• Two vertical rows with n points should be placed side by side.

• Each point on the left side should have a line to every point on the right
side and vice versa.

23

0.0 0.2 0.4 0.6 0.8 1.0

ro

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

ro

Figure 6.1: Examples of complete graphs from Problem 5.14 b). The left shows
the graph on the corners of the unit square, the right is the graph for eight
equally spaced points on a circle.

• No two points on the same side should be connected by a single line.

Filename: graph2.py

Problem 6.16. Inefficiency of primality checker
Consider the program from Problem 4.6. Use the timeit module and run
the program to find the time it takes to find a factorization of an n digit
number. Plot the time against the number of digits for the numbers in the file
prime_check.dat. You can use the following code to time the function for
different numbers:

str1 = "f(" + str(n) + ")"
str2= "g(" + str(n) + ")"
N = 100
time1 = timeit.timeit(str1, ’from __main__ import f’,number=N)
time2 = timeit.timeit(str2, ’from __main__ import g’,number=N)

Filename: prime_ineff.py

Problem 6.17. Animating a cycloid
One may create a curve by placing a circle on the x-axis, fixing a point on
the circle, and then drawing the trace of the point as the circle is rolling. The
resulting curve is called a cycloid. In mathematical language it is given as

r(θ) = [R(θ − sin θ), R(1− cos θ)]

where R is the radius of the rotating circle and θ is the angle starting at 0 and
increasing.

a) Animate the cycloid as a function of θ starting at 0, ending at 15. Draw a
point at the end of the cycloid that varies with the animation.

Hint: A point can be added through a new plot using for example
point, =axes.plot([],[],’o’)

and updating during the animation.

24

b) Add the rolling circle defining the cycloid to the plot. You may use that at
a given time θ, the circle is given as s(θ) = (R · θ + cos θ,R+ sin θ).

Filename: cycloid.py

Problem 6.18. Calibration curve
A tool in chemical analysis for measuring the concentration of a substance in
a sample (e.g. blood or urine), is making a calibration curve. Solutions with
known concentrations of a substance (standard solutions) are measured. The
X-axis is the concentrations of the standard solutions, and the Y-axis is for the
measured intensity of these solutions. The concentration of the substance in
the sample can then be determined using an equation that best describes the
calibration curve. This equation is determined using linear regression.

In Python, you can use the numpy module to obtain a linear regression. How
to do this will be shown.

Assume that you have made five standard solutions with concentrations of
10, 20, 30, 40 and 50 mg/L of the substance you wish to test for. You have used
equipment that detects this substance, and noted down the intensity for each of
your standard samples. The code below shows how the linear regression can be
performed.

standard concentrations and height of their signals
I_stand = [9.19, 19.8, 27.0, 34.7, 44.9]
conc_stand = [10, 20, 30, 40, 50]

linear regression
fit = np.poly1d(np.polyfit(conc_stand, I_stand, 1))
conc_curve = np.linspace(0, 60, 100)
signal_curve = fit(conc_curve)

a) Plot the calibration curve as a line, and plot the intensities of the calibration
solutions as points on top of the calibration curve.

The function created in the code above, fit(x), is now a linear function on
the form f(x) = ax + b = y, where x corresponds to the concentration and y
will correspond to the intensity of the signal at the given concentration.

b) Determine a and b by using fit(x) and use these to implement an in-
verse function of f(x) such that g(y) = x. Use your function to calculate the
concentration of three different samples of the same unknown compound. The
intensities of the compound of the samples are given below.

I_unknown = np.array([19.9, 20.1, 19.8])

Print out the mean value, with the uncertainty (x± sN), of the samples of the
unknown compound. You may use np.mean and np.std to find the mean value
and the uncertainty.

Filename: calibration.py

25

Chapter 7

Dictionaries and Strings

This chapter contains exercises on programming with dictionaries and strings,
corresponding to Chapter 7 in the book by Sundnes and Chapter 6 in the book
by Langtangen.

Problem 7.1. A result on primes “dictionarized”
Consider the program from Problem 5.8. Since the entries correspond to each
other, working with two seperate lists is cumbersome. We may avoid that using
dictionaries. Modify the program such that the values are saved in a dictionary
instead of a list. Let the values of n be keys with values π(n).

Filename: primes_dict.py

Problem 7.2. Chemical elements in a dictionary
Consider the dictionary elements_10 consisting of the 10 first chemical elements
of the periodic table:

elements_10 = {1: ’-’, 2: ’Helium’, 3: ’Lithium’,
4: ’Beryllium’, 5: ’Boron’, 6: ’Carbon’,
7: ’Nitrogen’, 8: ’-’,
9: ’Fluorine’, 10: ’Neon’}

a) The chemical elements of number 1 (Hydrogen) and 8 (Oxygen) are missing.
Copy elements_10 into your file, and adjust the dictionary such that the keys
1 and 8 have their correct value. Use the technique as in this example:

dictionary[key] = ’value’

b) Copy the following code into your script, and run the file in your terminal.
Find the difference between the two dictionaries that are printed, and explain
why they are different from each other.

elements_10_copy = elements_10.copy()
elements_10_copy.update({11: ’Sodium’})
print(elements_10)
print(’\n’)

26

elements_11 = elements_10
elements_11.update({11: ’Sodium’})
print(elements_10)

Filename: chemical_elements_dict.py

Problem 7.3. Representation of polynomials
Let f(x) =

∑n
i=0 aix

i and g(x) =
∑m
j=0 bmx

m be two polynomials. Recall that
a polynomial can be expressed as a dictionary with keys equal to the degree of a
term, and the corresponding coefficient as value (so 3x2 + 1/2 is represented by
the dictionary {2 : 3, 0 : 1/2}).

You will be asked to implement three functions in this exercise. Check that
each of your functions work as expected by creating two different polynomials
represented as dictionaries, call your functions and print the returned values.

a) Create a function that takes two dictionaries (corresponding to two polyno-
mials f and g) as arguments and returns a dictionary corresponding to the sum
of the two.

b) Create a function as above that returns the dictionary corresponding two
the product of two polynomials.

Hint: fg =
∑n+m
k=0 ckx

k where ck =
∑
i+j=k aibj

c) Add a function that evaluates a polynomial dictionary at a point.
Filename: poly_dict.py

Problem 7.4. Use string operations to create a pretty dictionary
The file atm_moon.txt, which can be downloaded from the course website,
contains information about the composition of elements in the lunar atmosphere
during nighttime. The values are given in particles per cubic centimetre.

Write a function that reads such a file, and returns a dictionary with the name
of the elements as keys and the particle density as value. Transform all characters
to their upper case equivalent. Strip off leading and trailing whitespaces in each
of the string keys. Remove all the commas that mark every three digits, and
then convert these values to float numbers.

For example, considering the information ’ Neon 20 -40,000 ’ extracted
from the file, the dictionary element with key ’NEON 20’ should look like this:

’NEON 20’: 40000

Filename: atm_moon.py

Problem 7.5. Interpret output from a program
The program approx_derivative_sine.py calculates an approximation to the
derivative of sin

(
π
3
)
by the expression

∂f

∂x
≈ f(x+ ∆x)− f(x)

∆x ,

for decreasing values of ∆x. Direct the output of the program to a file (by
python approx_derivative_sine.py > filename). Write a function that
reads the file and returns three arrays consisting of numbers corresponding to

27

https://www.uio.no/studier/emner/matnat/ifi/IN1900/h20/ressurser/live_programmering

delta_x, abs_error and n. Plot delta_x and abs_error versus n. Use a
logarithmic scale on the y axis. Explain why the absolute error increases after
n = 8, i.e. after delta_x = 10−8.

Hint: The function semilogy is an alternative to plot and gives logarithmic
scale on the y axis.

Filename: plot_round_off_error.py

Problem 7.6. Saving information in a nested dictionary
The file below contains information about various people. The first column is
the name, the second is the age, and the third is the gender.

John, 55, Male
Toney, 23, Male
Karin, 42, Female
Cathie, 29, Female
Rosalba, 12, Female
Nina, 50, Female
Burton, 16, Male
Joey, 90, Male

a) Write a function read_person_data(filename) that reads such a file and
returns the information as a nested dictionary. For example the key ’John’ has
the dictionary {’Age’: 55, ’Gender’: ’Male’} as value. The keys in the main
dictionary should be the name without the comma, i.e. "John", not "John, ".

b) Write a function write_person_data(data_dict, filename), where the
first argument is a nested dictionary like the one created in a), and the second
argument is a file name. The function shall write the information in the dictionary
to the specified file, in the format outlined above.

Filename: people_dict.py

Problem 7.7. Finding the frequency of words in a text

a) Write a function that reads the file RandomWords.dat and finds the frequency
of words of length n. Save the information in a dictionary with the length as
keys and the number of words of that length as values. You may assume that all
words are separated by spaces and that only punctuation marks appear in the
text.

Hint: For your program to be compatible with words of any length, it might
be helpful to use defaultdict imported from collections. See page 339 in the book.
Use the function dict() on such an object to convert it to an ordinary dictionary

b) Write a test function that generates a file of words and checks that the
function returns the correct values.

Filename: word_length.py

Problem 7.8. The Euler’s polyhedron formula
Let V, E, and F be the number of vertices, edges and faces in any polyhedron,
respectively. Then, Euler’s polyhedron formula tells us that

V − E + F = 2.

28

In this exercise we shall check that the formula works for some given polyhedrons
in a file with this setup:

Polyhedron: cube
vertices: 8 edges: 12 faces: 6

Polyhedron: pyramid
vertices: 5 edges: 8 faces: 5

...

a) Write a function that can read such a file, and returns a dictionary with
the type of the polyhedron as a key, and a dictionary containing vertices, edges
and faces as a value. The function shall strip of leading and trailing whitespaces
in all strings. For example, the value of the key ’cube’ in the dictionary should
look like this:

’cube’: {’vertices’: 8, ’edges’: 12, ’faces’: 6}

Note that you must convert the string numbers to integers, as for example 8, not
’8’. Be aware of the fact that the value of each polyhedron in the dictionary is
again a dictionary. Print the (nested) dictionary that is returned when reading
the file polyhedrons.dat.

b) Write a test function test_polyhedron_formula() that checks that Eu-
ler’s polyhedron formula works for the polyhedrons given in polyhedrons.dat.
Hint: Repeated indexing works for nested dictionaries as for nested lists. Below
is an example of how to access the value of the key ’vertices’ inside the value
of the key ’cube’.

cube_vertices = polyhedrons_dict[’cube’][’vertices’]

Filename: polyhedron_formula.py

Problem 7.9. Compute digital roots
Given a number, say 5282, we can compute the sum of the digits. In this case
5 + 2 + 8 + 2 = 17, and doing this again gives 1 + 7 = 8. The one digit number
we get by doing this is called the digital root of the number.

a) Make a function that calculates the digital root of a number.
Hint: Convert the number to a string in order to work with it.

b) Plot the digital root of numbers up to 500 with the digital root on the
x-axis and the frequency of digital roots on the y-axis. Use plt.scatter(x,y)
for the plot.

Filename: dig_root.py

Problem 7.10. Timezone converter
In the file timezones.dat you will find places and their timezone in GMT
format.

29

a) Make a function that reads the file and saves the information in a dictionary.

b) Create a function that takes local Norwegian time (GMT +1) in the string
format ’ddmmyy-hhmm’, a place, and returns the local time at that place. Your
program should display a message to the user if a place that is not saved in the
dictionary is used. Do the following conversions:

• March 21st 2018 05.34 in Vancouver

• December 31th 2017 20.03 in Sydney

• January 1st 2018 00.15 in London

Filename: timezones.py

30

Chapter 8

Introduction to Classes

Thhe topic of this chapter is programming with classes and objects. These topics
are important foundations for object-oriented programming (OOP), which is
introduced later. The topics of the exercises are covered in Chapter 8 in the
book by Sundnes and Chapter 7 in the book by Langtangen.

Problem 8.1. Saving information in a class
In this problem you will create a class that holds the same type of information
as the dictionary in Problem 7.6.

a) Create a class Person where the constructor takes name, age, and gender
as arguments, and stores them as attributes.

b) Add methods to the class for changing a persons name, age, and gender.

c) Add a method __str__ that returns a string with all the information of
that person. Create an instance of the class, using the information for ’John’ in
the table from Problem 7.6. Change the name and gender of John. Print the
information of the instance before and after changing.

Filename: class_people.py

Problem 8.2. Right triangle class

a) Make a class RightTriangle that represents a right triangle. The construc-
tor __init__ should take two numbers a and b as arguments and store them as
attributes. These are the lengths of the two legs (shortest sides) that define the
right triangle. The constructor should also calculate and store the hypotenuse
as a local variable in the class.

Remember that the hypotenuse c relates to the two short sides a and b by
the Pythagorean Theorem:

a2 + b2 = c2

b) Make an object triangle1 of the class RightTriangle with both short
sides equal to 1. Make another object triangle2 with sides equal 3 and 4.
Check that your implementation is correct by printing the hypotenuse of both
objects. Use the usual object.variable convention to get the hypotenuse.

31

c) To make a robust program, we often want to code it such that it prevents
being used in ways that does not make sense. In our case, a natural thing to
prevent is making a triangle with sides having negative length, since length is
strictly positive.

Make changes to the class’ constructor such that a ValueError is raised if
someone tries to make a triangle with sides of negative length. To test that your
class raises the error correctly, you can test it with the following code:

def test_RightTriangle():
success = False
try:

triangle3 = RightTriangle(1,-1)
except ValueError:

success = True
assert success

d) Add a method plot_triangle() to your class which plots the triangle
when you call it. The corner where the two shortest sides meet should be in
origin. Side a should be along the x-axis, and side b along y. In order to plot,
you might want to find out what the coordinates of each corner must be. You
can use plt.axis("equal") to make the axes of the plot of equal length so
that the triangle gets the right shape. Call the plotting method on the instance
triangle2 that you created in b).

Filename: right_triangle.py

Problem 8.3. Make a function class In this problem you will implement a
class F which represents the function

f(x;n,m) = sin(nx) cos(mx).

Create the class and let n and m be parameters of the constructor, which must
be stored as class attributes.

Since the class represents a function, it should be a callable class. An
instance of a callable class can be called on like a function. The special method
for creating a callable class is __call__(self, args). Implement the special
method __call__(self, x) such that it returns the value of the function
evaluated at x.

Create two different instances u and v of class F. Choose values n and m
for both the instances. Plot the two instances u and v evaluated in x against
each other on the interval x ∈ [0, 2π]. In other words, plot u(x_values) on the
x-axis and v(x_values) on the y-axis. Make sure to have enough points on the
interval to ensure that the line is smooth.

Filename: F.py

Problem 8.4. Extending the BankAccountP class
Modify the class BankAccountP in the book to include a method transfer that
transfers an amount between two accounts. The method should take an amount
and the account you want to transfer to as arguments. Write a test function
that checks that the methods deposit, withdraw, transfer and get_balance
works properly.

Filename: BankAccountP.py

32

Problem 8.5. Approximating the square root of two
The square root of two can be represented by a so called continued fraction on
the following form: √

(2) = 1 + 1
1 +

√
(2)

= 1 + 1
2 + 1

1+
√

(2)

= 1 + 1
2 + 1

2+ 1
1+
√

(2)

In this exercise we will exhibit two possibilities for approximating the number√
(2).

a) Make a class Square with a method approx_frac that takes an integer n,
an initial value and returns the first n fractions as above with initial value x0.
This can be done by iterating the function

f(x) = 1 + 1
1 + x

starting at x0. For n = 2 and x0 = 1 this gives

f(f(x0)) = 1 + 1
2 + 1

1+1
.

b) Another way to approximate the square is by iterating the function f(x) =
1
2
(
x+ 2

x

)
. Add a method approx_iter that takes a number x0, an integer n,

and returns the value of the function at x0 iterated n times. For n = 2 we would
have f(f(x0)). From here on we assume for simplicity that 0.1 ≤ x0 ≤ 2.

c) Create a method that returns a nicely formatted table with the two approx-
imations and their difference ε along with the exact value for n = 1, 2, 5, 10. Run
the program, which approximation is best?

d) To visualize the approximation plot the exact value as a line in the plane
and the two approximations as points (n, yn), where yn is the approximation.
Use n = 1, 2, 5, 10.

Filename: square_iteration.py

Problem 8.6. Tangent lines on a quadratic curve
Consider a quadratic polynomial on the form f(x) = x2 + bx+ c. At a point x0
the tangent line is given by l(x) = (2x0 + b)x+C where C = f(x0)− (2x0 + b)x0.

a) Make a class Quadratic with a function f(x) (a quadratic polynomial as
above) as initial argument. Make a method that computes the tangent at a
point and returns the function l(x).

Hint: You will need to extract the coefficients b = f(1)−f(0)−1 and c = f(0).

33

b) Create a method that plots the function along with its tangent at a point.

c) Make a method that animates the tangent line moving over the curve f(x).
Make the animation for uniformly distributed x values in the interval −5 ≤ x ≤ 5.
Test the program with the function f(x) = x2.

Filename: quadratic_tangents.py

Problem 8.7. Numerical approximations of the derivative
Let f(x) be a function and f ′(x) its derivative. There are many ways to
approximate the derivative, for instance:

f ′(x) ≈ f(x+ h)− f(x)
h

,

f ′(x) ≈ f(x+ h)− f(x− h)
2h ,

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)
12h .

a) Make a class Diff with a constructor that takes a function f as argument,
and three methods diff1, diff2, and diff3 that approximate the derivative
using the above formulas.

b) Create an instance of the class Diff using f(x) = sin (2πx). Visualise the
difference in accuracy of the three methods for computing the derivative by
plotting the approximate derivatives in the same window as the exact derivative
f ′(x) = 2π cos(2πx). Let x be on the interval x ∈ [−1, 1], and plot with
h = 0.9, 0.6, 0.3, 0.1 to see how the accuracy improves.

Filename: class_diff.py

Problem 8.8. Visualizing functions
For a function f(x) we can plot the graph of the function as points (x, f(x)).
This results in a curve in the plane. Suppose we have a function

f(x, y) = (u(x, y), v(x, y)).

The graph of this function lives in four dimensions and is not easily visualized.
On way to visualize these functions is to instead of looking at the graph we look
at how f act on points. For example, how the grid lines in the plane look after
f is applied.

a) First we consider a specific function f(x, y) = (x2 − y2, 2xy). Write a
program where you define the function f and make a figure with x and y axis
from -2 to 2 where you plot a number of the grid lines in x and y direction in
the same plot. You will need around 15 lines in each direction. Make a another
plot side-by-side in the same figure of all points (x2 − y2, 2xy) where x and y
are the points in the first plot.

b) To make the construction more flexible, modify your program to be a class
Visualize taking a function f(x, y) = (u(x, y), v(x, y)) as initial argument. It
should contain a method grid(self, n) that generates two plots, one of grid
lines, and one of the image as in a).

34

c) We used grid lines of the plane to see how the function f behaved. We could
have used any curves in the plane. Extend the class with a method circ that
instead of using points corresponding to grid lines, uses circles with expanding
radii. Let the axes go from -5 to 5 and the radii be uniformly distributed
between 0 and 10 (15 circles should be sufficient). Test with the function
f(x, y) = (x2 − y2 + x+ 1, 2xy + y). The second plot should consist of circular
like objects with a self-crossing.

d) Add a method grid_anim that shows an animation of the image of the
functions

fε(x, y) = [(1− ε)x+ εu(x, y), (1− ε)y − εv(x, y)]

where ε varies from 0 to 1.

e) Using the functions

f(x, y) = (x2 − y2, 2xy) and g(x, y) = (x2 − y2 + x+ 1, 2xy + y),

test the grid and grid_anim methods on f , and the circ method on g. Use
15 gridlines and 15 circles.
Remark. For the student familiar with complex numbers, this is exactly how
one would visualize a complex function f(z). In our case we can use this for any
function f(x, y), but we usually restrict ourself to look at functions corresponding
to certain complex functions, namely the differentiable ones.

Filename: plot_functions.py

Problem 8.9. A class for coordinates
This exercise will focus on how to implement special methods. You will implement
the class Coords, which represents coordinates in three dimensions.

Hint: the class for complex numbers described in "A Primer on Scientific
Programming with Python", by H.P. Langtangen, is of similar nature to the class
you should implement in this problem.

a) Create the class Coords. Start by implementing the special methods
__init__(self, args) and __str__(self). The constructor should take
three parameters, x, y and z. The string representation of the class should be
on the form (x, y, z).

The implementation should be such that the code below works.

sqrt3 = sqrt(3)
close = Coords(1/sqrt3, 1/sqrt3, 1/sqrt3)
far = Coords(3/sqrt3, 15/sqrt3, 21/sqrt3)

print(close)
print(far)

Output:

(0.58, 0.58, 0.58)
(1.73, 8.66, 12.12)

35

b) Implement the special methods __len__(self) and __abs__(self). The
length of coordinates should always be 3, as the coordinates will be in three
dimensions. The absolute value should yield the Euclidean norm (or the physical
length in space), which is given by

||(x, y, z)|| =
√
x2 + y2 + z2.

The implementation should be such that the code below works.
print(f"The class represents coordinates in {len(close)} dimensions")
print(f"The distance from the centre to the point close is {abs(close)}")
print(f"The distance from the centre to the point far is {abs(far)}")

Output:
The class Coords represents coordinates in 3 dimensions

The distance from the centre to the point close is 1.00
The distance from the centre to the point far is 15.00

c) Implement the special methods __add__(self, other) and
__sub__(self, other). When adding or subtracting two objects of class
Coords, a new object of class Coords should be returned.

The object returned when adding two coordinates should have the coordinates
xnew = xself + xother

ynew = yself + yother

znew = zself + zother,

and similarly should the method for subtracting should return an object of
Coords with coordinates at

xnew = xself − xother
ynew = yself − yother
znew = zself − zother,

The implementation should be such that the code below works.
further = close + far
print(f"The coordinates further are at {further}")

distance = abs(far - close)
print(f"The distance from far to close is {distance}")

centre = further - further
print(f"The coordinates at the centre are {centre}")

Output:
The coordinates further are at (2.31, 9.24, 12.70)
The distance from far to close is 14.14
The coordinates at the centre are (0.00, 0.00, 0.00)

Filename: Coords.py

36

Chapter 9

Object-Oriented
Programming

The topic of this chapter is object-oriented programming (OOP), which is covered
in Chapter 9 of the book by Sundnes and the book by Langtangen.
Problem 9.1. Implement Newtons method

a) Make a subclass Function of the class Diff in problem 8.7 that takes a
function f as an initial variable. It should contain a method such that the
following code is compatible with your program and prints the value of f at 2.
def f(x):

return x**2
func = Function(f)
print(f(2))

b) We would like the class to give estimated values for roots of f . That is,
points such that f(x) = 0. To do this we implement Newton’s formula. It is
given recursively as

xn+1 = xn −
f(xn)
f ′(xn) ,

where we give a starting point x0. In some cases(not all) xn will approach a root
of f . Implement this in a method approx_root that takes a starting point and
a bound ε < 1 as arguments and approximates xn such that f(xn) < ε.

Hint: Implement a simple convergence test. Check that f(xn) < 1 after
100 iterations. If not terminate the loop and inform the user that there is no
convergence for that starting point. It is still a possibility for convergence, but
unlikely.

c) Test the program with the function f(x) = x2 − 1 and starting value 5 with
bounds 10−i, for i = 1, 2, 3, 4, 5, 6. Print the approximated value for x, f(x)
and the bound in a table format. Try to run the program with starting value 0.
What happens, can you see why?

Filename: newton.py

37

Problem 9.2. Implement Polynomials as a Class

a) Make a class Quadratic that implements second order polynomials. An
object of Quadratic should be initialised with a list containing the coefficients.
Add a __call__(self,x) method that evaluates the polynomial at a point x,
and a __str__(self) method for printing the polynomial.
Create an instance of Quadratic with coefficients (1, 3, 2). Print it and evaluate
it at x = 1, x = 2 to make sure it works.

b) Make a subclass Cubic of the class Quadratic that implements third order
polynomials. You should make use of inheritance to extend the class Quadratic
you made in the previous exercise. Implement a method derivative for Cubic.
The method should return an object of type Quadratic that corresponds to the
derivative.
Create an instance of Cubic with coefficients (1, 3, 2, 4). Print it and evaluate it
at x = 1, x = 2. Also call derivative and print the result.

Filename: polynomial.py

Problem 9.3. Vectors

a) Make a class Vector2D that implements 2D-vectors(two components). Add
__add__ and __sub__ methods so you can add and subtract vectors. Remember
that vectors add and subtract element-wise, e.i.:

(1, 2) + (4, 5) = (5, 7)

b) For two vectors ~a = (a1, a2) and ~b = (b1, b2), the dot product is defined as

~a ·~b = a1b1 + a2b2

Implement a method dot that calculates the dot product of two vectors.
Make two vectors ~v = (1, 2) and ~w = (−2, 5) from Vector2D. Print ~v, ~w, ~v + ~w,
~v − ~w and ~v · ~w

c) Make a subclass Vector3D of the class Vector2D, where Vector3D is extended
with an additional coordinate. Make sure all the methods are updated to work
with three coordinates. The dot product for 3D vectors extends as one would
expect:

~a ·~b = a1b1 + a2b2 + a3b3

Use inheritance to reuse old code as much as possible(especially for the dot
product method).
Make two vectors ~v = (1, 2, 4) and ~w = (−2, 5, 1) from Vector3D. Print ~v, ~w,
~v + ~w, ~v − ~w and ~v · ~w

38

d) There is a common vector operation that is defined for 3D vectors, but not
for 2D vectors. This is the cross product. It differs from the dot product in that
the result is not a number, but a new vector:

~c = ~a×~b

where ~c = (c1, c2, c3). The cross product is define as

c1 = a2b3 − a3b2

c2 = a3b1 − b1a3

c3 = a1b2 − b2a1

Implement a method cross for Vector3D only that calculates the cross product.
Make two vectors ~v = (2, 0, 0), ~w = (0, 2, 0) from Vector3D. Print v × w.
Filename: vector.py

Problem 9.4. Inheritance
In this exercise we will investigate how python handles inheritance by making
some intuitive classes.

a) Begin by making a class Mammal. Add a method info(self) that returns
a string stating something that is common to all mammals, for instance "I have
hair on my body". Also add a method identity_mammal(self) that prints
(not returns) "I am a mammal".

b) Make a subclass Primate of the class Mammal. Add a method info(self)
that returns the same as info(self) for Mammal, in addition to something
specific for Primates, for instance "I have a large brain". Use inheritance
to include the general string from Mammal. Do not copy-paste it into the
Primate class. Also add a method identity_primate(self) equivalent to
identity_mammal(self).

c) Now make two subclasses Human and Ape from Primate. Update the
info(self) method in the same manner for both Human and Ape, and also
add their respective identity methos.

Make an instance John of the class Human, and an object Julius of the
class Ape. Try calling info(), identity_mammal(), identity_primate(),
identity_human() and identity_ape() for both John and Julius. Does it
work as you expect? Some of these calls are meant to cause an error.

d) Python is able to check if an object is of a particular class with the
function isinstance. isinstance(object_name, class_name) returns True
if the object object_name is of class class_name. An example could be
isinstance(John, Primate), which returns True if John is of the class Pri-
mate.

Use isinstance to check if John is Mammal, Primate, Human and Ape. Do
the same for Julius.

Filename: inheritance.py

39

Appendix A

Sequences and Difference
Equations

The exercises of this chapter correspond to Appendix A in the book by Langtan-
gen, and cover programming of difference equations.

Problem A.1. Computing Bell numbers
Let B0 = B1 = 1, the n’th Bell number is defined recursively as

Bn+1 =
n∑
k=0

(
n

k

)
Bk.

Make a function that returns the n first Bell numbers and print the first 10.
Filename: bell.py

Problem A.2. Solve a difference equation numerically
We study the difference equation

xn = xn−1 + xn−2.

Write a program that writes out the first 15 elements of the sequence for
x0 = x1 = 1.

Filename: fibonacci.py

Problem A.3. The spreading of a disease
We want to study the spreading of a disease. Assume that people recover at a
rate such that a ratio a of the people that are sick this week will still be sick
next week. It takes two weeks from when you get infected until you become sick,
and a person who is sick will on average infect b people each week, who then
become sick two weeks later.

Let xn be the number of sick people in week n. The number of sick people is
then given by the following difference equation

xn = axn−1 + bxn−2.

40

a) Write a function disease_weeks(a, b, x0, x1, N) that calculates the
number of people that are ill with a given disease (defined by values a and b)
and returns an array/list containing the number of sick people form the initial
week to week N . (In other words, the function should return an array or a list
with x0, x1, ..., xN).

Let x0 = 100 , x1 = 150 and a = 0.25. Use the function calculate the number
of sick people in an array up to week N = 15 for both b = 0.5 and b = 0.75. Plot
both scenarios in the same plot. Remember to use labels on the curves.

b) We do not need to store all the N + 1 values. Since xn only depends on
xn−1 and xn−2, these are the only values we need to store. Write a function
disease_week_N(a, b, x0, x1, N) that does not use any lists or arrays, and
returns only the number of sick people in week N , xN . Use this function to
obtain the number of sick people in week N = 15 for both the cases you plotted
in a). Print out the results, and remember to include information about which
of the two cases you are printing. Verify that the result is the same as obtained
using arrays.

Filename: disease.py
Problem A.4. Finding π with Newton’s method
It is common knowledge that π ≈ 3.14, but in this exercise you will use Newton’s
method and knowledge of the sine function to improve an approximation of π.

Newton’s method can be written as a difference equation defined

xn = xn−1 −
f(xn−1)
f ′(xn−1) ,

and is used to find roots of f(x), based on the function f(x), the derivative of
the function f ′(x) and an initial guess x0.

Consider the function f(x) = sin(x). Finding the functions derivative f ′(x),
should be trivial. This function has infinitely many roots, which we know are
located at x = kπ, where k is an integer. This exercise will focus on the root for
k = 1, and use Newton’s method to approximate π. For Newton’s method to
converge towards the correct root, the initial condition, x0, needs to be set close
to the value of π.

Set x0 = 3.14 and calculate x1 and x2 following Newton’s method. Print out
x0, x1 and x2, as well as the value of numpy.pi with 13 decimals. You should
print them in a tidy way such that the values are easy to compare. If Newton’s
method was used correctly, your values for π should improve!

Filename: finding_pi.py
Problem A.5. Find difference equations for computing ln x
The Taylor expansion of ln x is

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n
n

,

for x ∈ (0, 2].
We can define the sum as

ln x ≈ S(x;n) =
n∑
j=0

(−1)j+1 (x− 1)j
j

,

41

so that S(x, n) =
∑n
j=1 aj and

aj = − (j − 1)
j

(x− 1)aj−1.

Introduce sj = S(x, j − 1) and aj as the two sequences to compute. We have
the initial values s1 = 0 and a1 = (x− 1).

a) Find the set of difference equations for sj and aj .
Hint: You can find an example on how this is done for ex in section A.1.8

in the book.

b) Implement the system of difference equations in a function ln_Taylor(n, x)
which returns sn+1 and |an+1|. The term |an+1| is the first neglected in the sum
and may act as a rough estimate of the size of the error in the Taylor polynomial
approximation.

c) Verify the implementation by computing the difference equations for n = 3
by hand and comparing with the output from the ln_Taylor function. Automate
this comparison in a test function.

d) Check that the accuracy of the Taylor polynomial improves as n increaces
and x is close to 1. What happens when x > 2?

Filename: ln_Taylor_series_diffeq.py
Problem A.6. Lotka-Volterra two species model
We have previously studied the logistic model for poulation growth. This is a
model showing the growth of a population in the abscence of predators. The
Lotka-Volterra model describes interactions between two species in an ecosystem,
a predator and a prey. We will in the following take the preys to be rabbits and
the predators to be foxes. The number of rabbits and foxes in week n is denoted
by Rn and Fn respectively, and the population is modelled by the equations

Rn+1 = Rn + aRn − cRnFn
Fn+1 = Fn + ecRnFn − bFn,

where a is the natural growth rate of rabbits in the absence of predation, b is
the natural death rate of foxes in the absence of food (rabbits), c is the death
rate per encounter of rabbits due to predation and e is the efficiency of turning
predated rabbits into foxes.

Write a program that computes the number of rabbits and foxes up to
n = 500. Use a = 0.04, b = 0.1, c = 0.005 and e = 0.2. In the begining we have
R0 = 100 and F0 = 20. Plot how the number of individuals in the populations
vary with time.

Filename: Lotka_Volterra.py
Problem A.7. Difference equations for computing arctan(x)
The purpose of this exercise is to implement difference equations for computing
a Taylor polynomial approximation to arctan(x). For x ∈ (−1, 1), we have

arctan(x) ≈ S(x;n) =
n∑
j=0

(−1)j x
2j+1

2j + 1 .

42

To compute S(x;n) efficiently, we can write the sum as S(x;n) =
∑n
j=0 aj , and

derive a relation between two consecutive terms in the series:

aj = −x2 (2j − 1)
(2j + 1)aj−1.

We introduce sj = S(x; j − 1) and aj as the two sequences to compute. We have
s0 = 0 and a0 = x.

a) Implement the system of difference equations in a function
arctan_Taylor(x,n). The function shall not use any lists or arrays. (Since
aj only depends on aj−1, and sj only depends on sj−1 and aj−1, these are the
only values that we need to store.) The function shall return sn+1 and |an+1|.
The latter is the first neglected term in the sum (since sn+1 =

∑n
j=0 aj) and

may act as a rough measure of the size of the error in the Taylor polynomial
approximation.

The function arctan_Taylor(x, n) will give extremely inaccurate approxi-
mations to arctan(x) for x 6∈ (−1, 1). To find a good approximation to arctan(x)
for all x, we can use the fact that

arctan(x) =π

2 − arctan
(

1
x

)
≈π2 − S(x;n),

for values of x ≥ 1.

b) Implement the following piecewise function as a python function
arctan_Taylor_improved(x, n). Your function shall return both the approx-
imation and the measure of the size of the error as in a).

arctan(x) ≈

π
2 − S

(1
x ;n

)
1 ≤ x

S (x;n) − 1 < x < 1
−π2 − S

(1
x ;n

)
− 1 ≥ x

Hint: Call the function arctan_Taylor inside the piecewise function.

c) Write a test function to verify the approximation from b). Test for x =
[−4,−0.5, 0.7, 10] with n = 10, and with tolerance = 10−5.

d) Make a table or plot of the approximation from b) for various x and n to
illustrate that the accuracy improves as n increases.

In the table; include the x value and the order n, the approximation and the
exact value, and the measure of the error.

In the plot; calculate for x ∈ [−20, 20]. Include also the exact function for
comparison, and remember to label the graphs.

Filename: arctan_Taylor_series_diffeq.py

43

Appendix E

Programming of
Differential Equations

The exercises of this chapter are about programming of solvers for ordinary
differential equations, corresponding to Appendix E in the book by Langtangen.

Problem E.1. Solve a simple ODE with function-based code
This exercise aims to solve the ODE problem u − 5u′ = 0, u(0) = 0.1, for
t ∈ [0, 20].

a) Identify the mathematical function f(u, t) in the generic ODE form u′ =
f(u, t).

b) Implement the f(u, t) function in a Python function.

c) Use the ForwardEuler function from Section 2.1 of the lecture notes Solving
Ordinary Differential Equations in Python to compute a numerical solu- tion of
the ODE problem. Use a time step ∆t = 5.

d) Plot the numerical solution and the exact solution u(t) = 0.1e0.2t.

f) Perform simulations for smaller ∆t values and demonstrate visually that the
numerical solution approaches the exact solution.

Filename: simple_ODE_func.py

Problem E.2. Solve a simple ODE with class-based code
Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler
class described in Section 2.2 of the lecture notes Solving Ordinary Differential
Equations in Python. Implement the right-hand side function f as a class too.

Filename: simple_ODE_class.py

Problem E.3. Solve a simple ODE with the ODEsolver hierarchy
Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler
class in the ODESolver hierarchy from Section 2.4 of the lecture notes.

Filename: simple_ODE_class_ODESolver.py

44

Problem E.4. Decrease the length of the time steps
We have the following differential equation

dx

dt
= cos(6t)

1 + t+ x
.

Use Forward Euler to solve this differential equation numerically. You should
solve it on the interval t ∈ [0, 10], with initial condition x(0) = 0, and for number
of time steps n = {20, 30, 35, 40, 50, 100, 1000, 10000}. Plot all the solutions in
the same plot.

Filename: decrease_dt.py

Problem E.5. Implement the explicit midpoint method
Implement a subclass Midpoint in the ODESolver hierarchy from Section 2.4 of
the lecture notes Solving Ordinary Differential Equations in Python. The class
should implement the explicit midpoint method described in Section 2.3 in the
lecture notes, defined by

k1 = f(un, tn),

k2 = f(un + ∆t
2 k1, tn + ∆t

2),

un+1 = un + ∆t k2.

Test your implementation by solving u′ = f(u, t) = cos(t)− t sin(t), u(0) = 0 and
plot the numerical solutions obtained from both the explicit midpoint method
and Forward Euler together with the analytical solution u(t) = t cos(t). Use 20
time steps on the interval t ∈ [0, 4π].

Filename: Midpoint.py

Problem E.6. Implement Heun’s method as a function

a) Heun’s method is defined by

k1 = f(un, tn),
k2 = f(un + ∆tk1, tn + ∆t),

un+1 = un + ∆t (k1/2 + k2/2).

Implement Heun’s method using a plain function heuns_method of the same
type as the ForwardEuler function from Section 2.1 in the lecture notes Solving
Ordinary Differential Equations in Python. Construct a test problem where you
know the analytical solution.

b) Implement a test function test_heuns_against_hand_calculations()
where you compare your own hand calculated results with those returned from
the function. Compare the solution at one or two time steps.

c) Plot the difference between the numerical and analytical solution of your
test problem. You should demonstrate that the numerical solution approaches
the exact solution as ∆t decreases.

Filename: heuns_method_func.py

45

Problem E.7. Solve an ODE describing cooling of coffee
Newton’s law of cooling,

dT

dt
= −h(T − Ts)

can be used to see how the temperature T of an object changes because of heat
exchange with the surroundings, which have a temperature Ts. The parameter h,
with unit s−1 is an experimentally determined constant (heat transfer coefficient)
describing how efficient the heat exchange with the surroundings is. In this
exercise we shall model the cooling of freshly brewed coffee. First we must find
a measure of h. Suppose we have measured T at t0 = 0 and t1. We can then use
a Forward Euler approximation of dTdt with one time step of length t1,

T (t1)− T (0)
t1

= −h(T (0)− Ts)

to make the estimate
h = T (t1)− T (0)

t1(Ts − T (0)) .

a) Make a class Cooling containing the parameters h and Ts as data at-
tributes. Let these parameters be set in the constructor. Implement the right-
hand side of the ODE in a __call__(self, T, t) method. We will use a class
from the ODESolver described in Section 2.4 of the lecture notes to solve the
ODE.

Create a stand-alone function estimate_h(t1, Ts, T0, T1) to estimate
the h parameter based on the initial temperature and one data point (t1, T (t1)).
You can use this function to estimate a value for h prior to calling the constructor
in the Cooling class.

b) Implement a test function test_Cooling() for testing that class Cooling
works. The test function should verify that the __call__ method returns the
correct results for given values of the arguments T and t.

c) The temperature of freshly brewed coffee is 95◦ C at t0 = 0 (when it is
poured into your cup), and 92◦ C after 15 seconds, in a room with temperature
Ts.

Solve the ODE numerically by a method of your choice from the ODESolver
hierarchy, for Ts = 20 and Ts = 25. Plot the two solutions in the same plot. The
time interval where you solve the equations should be chosen long enough for
the solutions to be "almost flat" and close to the respective room temperature.

Filename: coffee.py

46

Problem E.8. Compare numerical methods for solving ODEs

a) Make two subclasses Midpoint and Heun in the ODESolver hierarchy de-
scribed in Section 2.4 of the lecture notes Solving Ordinarty Differential Equations
in Python. The classes should implement the explicit midpoint method, defined
in Problem E.5, and Heun’s method, defined in Problem E.6, respectively.

b) Test your implementation in the main block of your program, by solving the
ODE u′(t) = t cos(t)− sin(t), u(0) = 2. Compute the numerical solution using
Heun’s method, the explicit midpoint method, and the 4th order Runge-Kutta
method from the ODESolver hierarchy.

Make one plot for each method, where the numerical method is compared
to the analytical solution y(t) = t sin(t) + 2 cos(t). You should solve and plot
on the interval t ∈ [0, 8π] using n number of points on the interval, for n =
{20, 25, 50, 150}. To create multiple plots you can either use the plt.subplot
function (assuming mathplotlib.pyplot is imported as plt) to get multiple
plots in the same window, or you can use plt.figure(1), plt.figure(2), etc.,
to open multiple plot windows.

Remember to label/title each plot and to include a legend with the different
values of n.

Filename: compare_methods.py

Problem E.9. Solving a system of ODEs; motions of a spring
The ODESolver hierarchy is adapted to cope with both scalar ODEs and sys-

tems of ODEs. In this exercise we will solve a system of ODEs using ODESolver.
Any ordinary differential equation of nth order can be written as a system of

1st order equations.
We will see how a 2nd order ODE can be used to study the motions of a

spring. We have a block of mass m hanging from a spring. The block is pulled
downwards before it is released, causing the block to oscillate vertically. We will
study the oscillation of the block in this exercise.

If you want to read the mathematical reasoning concerning this physical
phenomena in detail, you may look up section 10.7 Svingninger og resonans in
Kalkulus (Lindstrøm, 2016). This is however not necessary to solve the exercise.

a) Consider the following 2nd order ODE

u′′ + q

m
u′ + k

m
u = 0,

which describes the motion of the spring. The initial condition is

u0 =
(

1, − q

2m +
√
k

m
−
(q

2m

)2
)
.

The parameter k is a constant factor that describes the stiffness of the spring.
The parameter q describes the friction, for example air resistance. When q = 0
there is no friction. In this entire exercise we will consider the case where m = 1
and k = 2.

Rewrite the equation to a system of ODEs by hand. Then create a class
ProblemSpring that takes the parameters m, k, and q as instance attributes in

47

the constructor. The vector u0 should also be defined in the constructor, as it
depends on m, k and q. Create a special method __call__(self, u, t) that
returns the vector

[
d
dtu(t), ddtu′(t)

]
that you calculated by hand.

b) Create a new class SolverSpring that takes problem, T (time stop) and
n (time steps) as parameters in the constructor. The problem attribute is
supposed to be an instance of the ProblemSpring class. Write a method
solve(self, method) that solves our system of ODEs. This is an example of
how it can be done:
def solve(self, method=RungeKutta4):

self.solver = method(self.problem)
self.solver.set_initial_condition(self.problem.U0)
time_points = linspace(0, self.T, self.n+1)
U, self.t = self.solver.solve(time_points)
self.u, self.u_der= U[:,0], U[:,1]

You can choose whether you want to use RungeKutta4 or another method from
ODESolver. Notice how we extract the inital condition U0 from the problem
instance of class ProblemSpring. Also note that the array U contains the
values of the approximations to both u(t) and u′(t). Make sure you understand
how to extract the two columns vectors self.u and self.u_der.

c) Write a method exact(self) that returns the analytical solution to our
differential equation. The analytic solution is given by:

u(t) = e−
qt

2m

(
cos
(
t

√
k

m
−
(q

2m

)2
)

+ sin
(
t

√
k

m
−
(q

2m

)2
))

d) Write a method plot(self) which plots the exact solution of u(t) together
with your approximations to u(t) and u′(t).

e) In the main block, create two problem instances of ProblemSpring that
represents the two cases where q = 0 and q = 0.3

√
km, respectively.

Also, create a solver instance of SolverSpring for each of the two problem
instances you just created. Let T = 30 and n = 1000.

Call the solve and the plot methods for both of your solver instances.

f) You will now create two test functions to ensure your implementation of the
problem class and solver class is correct.

Make one test function where you compare the computed solution with the
analytical solution of u(t) for some given parameters, and let the test pass if the
maximum error is less than some given tolerance.

Make another test function where you compare the computed derivative u′(t)
with the exact u′(t) for the case where m = 1, k = 2 and q = 0. In this case the
analytical solution is

u′(t) =
√

2
(

cos
(
t
√

2
)
− sin

(
t
√

(2)
))

.

Let the test pass if the maximum error is less than some given tolerance.
Filename: spring_diffeq.py

48

Problem E.10. Modelling war between nations
We consider the interaction between two nations C1 and C2 and a system of
equations for modelling a conflict between these. Assuming that each nation is
determined to defend itself against a possible attack, let x(t) and y(t) denote
the armaments of the first and second nation respectively. The change x′(t)
depends on the armaments of y(t). We assume that it’s proportional to it, say
ky(t) for some positive constant k. It also depends on the relationship of the two.
Assuming anger leads to increased armaments, let g measure the relationship
between them, positive numbers meaning anger towards the other nation and 0
means neutral, and negative numbers meaning disarmament. The cost of having
an army will restrain x(t), represented by a term −αx for some positive constant
α. Similar setup for y(t) yields a system of differential equations:

dx
dt = ky(t)− αx(t) + g,

dy
dt = lx(t)− βy(t) + h. (E.1)

In the case where x′(t) = y′(t) = 0 we have reached a stable point where neither
nation is increasing armies. We interpret such a fixed point as peace. In the case
were x(t) and y(t) diverges we have an arms race, and we interpret this as war.

a) Make a function that solves the system (E.1) with a numerical method of
your own choice (you may use ODESolver to do this) and a function that plots
the solution curves of x(t) and y(t) for given initial values. Your program should
not solve beyond the point where either x or y is zero. We want to allow the
value zero, so have your program check whether x and y are larger than a very
small negative number. If you use ODESolver this can be done by defining a
terminate function to send with the solve method. Until otherwise specified, we
let t be the time measured in years.

Filename: C_model.py

b) Modify your program to instead consist of two classes. The first class
ProblemConflict should contain the following:

• An init method saving all information relevant to the problem (parameters
etc)

• A call method such that the class can be called as a function. It should
take an array [x, y] of specific values of x and y at time t, the time t, and
return the right hand side of the ODE system.

The second class Solver should consist of the following:

• An init method that takes a problem instance on the form above, and a
step length dt.

• A method that solves the problem, with the same restrictions as in Problem
a). It should solve any problem on the same form as ProblemConflict
that is given by two differential equations.

• A method that plots the solutions as in Problem a).

• A method that saves an image of the plot in .png format. When this is
called, no plot should be visible to the user.

49

Use the parameter values α = β = 0.2, g = h = 0, x0 = 10000, y0 = 20000. Run
the program once with k = l = 0.2, and once for k = l = 0.3 plotting the first 10
years. What is the interpreted difference between these two?

Hint: You may need to convert step length to the number of time points to
use. This can be done as

n =int(round("Last time step"/ "Step length"))+1
Filename: C_model_class.py

c) Let us consider the parameter values k = l = 0.9, α = β = 0.2, and
g = h = 0. One can argue that these give rough estimates for the arms race
between 1909 to 1914 between the alliances of France and Russia, and Germany
and Austria-Hungary. Assuming stability prior to this and negligible armies, we
assume x0 ≈ 0 and y0 ≈ 0 (This does not mean that neither nation had armies,
but that they were much smaller prior to the arms race). Solve the problem
when x0 and y0 are zero versus when they are small positive numbers. Plot the
next 5 years of both in the same figure. What happens?

Filename: C_model_c.py

d) So far we have seen a model intended to describe a conflict situation prior
to war. The preceding model doesn’t describe what happens during a war, but
similar equations can.

First of all, we will work with two types of warfare. The conventional
one, what we know as regular warfare, and guerrilla warfare, where groups
of combatants use military tactics such as ambush, raids, hit-and-run, among
others.

We first consider two conventional armies engaging. Let x(t) and y(t) denote
the respective forces (the number of soldiers) and t denote the time measured
in days. The rate of change of x(t) is affected by combat loss, operational loss
(non-combat related. e.g. disease, accidents), and reinforcements. Combat loss
should be proportional to the size of the opponent, represented by a term −αy(t),
α > 0. The operational losses should depend only on x(t), represented by a
term −kx(t), k > 0. The reinforcements are represented by a function f(t). In
short-term warfare, the operational losses are negligible, and we will assume it
to be zero. We get equations

dx
dt = −αy(t) + f(t), dy

dt = −βx+ g(t).

For a conventional-guerrilla combat, y(t) representing the guerrilla army, we
assume that the combat losses also depend on the size of its own army. As
guerrilla armies often use strategies of surprise and hidden attacks, it is safe
to assume that bigger losses are experienced when the army is larger. Let
−βx(t)y(t) denote the combat loss of a guerrilla army. By the same arguments
as above, we get equations

dx
dt = −αy(t) + f(t), dy

dt = −βx(t)y(t) + g(t).

Make two classes ProblemCCWar and ProblemGCWar on the same form as
ProblemConflict representing the new problems. Note that f and g are now
functions. To handle the case of the provided f and/or g not being functions,

50

you may need the commands callable(f) which checks if f a callable, and
isinstance(f, (float, int)) that checks if f is a float or int, in order to
convert a constant to a constant function.

Filename: CW_model.py

e) The battle of Iwo Jima is a famous battle during World War II. It was fought
on an island just outside of Japan. America invaded the island on February 19,
1945, and the fight lasted for 36 days. The Japanese army consisted of around
21500 soldiers, while the Americans had a number above 50000 by the 36th day.

During the war, the Japanese had no reinforcements. The Americans started
with no soldiers, but landed 54000 soldiers the first day, 6000 the third, 13000
the sixth, and none for the remaining. The reinforcements is therefore given as

f(t) =

54000 0 ≤ t < 1
0 1 ≤ t < 2
6000 2 ≤ t < 3
0 3 ≤ t < 5
13000 5 ≤ t < 6
0 t ≥ 6

It can be shown that good estimates for the parameter values are α = 0.0544
and β = 0.0106. The exact values on a day to day basis is given in the file
Casualties.dat. Plot the modeled American army vs the exact numbers, and
y(t) vs x(t). Both plots should have the x-axis corresponding to the first T = 36
days.

Filename: iwo_jima.py

f) Find the least number of soldiers Japan would need (according to the model)
to have won the fight. You may round to the nearest hundred. Hint: Check
which army decreases to zero first. You might want to extend the variable T for
this.

Filename: least_number.py

g) Suppose the Japanese army was interpreted as a guerrilla army. Find a
value for β such that the fight is close. Is it likely that the outcome would be
different if America met a large guerrilla army?

Filename: guerrilla.py

Problem E.11. Simulate the spreading of a disease
In this exercise we will model epidemiological diseases by implementing the
SIRD model. Suppose we have four categories of people: susceptible (S) who are
healthy but may contract the disease, infected (I) who have developed the disease
and can infect the susceptible population, recovered (R) who have recovered
from the disease and become immune, and the deceased (D) who did not survive
the disease. Let S(t), I(t), R(t) and D(t) be the number of people in category S,
I, R and D, respectively at time t. We have that S(t) + I(t) +R(t) +D(t) = N ,
where N is the size of the initial population. For simplicity, we will assume that
the populations otherwise remains constant.

51

Normal interaction between infected and susceptible members of the popula-
tion causes a fraction of the susceptible to contract the disease. The fraction of
the susceptible population that becomes infected will depend on the likelihood
of encountering an infected individual as well as how contagious the disease is.
This will be proportional to the number of infected members of the population.

During a time interval ∆t starting at time t, the fraction of the susceptible
population which contracts the disease is αI(t)∆t. The number of people that
moves from the S to the I category is given by

S(t+ ∆t) = S(t)− αS(t)I(t)∆t.

Divide by ∆t and let ∆→ 0 to get the differential equation:

S′(t) = −αS(t)I(t). (E.2)

Per time unit a fraction β of the infected will recover from the disease, and
a fraction γ of the infected will die as a result of the disease. In a time ∆t,
βI(t)∆t people of the infected population will recover and move from the I to
the R category, and γI(t)∆t dies and move from the I to the D category. In the
same time interval, αS(t)I(t)∆t from the S category will be infected and moved
to the I category. The accounting for the I category therefore becomes

I(t+ ∆t) = I(t) + αS(t)I(t)∆t− βI(t)∆t− γI(t)∆t,

which in the limit ∆t→ 0 becomes the differential equation

I ′(t) = αS(t)I(t)− βI(t)− γI(t). (E.3)

The R category gets contributions from the I category:

R(t+ ∆t) = R(t) + βI(t)∆t,

and the corresponding ODE for R reads

R′(t) = βI(t). (E.4)

Finally, the D category gets contributions from the I category as well:

D(t+ ∆t) = D(t) + γI(t)∆t,

and the corresponding ODE for D reads

D′(t) = γI(t). (E.5)

The system (E.2)-(E.5) is what we will call a SIRD model.

a) Make three separate functions: (i) SIRD(u,t) which defines the right hand
side of the ODE system of the SIRD model. The parameters α, β, γ can be
defined as local variables inside the function. (ii) A function solve_SIRD for
solving the system of differential equations in the SIRD model by a numerical
method of your choice from the ODESolver. (iii) A function plot_SIRD(u,t)
for visualising S(t), I(t), R(t) and D(t) in the same plot. Make sure to use
labels in the plot.

52

We will use the functions from a) to study the spreading of one of the most
devastating pandemics in human history, the Black Death. The Black Death,
also called the Plague, was evidently spread to Norway in 1349 after a ship from
England arrived in Bjørgvin (today Bergen), carrying the disease.

There lived approximately 7000 people in Bjørgvin in 1349. Let’s say the
ship crew consisted of 30 men, which were all infected with the Plague. For
simplicity we only consider human-to-human transmission of the disease (we do
not consider the rats and fleas). We are interested in how the disease developed
in Bjørgvin the first 8 weeks after the ship arrived.

We assume that the Plague was 90% deadly and that death usually occurred
four days after being infected.

b) Adding the equations shows that S′(t)+I ′(t)+R′(t)+D′(t) = 0, which means
that S(t) + I(t) +R(t) +D(t) must be constant. Perform a test at each time step
by checking that S(t)+I(t)+R(t)+D(t) equals S(0)+I(0)+R(0)+D(0) within
some small tolerance. Since ODESolver is used to solve the ODE system, the
test should be implemented as a user-specified terminate(u, t, k) function
that is called by the solve function at every time step. The terminate function
should simply print an error message and return True for if S + I +R+D is
not constant.

c) Visualise first how the disease develops when α = 6.5 · 10−5 and print out
the number of deceased after 63 days.

Certain precautions, like staying inside, will reduce α. Try α = 5.5 · 10−5

and compare the plot with the plot where α = 6.5 · 10−5. Comment how the α
influences S(t).

Use the constants β = 0.1/4 and γ = 0.9/4 to describe the Plague in Bjørgvin.
The initial conditions would be S(0) = 7000, I(0) = 30, R(0) = 0, D(0) = 0,
∆t = 1, and t ∈ [0, 63]. Time t here is given in days.

As there do not exist any exact data from the condition in Norway dur-
ing the Black Death, the parameters above are all fictional. However, there
is a broad consensus that the disease killed more than half of Norway’s pop-
ulation. Read more about the disease here: https://snl.no/svartedauden and
https://sml.snl.no/svartedauden.

Filename: bjorgvin.py

Problem E.12. Introduce classes in the SIRD model
Implement the SIRD model from exercise E.11 in a module called SIRD.py.
First we will create a class Region which can represent any region given the
specific initial conditions. Then we will create a problem class ProblemSIRD and
a solver class SolverSIRD to solve the SIRD system of differential equations for
a given region.

a) Create a class Region which has three methods, a constructor, a method
set_SIRD_values(self, u, t) and a method for plotting the SIRD values
plot(self, x_label).

The constructor should take in the name of the region and the initial con-
ditions S(0), I(0), R(0) and D(0). All five parameters should be stores as
attributes in the class. You will also need an attribute self.population which
is the total population of the region at t0.

53

The method set_SIRD_values(self, u, t) should take out the SIRD
values from u and store S, I, R, D and t as attributes of the class.

The method plot(self, x_label) should plot S, I, R and D in the same
plot. The string for the plt.xlabel should be given as a parameter (as the
units of time may vary), while the plt.ylabel should always be set to e.g
"Population". Set the title of the plot to be the name of the region. Specify color
and label for all the different SIRD categories (an example could be
plt.plot(self.t, self.S, label=’Susceptible’, color=’Blue’)). Do
not include plt.legend() or plt.show() in the code. This is because we may
later want to add labels to the graphs, and because will use this method to plot
several subplots.

In a main block in the bottom of the file, create an instance of class Region
called bjorgvin using the parameters found in Problem E.11.

b) Create the class ProblemSIRD. The constructor should take in the pa-
rameters α, β, γ and a region, which must be an instance of the class Region.
The parameter α in the SIRD model can be constant or function of time. The
implementation of ProblemSIRD should be such that α can be given as either a
constant or a Python function. The constructor should therefore look like this:

def __init__(self, region, alpha, beta, gamma):
if isinstance(alpha, (float, int)): # number?

self.alpha = lambda t: alpha # wrap as function
elif callable(alpha):

self.alpha = alpha
Store the other parameters
self.set_initial_condition() # method call

Write the method set_initial_condition(self) which stores a list
self.initial_condition containing the initial values of S(0), I(0), R(0), D(0)
(in this particular order). The initial values should be extracted from the class
attribute region.

Write a method get_population(self) which simply returns the value of
the population of the region, which is stored in the class attribute region.

Write a method solution(self, u, t) which simply calls the method
set_SIRD_values(u, t) of the class attribute region.

Finally, write a special method __call__(self, u, t) which represents
the right-hand side function of our SIRD system of ODEs. This method will
return a list of the calculated values of S′(t), I ′(t), R′(t) and D′(t), in that order.

In the main block, create an instance of class ProblemSIRD called problem
using the parameters found in Problem E.11 and the Region bjorgvin.

c) Now we will create a class SolverSIRD. The class constructor should take
the parameters problem (which must be an instance of class ProblemSIRD), T
(final time) and ∆t, and store them as attributes. The constructor should also
store an attribute called total_population, which is obtained by calling the
get_population method of problem.

Implement a method terminate which at each time step t checks that
S(t) + I(t) +R(t) +D(t) equals total_population within some small tolerance.
Simply print an error message and return True for termination if the total

54

population is not constant. As the ODESolver will be used to solve the ODE
system, this method will be called by the solve method in ODESolver at every
time step.

Write a method solve(self, method) that solves the SIRD system of
ODEs by a method of your choice from the ODESolver. Use the following sketch
for this method:

def solve(self, method=RungeKutta4):
solver = method(self.problem)
solver.set_initial_condition(...)
t = np.linspace(...)
Remember to "activate" terminate in the solve call:
u, t = solver.solve(t, self.terminate)
set the values of S, I, R, D, and t via
Problem class to the Region class:
self.problem.solution(u, t)

In the main block, create an instance of class SolverSIRD called solver
using the parameters found in Problem E.11 and the ProblemSIRD problem.
Plot the results by calling the plot(x_label) method of the Region bjorgvin.
Label the graphs by calling plt.legend() before you call plt.show().

Filename: SIRD.py

Problem E.13. The SIRD model across regions
The problem class from exercise E.12 will only be able to model the spreading of
a disease within one region. In this exercise we will improve our program with
subclasses of ProblemSIRD and Region that permits people in one region to get
infected by people from another region. The likelihood of transmission of disease
across regions will depend on the distance between the regions.

We now denote the categories to specify which region they belong, such that
e.g. Si(t) would be the number of susceptible in the i-th region at time t.

Let S′i(t), I ′i(t), R′i(t) and D′i(t) belong to the i-th region. In this new,
interacting SIRD model the expressions of R′i(t) and D′i(t) are unchanged from
the SIRD model explained in Problem E.11, such that

R′i(t) = βIi(t)
D′i(t) = γIi(t).

The expression of I ′i(t) must consider the possibility of members of the
population in the i-th region contracting the disease due to contact with another
region. The expression of the i-th region is given by

S′i =
M∑
j=1
−αIje−dijSi,

where M is the number of regions and dij is the distance between the i-th and
the j-th region. Note that the distance from a region to itself, dii, is always zero,
which leaves the expression unchanged from the previous SIRD model.

The derivative for the infected category is then

I ′i(t) = −βIi(t)− γIi(t)− S′i(t).

55

a) Create a subclass of Region called RegionInteraction. In addition to the
parameters in Region, the RegionInteraction needs two parameters latitude
(φ) and longitude (λ). The constructor should store the two values and convert
them from degrees to radii, which is done by multiplying by π

180◦ . Use the super
class to store the rest of the parameters as attributes.

Create a method distance(self, other) which calculates the distance
between the self region (i) and another region (j). The distance between two
regions is given by the arc length d between the regions:

dij = REarth∆σij ,

where the radius of the Earth is REarth = 64 given in units of 104 m and ∆σ is
given by

∆σij = arccos
(

sinφi sinφj + cosφi cosφj cos (|λi − λj |)
)
.

Warning: Roundoff error may cause problems in the arccos function, since the
arguments may become slightly > 1 when a city is compared with itself, and this
makes the function return a NaN (Not a Number) value. To avoid this problem,
add an if-test inside the distance function to ensure that the argument to arccos
is between 0 and 1.

b) Create a subclass ProblemInteraction of class ProblemSIRD. This class
should take in a list of regions that must be instances of RegionInteraction.
In adition to all the same parameters as its super class, the constructor of
ProblemInteraction should take in and store region_name. Send all other
parameters to the constructor in the super class.

The method get_population(self) should store the total population of
all the regions combined as self.total_population.

The method set_initial_condition(self) must create a (not nested)
list self.initial_condition with the initial values from all the regions. Loop
over all the regions in the list region to get the list on the form

[S1(0), I1(0), R1(0), D1(0), S2(0), I2(0), R2(0), D2(0), ..., DM (0)].

The special method __call__(self, u, t) should return a list with the
derivatives at time t, in the same order as the list self.initial_condition.
Below is a sketch of the implementation could look like:

def __call__(self, u, t):
n = len(self.region)
create a nested: SIRD_list[i] = [S_i, I_i, R_i, D_i]:
SIRD_list = [u[i:i+4] for i in range(0, len(u), 4)]
crate a list containing all the I(t)-values:
I_list = ...
derivative = []
for i in range(n):

S, I, R, D = SIRD_list[i]
dS = 0
for j in range(n):

I_other = I_list[j]

56

dS += ...
calculate dI, dR and dD
put the values in the end of derivative

return derivative

The method solution must provide the SIRD lists to all the regions. The
example below shows how to create a nested list where each element in the list
contains the SIRD lists for a certain region. You do not have to use this code,
but the result should be the same.

def solution(self, u, t):
n = len(t)
n_reg = len(self.region)
self.t = t
self.S = np.zeros(n)
self.I = ...
SIRD_list = [u[:, i:i+4] for i in range(0, n_reg*4, 4)]
for part, SIRD in zip(self.region, SIRD_list):

part.set_SIRD_values(SIRD, t)
self.S += ...

The attributes self.S, self.I, self.R and self.D should be the total values
for all the regions combined, i.e., each SIRD-category summed over all regions.

Create a new method plot(self, x_label). the method should create
the same kind of plot as class Region’s method plot(self, x_label), as
explained in Problem E.12. The method in ProblemInteraction should plot
the SIRD values for all the regions combined, and the title of the plot should be
self.region_name.

Filename: SIRD_interaction.py

Problem E.14. Simulate the spreading of the Plague in Norway
In this exercise we will use the classes ProblemInteraction, SolverSIRD and
RegionInteraction from Problem E.13 to simulate the spread of the Black
Death in Norway.

We assume that the disease first broke out in Bjørgvin in 1349, and that this
was the only case of the Plague in country at that time. We assume that the
disease ravaged for two years (104 weeks).

We divide Norway into five regions: Vestlandet, Sørlandet, Trøndelag,
Østafjells and Nord-Norge. We assume that there lived about 370000 peo-
ple in Norway; 90 000 in Vestlandet, 65 000 in Sørlandet, 80 000 in Østlandet,
70 000 in Trøndelag and 65 000 in Nord-Norge.

The positions of the regions are given by the latitude ang longitude of certain
city in each region, which are given in the table below:

Region city latitude longitude
Vestlandet Bjørgvin: 60° 5.3°
Sørlandet Øyslebø: 58° 7.6°
Østlandet Brandbu: 60° 11°
Trøndelag Steinkjer: 64° 11°
Nord-Norge Bardufoss: 69° 19°

57

a) Create a function for simulating the Plague in Norway. The function must
contain one instance of class RegionInteraction for each region. Let S(0) be
the population in each region. Except for I(0) = 30 in Vestlandet, let all the other
initial conditions be set to zero. Create a list of the five RegionInteraction
instances.

The function will plot one subplot of the disease progress of each region, and
also one subplot for the total progress for all regions combined. The function
could look like this:

def plague_Norway(alpha, beta, gamma, num_Weeks, dt):
create all five instances of regionInteraction
create a list containing all five regions
create problem, instance of ProblemInteraction
create solver, instance of SolverSIRD & call method solve
plt.figure(figsize=(.., ..)) # set figsize
index = 1
for each part in problem’s attribute region:

plt.subplot(2, 3, index)
Call plot method from current part
index += 1

plt.subplot(2, 3, index)
Call plot method from problem
plt.legend()
plt.show()
print the total percentage of deceased after two years

Hint: Write the percent sign twice (%%) to get % in a string.
Call the function using the parameters α = 7 · 10−6, β = 0.1/4 and γ = 0.9/4.

The unit of time is weeks. Solve for 104 weeks and set ∆t = 1/7 such that one
time step represent one day.

b) Until now we have assumed that α is constant. α is the parameter which
describes the possibility that one susceptible meets an infected during the time
interval ∆t with the result that the infected "successfully" infect the susceptible.
In reality, this α may probably not be constant. In times of bad weather, more
people would stay at home and α would be lower. Other factors could also
decrease alpha, like better hygiene and wearing masks over a certain period of
time. On the other hand; factors like nice weather, festivities and other reasons
for people to gather would increase α. As the Plague ravaged in Norway so long
ago it is hard to reproduce an accurate approximation of α. Let us therefore
assume that the weather and other factors made α look like this piecewise
function:

α(t) =

3 · 10−5 0 ≤ t ≤ 2
6 · 10−6 4 < t ≤ 19
6 · 10−6 24 < t ≤ 41
7 · 10−6 49 < t ≤ 75
1 · 10−6 else

Implement α(t) as a piecewise function alpha(t). Call plague_Norway using
the piecewise function for α(t). Keep the rest of the values from part a).

58

You may notice that by this model, the Plague barely reached Nord-Norge
at all. In fact, we aren’t even sure today whether the Plague ravaged in the
Northern part of Norway or not.

c) In the Norwegian legends, Pesta was the literal personification of the Plague.
Pesta was depicted as an old woman who wandered the countryside, carrying
either a rake or a broom. Legend has it that if she passed by your home while
carrying a rake, someone in the household would be infected by the plague while
the rest would be spared. However, if she was carrying a broom then there were
not much hope for anyone.

Implement a function pesta(t) where you generate a random number be-
tween 0 and 20. You can use the randint function imported from the random
module like this:

from random import randint
number = randint(0,20)

If the generated number is 13, Pesta is at your door carrying a broom. The
function should return ten times the value of alpha(t) from part b). If the
generated number is 4, then Pesta has brought her rake. The function should
return five times the value of alpha(t). Otherwise, Pesta is not around today,
and your function should return 0.4 times the value of alpha(t).

Call plague_Norway using the pesta(t) function for the parameter α. Keep
the rest of the values from part a). In which region was Pesta most present?

Filename: plague.py

59

	Introduction to Python
	Computing with Formulas
	Loops and Lists
	Functions and Branching
	User Input and Error Handling
	Array Computing and Curve Plotting
	Dictionaries and Strings
	Introduction to Classes
	Object-Oriented Programming
	Sequences and Difference Equations
	Programming of Differential Equations

