
Ch.9: Object-oriented programming

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Oct 24, 2021

0.1 Plan for Week 43
Monday Oct 25:

• Exercise 6.11, 7.3, 7.10, 7.11, 7.12

• Introduction to object-oriented programming (OOP)

Thursday Oct 28:

• Exercise 7.25

• More about OOP:

– Classes for lines and parabolas
– Classes for numerical differentiation
– (Classes for numerical integration)

0.2 The title Object-oriented programming (OOP) may
mean two different things

1. Programming with classes and objects (better: object-based programming)

2. Programming with class hierarchies (class families)

0.3 New concept: collect classes in families (hierarchies)
What is a class hierarchy?

• A family of closely related classes

• A key concept is inheritance: child classes can inherit attributes and
methods from parent class(es) - this saves much typing and code duplication

OO is a Norwegian invention by Ole-Johan Dahl and Kristen Nygaard in the
1960s - one of the most important inventions in computer science, because OO
is used in all big computer systems today!

0.4 Object-oriented programming

• Everything in Python is an object, so all Python-programming is object-
based

• Object-oriented programming (OOP) takes the ideas of classes and pro-
gramming a step further

• We exploit a very useful property of classes; that they can be combined
and reused as building blocks.

• If we define a class class A, we can define a second class class B(A).

• Class B inherits all attributes and methods from A

• Class becomes an extension of class A

• We say that A is a superclass or base class, and B is a subclass of A

0.5 OOP in Python and scientific programming

• OO is less important in Python than in C++, Java and C#, so the benefits
of OO are less obvious in Python

• Our examples on OOP employ numerical methods for
∫ b

a
f(x)dx, f ′(x),

u′ = f(u, t) - make sure you understand the simplest of these numerical
methods before you study the combination of OOP and numerics

• Our goal: write general, reusable modules with lots of methods for numeri-
cal computing of

∫ b

a
f(x)dx, f ′(x), u′ = f(u, t)

2

0.6 OOP fundamentals - inheritance

class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def g(self, x):

return x**4

class C(B):
def h(self, x):

return x**6

We have now defined three classes

• A: two attributes (v0, v1) and two methods (__init__, f)

• B: two attributes (v0, v1) and three methods (__init__, f, g)

• C: two attributes (v0, v1) and four methods (__init__, f, g, h)

0.7 Why is OOP more important in other languages?
Languages like Java and C++ have static typing. A function is declared to

take input arguments of a certain type:
void my_func(A my_obj)
{

...
}

OOP gives extra flexibility, since this function will also accept arguments of
classes B and C.

OOP is still very useful in Python, to avoid code duplication and produce
structured and readable code!

0.8 OOP fundamentals - overriding methods
A subclass can override methods in the superclass. Say we want to add some
extra attributes in a subclass:

3

class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def __init__(self,v0,v1,v2):

self.v0 = v0
self.v1 = v1
self.v2 = v2

def g(self, x):
return x**4

Usage:
a = A(v0=1, v1=2) #calling A.__init__
b = B(v0=1, v1=2, v3=3) #calling B.__init__

0.9 The overridden method can still be called
A more elegant implementation looks like:

class A:
def __init__(self,v0,v1)

self.v0 = v0
self.v1 = v1

def f(self, x):
return x**2

class B(A):
def __init__(self,v0,v1,v2):

super().__init__(v0,v1) #or A.__init__(self.v0,v1)
self.v2 = v2

def g(self, x):
return x**4

0.10 Example: a class for straight lines
Problem: Make a class for evaluating lines y = c0 + c1x.

Code:
class Line:

def __init__(self, c0, c1):
self.c0, self.c1 = c0, c1

4

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += f'{x:12g} {x:12g}\n'

return s

0.11 A class for parabolas
Problem: Make a class for evaluating parabolas y = c0 + c1x+ c2x

2.

Code:
class Parabola:

def __init__(self, c0, c1, c2):
self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += f'{x:12g} {x:12g}\n'

return s

Observation: This is almost the same code as class Line, except for the things
with c2

0.12 Class Parabola as a subclass of Line; principles

• Parabola code = Line code + a little extra with the c2 term

• Can we utilize class Line code in class Parabola?

• This is what inheritance is about!

Writing

class Parabola(Line):
pass

makes Parabola inherit all methods and attributes from Line, so Parabola
has attributes c0 and c1 and three methods

5

• Line is a superclass, Parabola is a subclass
(parent class, base class; child class, derived class)

• Class Parabola must add code to Line’s constructor (an extra c2 attribute),
__call__ (an extra term), but table can be used unaltered

• The idea is to reuse as much code in Line as possible and avoid duplicating
code

0.13 Class Parabola as a subclass of Line; code
A subclass method can call a superclass method in this way:

superclass_name.method(self, arg1, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, c1, c2):

super().__init__(self, c0, c1) # Line stores c0, c1
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

What is gained?

• Class Parabola just adds code to the already existing code in class Line -
no duplication of storing c0 and c1, and computing c0 + c1x

• Class Parabola also has a table method - it is inherited

• __init__ and __call__ are overridden or redefined in the subclass

0.14 We can check class type and class relations with
isinstance(obj, type) and issubclass(subclassname,
superclassname)

>>> from Line_Parabola import Line, Parabola
>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True

6

>>> isinstance(p, Line)
True

>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False

>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
'Parabola'

0.15 Line as a subclass of Parabola

• Subclasses are often special cases of a superclass

• A line c0 + c1x is a special case of a parabola c0 + c1x+ c2x
2

• Can Line be a subclass of Parabola?

• No problem - this is up to the programmer’s choice

• Many will prefer this relation between a line and a parabola

0.16 Code when Line is a subclass of Parabola

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += '%12g %12g\n' % (x, y)

return s

class Line(Parabola):
def __init__(self, c0, c1):

super().__init__(self, c0, c1, 0)

Note: __call__ and table can be reused in class Line!

0.17 Recall the class for numerical differentiation from
Ch. 8

f ′(x) ≈ f(x+ h)− f(x)
h

7

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

def f(x):
return exp(-x)*cos(tanh(x))

from math import exp, cos, tanh
dfdx = Derivative(f)
print dfdx(2.0)

0.18 There are numerous formulas for numerical differen-
tiation

f ′(x) = f(x+ h)− f(x)
h

+O(h)

f ′(x) = f(x)− f(x− h)
h

+O(h)

f ′(x) = f(x+ h)− f(x− h)
2h +O(h2)

f ′(x) = 4
3
f(x+ h)− f(x− h)

2h − 1
3
f(x+ 2h)− f(x− 2h)

4h +O(h4)

f ′(x) = 3
2
f(x+ h)− f(x− h)

2h − 3
5
f(x+ 2h)− f(x− 2h)

4h +

1
10
f(x+ 3h)− f(x− 3h)

6h +O(h6)

f ′(x) = 1
h

(
−1

6f(x+ 2h) + f(x+ h)− 1
2f(x)− 1

3f(x− h)
)

+O(h3)

0.19 How can we make a module that offers all these for-
mulas?

It’s easy:
class Forward1:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1:

8

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2:
same constructor
put relevant formula in __call__

0.20 What is the problem with this type of code?
All the constructors are identical so we duplicate a lot of code.

• A general OO idea: place code common to many classes in a superclass
and inherit that code

• Here: inhert constructor from superclass,
let subclasses for different differentiation formulas implement their version
of __call__

0.21 Class hierarchy for numerical differentiation
Superclass:

class Diff:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

Subclass for simple 1st-order forward formula:
class Forward1(Diff):

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

Subclass for 4-th order central formula:
class Central4(Diff):

def __call__(self, x):
f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

9

0.22 Use of the differentiation classes
Interactive example: f(x) = sin x, compute f ′(x) for x = π

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin'(pi):
>>> mycos(pi)
-1.000000082740371

Central4(sin) calls inherited constructor in the superclass, while mycos(pi)
calls __call__ in the subclass Central4

0.23 Formulas for numerical integration
There are numerous formulas for numerical integration and all of them can be

put into a common notation:∫ b

a

f(x)dx ≈
n−1∑
i=0

wif(xi)

wi: weights, xi: points (specific to a certain formula)

The Trapezoidal rule has h = (b− a)/(n− 1) and

xi = a+ ih, w0 = wn−1 = h

2 , wi = h (i 6= 0, n− 1)

The Midpoint rule has h = (b− a)/n and

xi = a+ h

2 + ih, wi = h

0.24 More formulas
Simpson’s rule has

xi = a+ ih, h = b− a
n− 1

w0 = wn−1 = h

6

wi = h

3 for i even, wi = 2h
3 for i odd

Other rules have more complicated formulas for wi and xi

10

0.25 Why should these formulas be implemented in a class
hierarchy?

• A numerical integration formula can be implemented as a class: a, b and
n are attributes and an integrate method evaluates the formula

• All such classes are quite similar: the evaluation of
∑

j wjf(xj) is the same,
only the definition of the points and weights differ among the classes

• Recall: code duplication is a bad thing!

• The general OO idea: place code common to many classes in a superclass
and inherit that code

• Here we put
∑

j wjf(xj) in a superclass (method integrate)

• Subclasses extend the superclass with code specific to a math formula, i.e.,
wi and xi in a class method construct_rule

0.26 The superclass for integration

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError('no rule in class %s' % \

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

def vectorized_integrate(self, f):
f must be vectorized for this to work
return dot(self.weights, f(self.points))

0.27 A subclass: the Trapezoidal rule

class Trapezoidal(Integrator):
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))
w[1:-1] += h
w[0] = h/2; w[-1] = h/2
return x, w

11

0.28 Another subclass: Simpson’s rule

• Simpson’s rule is more tricky to implement because of different formulas
for odd and even points

• Don’t bother with the details of wi and xi in Simpson’s rule now - focus
on the class design!

class Simpson(Integrator):

def construct_method(self):
if self.n % 2 != 1:

print 'n=%d must be odd, 1 is added' % self.n
self.n += 1

<code for computing x and w>
return x, w

0.29 About the program flow
Let us integrate

∫ 2
0 x

2dx using 101 points:

def f(x):
return x*x

method = Simpson(0, 2, 101)
print method.integrate(f)

Important:

• method = Simpson(...): this invokes the superclass constructor, which
calls construct_method in class Simpson

• method.integrate(f) invokes the inherited integrate method, defined
in class Integrator

0.30 Summary of object-orientation principles

• A subclass inherits everything from the superclass

• When to use a subclass/superclass?

– if code common to several classes can be placed in a superclass
– if the problem has a natural child-parent concept

12

• The program flow jumps between super- and sub-classes

• It often takes time to master when and how to use OOP

• Typical exercise in OOP; when creating a subclass, examine the superclass
to identify the parts that can be reused, and what needs to be added.
Often, the subclass definition can be quite short!

13

	Plan for Oct 21
	The title Object-oriented programming (OOP) may mean two different things
	New concept: collect classes in families (hierarchies)
	Object-oriented programming
	OOP in Python and scientific programming
	OOP fundamentals - inheritance
	Why is OOP more important in other languages?
	OOP fundamentals - overriding methods
	The overridden method can still be called
	Example: a class for straight lines
	A class for parabolas
	Class Parabola as a subclass of Line; principles
	Class Parabola as a subclass of Line; code
	We can check class type and class relations with isinstance(obj, type) and issubclass(subclassname, superclassname)
	Line as a subclass of Parabola
	Code when Line is a subclass of Parabola
	Recall the class for numerical differentiation from Ch. 8
	There are numerous formulas numerical differentiation
	How can we make a module that offers all these formulas?
	What is the problem with this type of code?
	Class hierarchy for numerical differentiation
	Use of the differentiation classes
	Formulas for numerical integration
	More formulas
	Why should these formulas be implemented in a class hierarchy?
	The superclass for integration
	A subclass: the Trapezoidal rule
	Another subclass: Simpson's rule
	About the program flow
	Summary of object-orientation principles

