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0.1 Plan for Week 43
Monday Oct 25:

• Exercise 6.11, 7.3, 7.10, 7.11, 7.12

• Introduction to object-oriented programming (OOP)

Thursday Oct 28:

• Exercise 7.25

• More about OOP:

– Classes for lines and parabolas
– Classes for numerical differentiation
– (Classes for numerical integration)

0.2 The title Object-oriented programming (OOP) may
mean two different things

1. Programming with classes and objects (better: object-based programming)

2. Programming with class hierarchies (class families)



0.3 New concept: collect classes in families (hierarchies)
What is a class hierarchy?

• A family of closely related classes

• A key concept is inheritance: child classes can inherit attributes and
methods from parent class(es) - this saves much typing and code duplication

OO is a Norwegian invention by Ole-Johan Dahl and Kristen Nygaard in the
1960s - one of the most important inventions in computer science, because OO
is used in all big computer systems today!

0.4 Object-oriented programming

• Everything in Python is an object, so all Python-programming is object-
based

• Object-oriented programming (OOP) takes the ideas of classes and pro-
gramming a step further

• We exploit a very useful property of classes; that they can be combined
and reused as building blocks.

• If we define a class class A, we can define a second class class B(A).

• Class B inherits all attributes and methods from A

• Class becomes an extension of class A

• We say that A is a superclass or base class, and B is a subclass of A

0.5 OOP in Python and scientific programming

• OO is less important in Python than in C++, Java and C#, so the benefits
of OO are less obvious in Python

• Our examples on OOP employ numerical methods for
∫ b

a
f(x)dx, f ′(x),

u′ = f(u, t) - make sure you understand the simplest of these numerical
methods before you study the combination of OOP and numerics

• Our goal: write general, reusable modules with lots of methods for numeri-
cal computing of

∫ b

a
f(x)dx, f ′(x), u′ = f(u, t)
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0.6 OOP fundamentals - inheritance

class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def g(self, x):

return x**4

class C(B):
def h(self, x):

return x**6

We have now defined three classes

• A: two attributes (v0, v1) and two methods (__init__, f)

• B: two attributes (v0, v1) and three methods (__init__, f, g)

• C: two attributes (v0, v1) and four methods (__init__, f, g, h)

0.7 Why is OOP more important in other languages?
Languages like Java and C++ have static typing. A function is declared to

take input arguments of a certain type:
void my_func(A my_obj)
{

...
}

OOP gives extra flexibility, since this function will also accept arguments of
classes B and C.

OOP is still very useful in Python, to avoid code duplication and produce
structured and readable code!

0.8 OOP fundamentals - overriding methods
A subclass can override methods in the superclass. Say we want to add some
extra attributes in a subclass:
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class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def __init__(self,v0,v1,v2):

self.v0 = v0
self.v1 = v1
self.v2 = v2

def g(self, x):
return x**4

Usage:
a = A(v0=1, v1=2) #calling A.__init__
b = B(v0=1, v1=2, v3=3) #calling B.__init__

0.9 The overridden method can still be called
A more elegant implementation looks like:

class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def __init__(self,v0,v1,v2):

super().__init__(v0,v1) #or A.__init__(self.v0,v1)
self.v2 = v2

def g(self, x):
return x**4

0.10 Example: a class for straight lines
Problem: Make a class for evaluating lines y = c0 + c1x.

Code:
class Line:

def __init__(self, c0, c1):
self.c0, self.c1 = c0, c1

4



def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += f'{x:12g} {x:12g}\n'

return s

0.11 A class for parabolas
Problem: Make a class for evaluating parabolas y = c0 + c1x+ c2x

2.

Code:
class Parabola:

def __init__(self, c0, c1, c2):
self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += f'{x:12g} {x:12g}\n'

return s

Observation: This is almost the same code as class Line, except for the things
with c2

0.12 Class Parabola as a subclass of Line; principles

• Parabola code = Line code + a little extra with the c2 term

• Can we utilize class Line code in class Parabola?

• This is what inheritance is about!

Writing

class Parabola(Line):
pass

makes Parabola inherit all methods and attributes from Line, so Parabola
has attributes c0 and c1 and three methods
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• Line is a superclass, Parabola is a subclass
(parent class, base class; child class, derived class)

• Class Parabola must add code to Line’s constructor (an extra c2 attribute),
__call__ (an extra term), but table can be used unaltered

• The idea is to reuse as much code in Line as possible and avoid duplicating
code

0.13 Class Parabola as a subclass of Line; code
A subclass method can call a superclass method in this way:

superclass_name.method(self, arg1, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, c1, c2):

super().__init__(self, c0, c1) # Line stores c0, c1
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

What is gained?

• Class Parabola just adds code to the already existing code in class Line -
no duplication of storing c0 and c1, and computing c0 + c1x

• Class Parabola also has a table method - it is inherited

• __init__ and __call__ are overridden or redefined in the subclass

0.14 We can check class type and class relations with
isinstance(obj, type) and issubclass(subclassname,
superclassname)

>>> from Line_Parabola import Line, Parabola
>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
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>>> isinstance(p, Line)
True

>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False

>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
'Parabola'

0.15 Line as a subclass of Parabola

• Subclasses are often special cases of a superclass

• A line c0 + c1x is a special case of a parabola c0 + c1x+ c2x
2

• Can Line be a subclass of Parabola?

• No problem - this is up to the programmer’s choice

• Many will prefer this relation between a line and a parabola

0.16 Code when Line is a subclass of Parabola

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += '%12g %12g\n' % (x, y)

return s

class Line(Parabola):
def __init__(self, c0, c1):

super().__init__(self, c0, c1, 0)

Note: __call__ and table can be reused in class Line!

0.17 Recall the class for numerical differentiation from
Ch. 8

f ′(x) ≈ f(x+ h)− f(x)
h
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class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

def f(x):
return exp(-x)*cos(tanh(x))

from math import exp, cos, tanh
dfdx = Derivative(f)
print dfdx(2.0)

0.18 There are numerous formulas for numerical differen-
tiation

f ′(x) = f(x+ h)− f(x)
h

+O(h)

f ′(x) = f(x)− f(x− h)
h

+O(h)

f ′(x) = f(x+ h)− f(x− h)
2h +O(h2)

f ′(x) = 4
3
f(x+ h)− f(x− h)

2h − 1
3
f(x+ 2h)− f(x− 2h)

4h +O(h4)

f ′(x) = 3
2
f(x+ h)− f(x− h)

2h − 3
5
f(x+ 2h)− f(x− 2h)

4h +

1
10
f(x+ 3h)− f(x− 3h)

6h +O(h6)

f ′(x) = 1
h

(
−1

6f(x+ 2h) + f(x+ h)− 1
2f(x)− 1

3f(x− h)
)

+O(h3)

0.19 How can we make a module that offers all these for-
mulas?

It’s easy:
class Forward1:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1:
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def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2:
# same constructor
# put relevant formula in __call__

0.20 What is the problem with this type of code?
All the constructors are identical so we duplicate a lot of code.

• A general OO idea: place code common to many classes in a superclass
and inherit that code

• Here: inhert constructor from superclass,
let subclasses for different differentiation formulas implement their version
of __call__

0.21 Class hierarchy for numerical differentiation
Superclass:

class Diff:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

Subclass for simple 1st-order forward formula:
class Forward1(Diff):

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

Subclass for 4-th order central formula:
class Central4(Diff):

def __call__(self, x):
f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)
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0.22 Use of the differentiation classes
Interactive example: f(x) = sin x, compute f ′(x) for x = π

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin'(pi):
>>> mycos(pi)
-1.000000082740371

Central4(sin) calls inherited constructor in the superclass, while mycos(pi)
calls __call__ in the subclass Central4

0.23 Formulas for numerical integration
There are numerous formulas for numerical integration and all of them can be

put into a common notation:∫ b

a

f(x)dx ≈
n−1∑
i=0

wif(xi)

wi: weights, xi: points (specific to a certain formula)

The Trapezoidal rule has h = (b− a)/(n− 1) and

xi = a+ ih, w0 = wn−1 = h

2 , wi = h (i 6= 0, n− 1)

The Midpoint rule has h = (b− a)/n and

xi = a+ h

2 + ih, wi = h

0.24 More formulas
Simpson’s rule has

xi = a+ ih, h = b− a
n− 1

w0 = wn−1 = h

6

wi = h

3 for i even, wi = 2h
3 for i odd

Other rules have more complicated formulas for wi and xi
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0.25 Why should these formulas be implemented in a class
hierarchy?

• A numerical integration formula can be implemented as a class: a, b and
n are attributes and an integrate method evaluates the formula

• All such classes are quite similar: the evaluation of
∑

j wjf(xj) is the same,
only the definition of the points and weights differ among the classes

• Recall: code duplication is a bad thing!

• The general OO idea: place code common to many classes in a superclass
and inherit that code

• Here we put
∑

j wjf(xj) in a superclass (method integrate)

• Subclasses extend the superclass with code specific to a math formula, i.e.,
wi and xi in a class method construct_rule

0.26 The superclass for integration

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError('no rule in class %s' % \

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

def vectorized_integrate(self, f):
# f must be vectorized for this to work
return dot(self.weights, f(self.points))

0.27 A subclass: the Trapezoidal rule

class Trapezoidal(Integrator):
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))
w[1:-1] += h
w[0] = h/2; w[-1] = h/2
return x, w
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0.28 Another subclass: Simpson’s rule

• Simpson’s rule is more tricky to implement because of different formulas
for odd and even points

• Don’t bother with the details of wi and xi in Simpson’s rule now - focus
on the class design!

class Simpson(Integrator):

def construct_method(self):
if self.n % 2 != 1:

print 'n=%d must be odd, 1 is added' % self.n
self.n += 1

<code for computing x and w>
return x, w

0.29 About the program flow
Let us integrate

∫ 2
0 x

2dx using 101 points:

def f(x):
return x*x

method = Simpson(0, 2, 101)
print method.integrate(f)

Important:

• method = Simpson(...): this invokes the superclass constructor, which
calls construct_method in class Simpson

• method.integrate(f) invokes the inherited integrate method, defined
in class Integrator

0.30 Summary of object-orientation principles

• A subclass inherits everything from the superclass

• When to use a subclass/superclass?

– if code common to several classes can be placed in a superclass
– if the problem has a natural child-parent concept
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• The program flow jumps between super- and sub-classes

• It often takes time to master when and how to use OOP

• Typical exercise in OOP; when creating a subclass, examine the superclass
to identify the parts that can be reused, and what needs to be added.
Often, the subclass definition can be quite short!
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