
Ch.6: Array computing and curve
plotting

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Sep 20, 2021

0.1 Plan for week 38
Monday 20 september

• Quick recap of last week

• Magic functions ’eval’ and ’exec’ (left from last week)

• Intro to NumPy arrays and plotting

• Live programming of ex 4.6, 5.7, 5.9, (5.10, 5.11)

Thursday 23 september

• Live programming of ex 5.10, 5.11, 5.13

• Making movies and animations from plots

0.2 Recap from last week - user input
Alternative 1:

The function input makes the program stop and wait for user input:
var = input('Please provide some input data:')

Simple and intuitive to use, slow and annoying in the long run
Alternative 2:

Use sys.argv to access command line arguments:
import sys
var = sys.argv[1]

Run the program from the terminal:
python myprog.py 2.05

Or in iPython/Spyder:
run myprog.py 2.05

0.3 Recap from last week - file read/write
Reading from a file:

with open('myfile.txt','r') as infile:
l = infile.readline() #read a single line

for line in infile:
words = line.split()
var = float(words[-1]) # etc

Write to a file:
data = [...]
with open('myfile.txt','w') as outfile:

for myvar in data:
outfile.write(myvar)
outfile.write('\n') #linebreak

0.4 Recap from last week - error handling
Handle wrong input with a try/except block:

import sys
try:

h = float(sys.argv[1])
except IndexError:

print('No command line argument for h!')
sys.exit(1) # abort execution

except ValueError:
print(f'h must be a pure number, not {sys.argv[1]}')
exit()

0.5 Recap from last week - data conversion

• All input data is text (type str)

• We usually want numbers, and need to convert with var = float(var)

• What if we want to input something else; a list, a mathematical formula,
etc.?

2

0.6 Alternative conversion with the magic eval function

• eval(s) evaluates a string object s as if the string had been written
directly into the program

• Gives a more flexible alternative to converting with float(s)

>>> s = '1+2'
>>> r = eval(s)
>>> r
3
>>> type(r)
<type 'int'>

>>> r = eval('[1, 6, 7.5] + [1, 2]')
>>> r
[1, 6, 7.5, 1, 2]
>>> type(r)
<type 'list'>

0.7 With eval, a little program can do much
Program input_adder.py:

i1 = eval(input('Give input: '))
i2 = eval(input('Give input: '))
r = i1 + i2
print (f'{type(i1)} + {type(i2)} becomes {type(r)} \nwith value {r}')

0.8 This great flexibility also quickly breaks programs...

Terminal> python input_adder.py
operand 1: (1,2)
operand 2: [3,4]
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: can only concatenate tuple (not "list") to tuple

Terminal> python input_adder.py
operand 1: one
Traceback (most recent call last):

File "add_input.py", line 1, in <module>
i1 = eval(raw_input('operand 1: '))

File "<string>", line 1, in <module>
NameError: name 'one' is not defined

Terminal> python input_adder.py
operand 1: 4
operand 2: 'Hello, World!'
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: 'int' and 'str'

3

0.9 A similar magic function: exec

• eval(s) evaluates an expression s

• eval(’r = 1+1’) is illegal because this is a statement, not only an expres-
sion

• ...but we can use exec to turn one or more complete statements into live
code:

statement = 'r = 1+1' # store statement in a string
exec(statement)
print(r) # prints 2

For longer code we can use multi-line strings:
somecode = '''
def f(t):

term1 = exp(-a*t)*sin(w1*x)
term2 = 2*sin(w2*x)
return term1 + term2

'''
exec(somecode) # execute the string as Python code

0.10 Goal: learn to visualize functions

0.11 We need to learn about a new object: array

• Curves y = f(x) are visualized by drawing straight lines between points
along the curve

4

• Need to store the coordinates of the points along the curve in lists or arrays
x and y

• Arrays ≈ lists, but computationally much more efficient

• To compute the y coordinates (in an array) we need to learn about array
computations or vectorization

• Array computations are useful for much more than plotting curves!

0.12 The minimal need-to-know about vectors

• Vectors are known from high school mathematics, e.g.,
point (x, y) in the plane, point (x, y, z) in space

• In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

• Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

0.13 Arrays can have more than one index
Just as nested lists, arrays can have multiple indices: Ai,j , Ai,j,k

Example: table of numbers, one index for the row, one for the column

 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

 A =

 A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1

• The no of indices in an array is the rank or number of dimensions

• Vector = one-dimensional array, or rank 1 array

• In Python code, we use Numerical Python arrays instead of nested lists
to represent mathematical arrays (because this is computationally more
efficient)

5

0.14 Storing (x,y) points on a curve in lists
Collect points on a function curve y = f(x) in lists:

def f(x):
return x**3

n = 5 # no of points
dx = 1.0/(n-1) # x spacing in [0,1]

for i in range(n):
x.append(i*dx)
y.append(f(x))

#turn lists into NumPy arrays
import numpy as np # module for arrays
x = np.array(xlist) # turn list xlist into array
y = np.array(ylist)

0.15 Make arrays directly (instead of lists)
Or drop the lists and make NumPy arrays directly:

>>> n = 5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)
>>> for i in range(n):
... y[i] = f(x[i])
...

0.16 Arrays are not as flexible as list, but computationally
much more efficient

• List elements can be any Python objects

• Array elements can only be of one object type

• Arrays are very efficient to store in memory and compute with
if the element type is float, int, or complex

• Rule: use arrays for sequences of numbers!

0.17 We can work with entire arrays at once - instead of
one element at a time

Compute the sine of an array:

from math import sin

for i in range(len(x)):
y[i] = sin(x[i])

6

However, if x is array, y can be computed by
import numpy as np
y = np.sin(x) # x: array, y: array

The loop is now inside np.sin and implemented in very efficient C code.

Vectorization gives:
• shorter, more readable code, closer to the mathematics

• much faster code

0.18 A function f(x) written for a number x usually works
for array x too

from numpy import sin, exp, linspace

def f(x):
return x**3 + sin(x)*exp(-3*x)

x = 1.2 # float object
y = f(x) # y is float

x = linspace(0, 3, 10001) # 10000 intervals in [0,3]
y = f(x) # y is array

0.19 NOTE: math is for numbers and numpy for arrays
>>> import math, numpy
>>> x = numpy.linspace(0, 1, 11)
>>> math.sin(x[3])
0.2955202066613396
>>> math.sin(x)
...
TypeError: only length-1 arrays can be converted to Python scalars
>>> numpy.sin(x)
array([0. , 0.09983, 0.19866, 0.29552, 0.38941,

0.47942, 0.56464, 0.64421, 0.71735, 0.78332,
0.84147])

0.20 Very important application: vectorized code for com-
puting points along a curve

f(x) = x2e− 1
2 x sin(x− 1

3π), x ∈ [0, 4π]

Vectorized computation of n+ 1 points along the curve.
import numpy as np

n = 100
x = np.linspace(0, 4*pi, n+1)
y = 2.5 + x**2*np.exp(-0.5*x)*np.sin(x-pi/3)

7

0.21 New term: vectorization

• Scalar : a number

• Vector or array: sequence of numbers (vector in mathematics)

• We speak about scalar computations (one number at a time) versus vec-
torized computations (operations on entire arrays, no Python loops)

• Vectorized functions can operate on arrays (vectors)

• Vectorization is the process of turning a non-vectorized algorithm with
(Python) loops into a vectorized version without (Python) loops

• Mathematical functions in Python without if tests automatically work for
both scalar and vector (array) arguments (i.e., no vectorization is needed
by the programmer)

0.22 Small quiz:
What is output from the following code? Why?

import numpy as np

l = [0,0.25,0.5,0.75,1]
a = np.array(l)

print(l*2)
print(a*2)

0.23 Plotting the curve of a function: the very basics
Plot the curve of y(t) = t2e−t2 :

import matplotlib.pyplot as plt # import and plotting
import numpy as np

Make points along the curve
t = np.linspace(0, 3, 51) # 50 intervals in [0, 3]
y = t**2*np.exp(-t**2) # vectorized expression

plt.plot(t, y) # make plot on the screen
plt.savefig('fig.pdf') # make PDF image for reports
plt.savefig('fig.png') # make PNG image for web pages
plt.show()

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.24 A plot should have labels on axis and a title

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y

My First Matplotlib Demo

t^2*exp(-t^2)

0.25 The code that makes the last plot

import matplotlib.pyplot as plt
import numpy as np

def f(t):
return t**2*np.exp(-t**2)

9

t = np.linspace(0, 3, 51) # t coordinates
y = f(t) # corresponding y values

plt.plot(t, y,label="t^2*exp(-t^2)")

plt.xlabel('t') # label on the x axis
plt.ylabel('y') # label on the y axix
plt.legend() # mark the curve
plt.axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
plt.title('My First Matplotlib Demo')
plt.show()

0.26 Plotting several curves in one plot
Plot t2e−t2 and t4e−t2 in the same plot:

import matplotlib.pyplot as plt
import numpy as np

def f1(t):
return t**2*np.exp(-t**2)

def f2(t):
return t**2*f1(t)

t = np.linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plt.plot(t, y1, 'r-', label = 't^2*exp(-t^2)')
plt.plot(t, y2, 'bo', label = 't^4*exp(-t^2)')

plt.xlabel('t')
plt.ylabel('y')
plt.legend()
plt.title('Plotting two curves in the same plot')
plt.savefig('tmp2.png')
plt.show()

10

0.27 The resulting plot with two curves

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y

Plotting two curves in the same plot

t^2*exp(-t^2)
t^4*exp(-t^2)

0.28 Controlling line styles
When plotting multiple curves in the same plot, the different lines (normally)

look different. We can control the line type and color, if desired:

plot(t, y1, 'r-') # red (r) line (-)
plot(t, y2, 'bo') # blue (b) circles (o)

or
plot(t, y1, 'r-', t, y2, 'bo')

Documentation of colors and line styles, see the online Matplotlib documen-
tation or

Unix> pydoc matplotlib.pyplot

0.29 Quick plotting with minimal typing
A lazy pro would do this:

t = np.linspace(0, 3, 51)
plt.plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

11

0.30 Example: plot a discontinuous function
The Heaviside function is frequently used in science and engineering:

H(x) =
{

0, x < 0
1, x ≥ 0

Python implementation:

def H(x):
if x < 0:

return 0
else:

return 1

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

0.31 Plotting the Heaviside function: first try
Standard approach:

x = np.linspace(-10, 10, 5) # few points (simple curve)
y = H(x)
plt.plot(x, y)

First problem: ValueError error in H(x) from if x < 0
Let us debug in an interactive shell:

>>> x = np.linspace(-10,10,5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

12

0.32 if x < 0 does not work if x is array
Remedy 1: use a loop over x values.

def H_loop(x):
r = zeros(len(x)) # or r = x.copy()
for i in range(len(x)):

r[i] = H(x[i])
return r

n = 5
x = np.linspace(-5, 5, n+1)
y = H_loop(x)

#or loop over x and call the original function
y = np.zeros_like(x)
for i in range(len(x)):

y[i] = H(x[i])

Downside: much to write, slow code if n is large

0.33 if x < 0 does not work if x is array
Remedy 2: use numpy.vectorize.

Automatic vectorization of function H
Hv = np.vectorize(H)
Hv(x) works with array x

Downside: The resulting function is as slow as Remedy 1

0.34 if x < 0 does not work if x is array
Remedy 3: code the if test differently.

def Hv(x):
return np.where(x < 0, 0.0, 1.0)

More generally:
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

13

0.35 Back to plotting the Heaviside function
With a vectorized Hv(x) function we can plot in the standard way

x = linspace(-10, 10, 5) # linspace(-10, 10, 50)
y = Hv(x)
plot(x, y, axis=[x[0], x[-1], -0.1, 1.1])

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

0.36 How to make the function look discontinuous in the
plot?

We could use a lot of x points to make the curve look steeper, but it does still
not really look like a discontinuous function.

Question. How can we make the plot look like a proper discontinuous function?

0.37 Example: Plot function given on the command line
Task: plot function given on the command line.

Terminal> python plotf.py expression xmin xmax
Terminal> python plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Should plot e−0.2x sin(2πx), x ∈ [0, 4π]. plotf.py should work for “any” mathe-
matical expression.

0.38 Solution
Complete program:

from numpy import *
import matplotlib.pyplot as plt
import sys

formula = sys.argv[1]
xmin = eval(sys.argv[2])

14

xmax = eval(sys.argv[3])

x = linspace(xmin, xmax, 101)
y = eval(formula)
plt.plot(x, y)
plt.title(formula)
plt.show()

0.39 Let’s make a movie/animation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

0.40 The Gaussian/bell function

f(x;m, s) = 1√
2π

1
s

exp
[
−1

2

(
x−m
s

)2
]

• m is the location of the peak

• s is a measure of the width of the function

• Make a movie (animation) of how f(x;m, s) changes shape as s goes from
2 to 0.2

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

0.41 Movies are made from a (large) set of individual plots

• Goal: make a movie showing how f(x) varies in shape as s decreases

• Idea: put many plots (for different s values) together
(exactly as a cartoon movie)

• Very important: fix the y axis! Otherwise, the y axis always adapts to the
peak of the function and the visual impression gets completely wrong

0.42 Three alternative recipes

1. Let the animation run live, without saving any files

• Not possible to pause, slow down etc

2. Loop over all data values, plot and make a hardcopy (file) for each value,
combine all hardcopies to a movie

• Requires separate software (for instance ImageMagick) to see the
animation

3. Use a ’FuncAnimation’ object from ’matplotlib’

• Plays the animation live
• Relies on external software to save a movie file

16

0.43 Alt. 1: General idea

• Fix the axes!

• Use a ’for’-loop to loop over s-values

• Compute new y-values and update the plot for each run through the loop

0.44 Alt. 1: Complete code

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y) #Returns a list of line objects!

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel('x')
plt.ylabel('f')

for s in s_values:
y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.pause(0.1)

0.45 Alt. 2: General idea

• Same ’for’-loop as alternative 1

• Use ’printf’-formatting to generate a unique file name for each plot

• Save file

17

0.46 Alt. 2: Complete code

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y)

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel('x')
plt.ylabel('f')

frame_counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.savefig(f'tmp_{frame_counter:04d}.png') #unique filename
frame_counter += 1

0.47 How to combine plot files to a movie (video file)
We now have a lot of files:

tmp_0000.png tmp_0001.png tmp_0002.png ...

We use some program to combine these files to a video file:

• convert for animated GIF format (if just a few plot files)

• ffmpeg (or avconv) for MP4, WebM, Ogg, and Flash formats

0.48 Make and play animated GIF file
Tool: convert from the ImageMagick software suite.
Unix command:
Terminal> convert -delay 20 tmp_*.png movie.gif

Delay: 30/100 s, i.e., 0.5 s between each frame.
Play animated GIF file with animate from ImageMagick:
Terminal> animate movie.gif

or open the file in a browser.

18

0.49 Alt. 3: General idea

• Make a function to update the plot:

– Updates the plot by calculating values and calling set_ydata

– (Optional function to initialize the plot)

• Make a list or array of the argument that changes (here s)

• Pass the function and the list as arguments to create a FuncAnimation
object

• Use functions in that object to animate, save a movie file etc.

0.50 Alt. 3: Complete code

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start,s_stop,30)

x = np.linspace(-3*s_start,3*s_start, 1000)

max_f = f(m,m,s_stop)

plt.axis([x[0],x[-1],0,max_f])
plt.xlabel('x')
plt.ylabel('y')

y = f(x,m,s_start)
lines = plt.plot(x,y) #initial plot to create the lines object

def next_frame(frame):
y = f(x, m, frame)
lines[0].set_ydata(y)
return lines

ani = FuncAnimation(plt.gcf(), next_frame, frames=s_values, interval=100)
ani.save('movie.mp4',fps=20)
plt.show()

0.51 Notes on making movies

• Making actual movie files require external software such as ImageMagick
or ffmpeg

19

• The software may be tricky to install (simple recipes exist, but don’t always
work)

• For the animation assignments in this course, you do not have to make
movie files. You either:

– Use Alt 1 or Alt 3 to make the animation run live
– Use Alt 2 to create a lot of image files

• If you can also make the movie files this is great, but it will not be required

20

	Plan for week 38
	Recap from last week - user input
	Recap from last week - file read/write
	Recap from last week - error handling
	Recap from last week - data conversion
	Alternative conversion with the magic eval function
	With eval, a little program can do much
	This great flexibility also quickly breaks programs...
	A similar magic function: exec
	Goal: learn to visualize functions
	We need to learn about a new object: array
	The minimal need-to-know about vectors
	Arrays can have more than one index
	Storing (x,y) points on a curve in lists
	Make arrays directly (instead of lists)
	Arrays are not as flexible as list, but computationally much more efficient
	We can work with entire arrays at once - instead of one element at a time
	A function f(x) written for a number x usually works for array x too
	NOTE: math is for numbers and numpy for arrays
	Very important application: vectorized code for computing points along a curve
	New term: vectorization
	Small quiz:
	Plotting the curve of a function: the very basics
	A plot should have labels on axis and a title
	The code that makes the last plot
	Plotting several curves in one plot
	The resulting plot with two curves
	Controlling line styles
	Quick plotting with minimal typing
	Example: plot a discontinuous function
	Plotting the Heaviside function: first try
	if x < 0 does not work if x is array
	if x < 0 does not work if x is array
	if x < 0 does not work if x is array
	Back to plotting the Heaviside function
	How to make the function look discontinuous in the plot?
	Example: Plot function given on the command line
	Solution
	Let's make a movie/animation
	The Gaussian/bell function
	Movies are made from a (large) set of individual plots
	Three alternative recipes
	Alt. 1: General idea
	Alt. 1: Complete code
	Alt. 2: General idea
	Alt. 2: Complete code
	How to combine plot files to a movie (video file)
	Make and play animated GIF file
	Alt. 3: General idea
	Alt. 3: Complete code
	Notes on making movies

