
Ch.5: User input and error handling

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Sep 13, 2021

0.1 Plan for week 37
Monday 13/9

• Exercises from last week:

– 2.15, 3.20, 3.28
– 3.23 left as self study

• Exercise 2.19, 2.20, 2.21 (roundoff errors)

• Exercise 3.7 (function and test function)

• Reading input from users:

– Stop and ask for input
– Command-line arguments
– Reading from files

Thursday 16/9

• Exercise 4.1, 4.2, 4.3, 4.4 (user input, file read/write)

• Handling errors with try-except

• Exercise 4.5

All exercises are from H.P. Langtangen’s "A Primer on..."

0.2 Programs until now hardcode input data
Example; evaluate the barometric formula

p = p0e−h/h0

from math import exp

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

h = 8848
p = p0 * exp(-h/h0)
print(p)

Note:

• The input altitude is hardcoded (explicitly set)

• Changing input data requires editing

• This is considered bad programming
(because editing programs may easily introduce errors)

• Rule: read input from user - avoid editing a correct program

0.3 How do professional programs get their input?

• Consider a web browser: how do you specify a web address? How do you
change the font?

• You don’t need to go into the program and edit it...

How can we specify input data?

• Ask the user questions and read answers

• Read command-line arguments

• Read data from a file

2

0.4 What about GUIs?

• Most programs today fetch input data from graphical user interfaces (GUI),
consisting of windows and graphical elements on the screen: buttons, menus,
text fields, etc.

• Why don’t we learn to make such type of programs?

– GUI demands much extra complicated programming
– Experienced users often prefer command-line input
– Programs with command-line or file input can easily be combined

with each other, this is difficult with GUI-based programs

• Command-line input will probably fill all your needs in university courses

0.5 Alternative 1: Stop and ask for input
Sample program:

from math import exp

h = input('Input the altitude (in meters):')
h = float(h)

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

p = p0 * exp(-h/h0)
print(p)

Running in a terminal window:
Terminal> python altitude.py
Input the altitude (in meters): 2469
74.53297273796525

0.6 Another example of using input

Ask the user for an integer n and print the n first even numbers:
n = int(input('n=? '))

for i in range(1, n+1):
print(2*i)

Notice the conversion of the input (i.e.‘int‘,‘float‘), which is needed since all input
is initially a text string.

3

0.7 Alternative 2: Command-line arguments
Example command-line arguments:

Terminal> python myprog.py arg1 arg2 arg3 ...
Terminal> cp -r yourdir ../mydir
Terminal> ls -l

Unix programs (rm, ls, cp, ...) make heavy use of command-line arguments,
(see e.g. man ls). We shall do the same.

0.8 How to use a command-line argument in our sample
program

The user wants to specify h as a command-line argument after the name of
the program when we run the program:

Terminal> python altitude_cml.py 2469
74.53297273796525

Command-line arguments are the “words” after the program name, and they
are stored in the list sys.argv:

import sys
from math import exp

h = float(sys.argv[1])

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

p = p0 * exp(-h/h0)
print(p)

0.9 Command-line arguments are separated by blanks
Here is another program print_cml.py:

import sys; print(sys.argv)

Demonstrations:
Terminal> python print_cml.py 1 2 3
['print_cml.py', '1', '2', '3']

Terminal> python print_cml.py string with blanks
['print_cml.py', 'string', 'with', 'blanks']

Terminal> python print_cml.py "string with blanks"
['print_cml.py', 'string with blanks']

Note 1: use quotes, as in "string with blanks", to override the rule that
command-line arguments are separated by blanks.

Note 2: all list elements are surrounded by quotes, demonstrating that
command-line arguments are strings.

4

0.10 Alternative conversion with the magic eval function

• eval(s) evaluates a string object s as if the string had been written
directly into the program

• Gives a more flexible alternative to converting with float(s)

>>> s = '1+2'
>>> r = eval(s)
>>> r
3
>>> type(r)
<type 'int'>

>>> r = eval('[1, 6, 7.5] + [1, 2]')
>>> r
[1, 6, 7.5, 1, 2]
>>> type(r)
<type 'list'>

0.11 With eval, a little program can do much
Program input_adder.py:

i1 = eval(input('Give input: '))
i2 = eval(input('Give input: '))
r = i1 + i2
print (f'{type(i1)} + {type(i2)} becomes {type(r)} \nwith value {r}')

0.12 This great flexibility also quickly breaks programs...

Terminal> python input_adder.py
operand 1: (1,2)
operand 2: [3,4]
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: can only concatenate tuple (not "list") to tuple

Terminal> python input_adder.py
operand 1: one
Traceback (most recent call last):

File "add_input.py", line 1, in <module>
i1 = eval(raw_input('operand 1: '))

File "<string>", line 1, in <module>
NameError: name 'one' is not defined

Terminal> python input_adder.py
operand 1: 4
operand 2: 'Hello, World!'
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: 'int' and 'str'

5

0.13 A similar magic function: exec

• eval(s) evaluates an expression s

• eval(’r = 1+1’) is illegal because this is a statement, not only an expres-
sion

• ...but we can use exec to turn one or more complete statements into live
code:

statement = 'r = 1+1' # store statement in a string
exec(statement)
print(r) # prints 2

For longer code we can use multi-line strings:

somecode = '''
def f(t):

term1 = exp(-a*t)*sin(w1*x)
term2 = 2*sin(w2*x)
return term1 + term2

'''
exec(somecode) # execute the string as Python code

0.14 Reading data from files
Scientific data are often available in files. We want to read the data into

objects in a program to compute with the data.

Example on a data file.
21.8
18.1
19
23
26
17.8

One number on each line. How can we read these numbers?

0.15 Reading a file line by line
Basic file reading:

infile = open('data.txt', 'r') # open file
for line in infile:

do something with line
infile.close() # close file

Compute the mean values of the numbers in the file:

6

infile = open('data.txt', 'r') # open file
mean = 0
lines = 0
for line in infile:

number = float(line) # line is string
mean = mean + number
lines += 1

infile.close()
mean = mean/lines
print(mean)

0.16 Alternative way to open a file
The modern with statement:

with open('data.txt', 'r') as infile:
for line in infile:

process line

Notice:
• All the code for processing the file is an indented block

• The file is automatically closed

0.17 Alternative ways to read a file
Read all lines at once into a list of strings (lines):

lines = infile.readlines()
infile.close()

for line in lines:
process line

Reading the whole file into a string:
text = infile.read()
process the string text

0.18 Most data files contain text mixed with numbers
File with data about rainfall:
Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970
Jan 81.2
Feb 63.2
Mar 70.3
Apr 55.7
May 53.0
Jun 36.4
Jul 17.5
Aug 27.5
Sep 60.9
Oct 117.7
Nov 111.0
Dec 97.9
Year 792.9

How do we read such a file?

7

0.19 Processing each line with split()

• The key idea to process each line is to split the line into words

• Python’s split method is extremely useful for splitting strings

General recipe:
months = []
values = []
for line in infile:

words = line.split() # split into words
if words[0] != 'Year':

months.append(words[0])
values.append(float(words[1]))

0.20 Become familiar with the split() method!

• By default, split() will split words separated by space

• We can specify any string s as separator: split(s)

>>> line = 'Oct 117.7'
>>> words = line.split()
>>> words
['Oct', '117.7,']
>>> type(words[1]) # string, not a number!
<type 'str'>
>>> line2 = 'output;from;excel'
>>> line2.split(';')
['output', 'from', 'excel']

0.21 Complete program for reading rainfall data

def extract_data(filename):
infile = open(filename, 'r')
infile.readline() # skip the first line
months = []
rainfall = []
for line in infile:

words = line.split()
words[0]: month, words[1]: rainfall
months.append(words[0])
rainfall.append(float(words[1]))

infile.close()
months = months[:-1] # Drop the "Year" entry
annual_avg = rainfall[-1] # Store the annual average
rainfall = rainfall[:-1] # Redefine to contain monthly data
return months, rainfall, annual_avg

months, values, avg = extract_data('rainfall.dat')

8

print('The average rainfall for the months:')
for month, value in zip(months, values):

print(month, value)
print('The average rainfall for the year:', avg)

0.22 Writing data to file
Basic pattern:

outfile = open(filename, 'w') # 'w' for writing

for data in somelist:
outfile.write(sometext + '\n')

outfile.close()

Can append text to a file with open(filename, ’a’).

0.23 Example: Writing a table to file
Problem: We have a nested list (rows and columns):

data = \
[[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

Write these data to file in tabular form

Solution:
outfile = open('tmp_table.dat', 'w')
for row in data:

for column in row:
outfile.write(f'{column:14.8f}')

outfile.write('\n')
outfile.close()

0.24 Back to a simple program that reads from the com-
mand line

Code:
import sys
from math import exp

h = float(sys.argv[1])

p0 = 100.0 #sea level pressure (kPa)
h0 = 8400 #scale height (m)

p = p0 * exp(-h/h0)
print(p)

9

Next topic: How to handle wrong input from the user?

0.25 The program stops with a strange error message if
the command-line argument is missing

A user can easily use our program in a wrong way, e.g.,

Terminal> python altitude.py
Traceback (most recent call last):

File "altitude.py", line 2, in ?
h = float(sys.argv[1])

IndexError: list index out of range

Why?

1. The user forgot to provide a command-line argument

2. sys.argv has then only one element, sys.argv[0], which is the program
name (altitude.py)

3. Index 1, in sys.argv[1], points to a non-existing element in the sys.argv
list

4. Any index corresponding to a non-existing element in a list leads to
IndexError

0.26 We should handle errors in input
How can we take control, explain what was wrong with the input, and stop

the program without strange Python error messages?

Program altitude_if.py

import sys
if len(sys.argv) < 2:

print 'You failed to provide a command-line arg.!'
sys.exit(1) # abort

...

Terminal> python altitude.py
You failed to provide a command-line arg.!

0.27 Exceptions as an alternative to if tests

• Rather than test if something is wrong, recover from error, else do what
we indended to do, it is common in Python (and many other languages) to
try to do what we indend to, and if it fails, we recover from the error

• This principle makes use of a try-except block

10

try:
<statements we intend to do>

except:
<statements for handling errors>

If something goes wrong in the try block, Python raises an exception and
the execution jumps immediately to the except block.

0.28 The temperature conversion program with try-except
Try to read h from the command-line, if it fails, tell the user, and abort

execution:

import sys
try:

h = float(sys.argv[1])
except:

print('You failed to provide a command line arg.!')
exit()

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

Execution:
Terminal> python altitude_cml_except1.py
You failed to provide a command line arg.!

Terminal> python altitude_cml_except1.py 2469m
You failed to provide a command line arg.!

0.29 It is good programming style to test for specific ex-
ceptions

It is good programming style to test for specific exceptions:

try:
h = float(sys.argv[1])

except IndexError:
print 'You failed to provide a command-line arg.!'

If we have an index out of bounds in sys.argv, an IndexError exception is
raised, and we jump to the except block.

If any other exception arises, Python aborts the execution:

Terminal> python altitude_cml_except1.py 2469m
Traceback (most recent call last):

File "altitude.py", line 3, in <module>
C = float(sys.argv[1])

ValueError: invalid literal for float(): 2469m

11

0.30 Improvement: test for IndexError and ValueError ex-
ceptions

import sys
try:

h = float(sys.argv[1])
except IndexError:

print('No command line argument for h!')
sys.exit(1) # abort execution

except ValueError:
print(f'h must be a pure number, not {sys.argv[1]}')
exit()

p0 = 100.0; h0 = 8400
print(p0 * exp(-h/h0))

Executions:
Terminal> python altitude.py
No command line argument for h!

Terminal> python altitude.py 2469m
The altitude must be a pure number, not "2469m"

0.31 The programmer can raise exceptions

• Instead of just letting Python raise exceptions, we can raise our own and
tailor the message to the problem at hand

• We provide two examples on this:

– catching an exception, but raising a new one with an improved (tai-
lored) error message

– raising an exception because of wrong input data

• Baisc syntax: raise ExceptionType(message)

0.32 Examples on re-raising exceptions with better mes-
sages

def read_altitude():
try:

h = float(sys.argv[1])
except IndexError:

re-raise, but with specific explanation:
raise IndexError(

'The altitude must be supplied on the command line.')
except ValueError:

12

re-raise, but with specific explanation:
raise ValueError(
f'Altitude must be number, not "{sys.argv[1]}".')

h is read correctly as a number, but has a wrong value:
if h < -430 or h > 13000:

raise ValueError(f'The formula is not valid for h={h}')
return h

0.33 Calling the previous function and running the pro-
gram

try:
h = read_altitude()

except (IndexError, ValueError) as e:
print exception message and stop the program
print(e)
exit()

Executions:
Terminal> python altitude_cml_except2.py
The altitude must be supplied on the command line.

Terminal> python altitude_cml_except2.py 1000m
Altitude must be number, not 1000m.

Terminal> python altitude_cml_except2.py 20000
The formula is not valid for h=20000.

Terminal> python altitude_cml_except2.py 8848
34.8773231887747

0.34 Making your own modules
We have frequently used modules like math and sys:

from math import log
r = log(6) # call log function in math module

import sys
x = eval(sys.argv[1]) # access list argv in sys module

Characteristics of modules:

• Collection of useful data and functions
(later also classes)

• Functions in a module can be reused in many different programs

• If you have some general functions that can be handy in more than one
program, make a module with these functions

• It’s easy: just collect the functions you want in a file, and that’s a module!

13

0.35 Case on making our own module
Here are formulas for computing with interest rates:

A = A0

(
1 + p

360 · 100

)n

, (1)

A0 = A
(

1 + p

360 · 100

)−n

, (2)

n =
ln A

A0

ln
(
1 + p

360·100
) , (3)

p = 360 · 100
((

A

A0

)1/n

− 1
)

. (4)

A0: initial amount, p: percentage, n: days, A: final amount

We want to make a module with these four functions.

0.36 First we make Python functions for the formuluas

from math import log as ln

def present_amount(A0, p, n):
return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):
return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):
return 360*100*((A/A0)**(1.0/n) - 1)

0.37 Then we can make the module file

• Collect the 4 functions in a file interest.py

• Now interest.py is actually a module interest (!)

Example on use:

How long time does it take to double an amount of money?

from interest import days
A0 = 1; A = 2; p = 5
n = days(A0, 2, p)
years = n/365.0
print(f'Money has doubled after {years:.1f} years')

14

0.38 Adding a test block in a module file

• Module files can have an if test at the end containing a test block for testing
or demonstrating the module

• The test block is not executed when the file is imported as a module in
another program

• The test block is executed only when the file is run as a program

if __name__ == '__main__': # this test defineds the test block
<block of statements>

In our case:

if __name__ == '__main__':
A = 2.2133983053266699
A0 = 2.0
p = 5
n = 730
A_ = present_amount(A0, p, n)
A0_ = initial_amount(A, p, n)
d_ = days(A0, A, p)
p_ = annual_rate(A0, A, n)
print(f'A={A_} ({A}) A0={A0_} ({A}) n={n_} ({n}) p={p_} ({p})')

0.39 Test blocks are often collected in functions
Let’s make a real test function for what we had in the test block:

def test_all_functions():
Define compatible values
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
Given three of these, compute the remaining one
and compare with the correct value (in parenthesis)
A_computed = present_amount(A0, p, n)
A0_computed = initial_amount(A, p, n)
n_computed = days(A0, A, p)
p_computed = annual_rate(A0, A, n)
def float_eq(a, b, tolerance=1E-12):

"""Return True if a == b within the tolerance."""
return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \
float_eq(A0_computed, A0) and \
float_eq(p_computed, p) and \
float_eq(n_computed, n)

assert success # could add message here if desired

if __name__ == '__main__':
test_all_functions()

15

0.40 How can Python find our new module?

• If the module is in the same folder as the main program, everything is
simple and ok

• Home-made modules are normally collected in a common folder, say
/Users/hpl/lib/python/mymods

• In that case Python must be notified that our module is in that folder

Technique 1: add folder to PYTHONPATH in .bashrc:

export PYTHONPATH=$PYTHONPATH:/Users/hpl/lib/python/mymods

Technique 2: add folder to sys.path in the program:

sys.path.insert(0, '/Users/hpl/lib/python/mymods')

Technique 3: move the module file in a directory that Python already searches
for libraries.

16

	Plan for week 37
	Programs until now hardcode input data
	How do professional programs get their input?
	What about GUIs?
	Alternative 1: Stop and ask for input
	Another example of using input
	Alternative 2: Command-line arguments
	How to use a command-line argument in our sample program
	Command-line arguments are separated by blanks
	Alternative conversion with the magic eval function
	With eval, a little program can do much
	This great flexibility also quickly breaks programs...
	A similar magic function: exec
	Reading data from files
	Reading a file line by line
	Alternative way to open a file
	Alternative ways to read a file
	Most data files contain text mixed with numbers
	Processing each line with split()
	Become familiar with the split() method!
	Complete program for reading rainfall data
	Writing data to file
	Example: Writing a table to file
	Back to a simple program that reads from the command line
	The program stops with a strange error message if the command-line argument is missing
	We should handle errors in input
	Exceptions as an alternative to if tests
	The temperature conversion program with try-except
	It is good programming style to test for specific exceptions
	Improvement: test for IndexError and ValueError exceptions
	The programmer can raise exceptions
	Examples on re-raising exceptions with better messages
	Calling the previous function and running the program
	Making your own modules
	Case on making our own module
	First we make Python functions for the formuluas
	Then we can make the module file
	Adding a test block in a module file
	Test blocks are often collected in functions
	How can Python find our new module?

