
Modeling the Spreading of Diseases

Joakim Sundnes1,2

Hans Petter Langtangen1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Nov 8, 2022

0.1 Plan for week 45-46
Wednesday 9/11:

• Exercise E.21, E.22

• Modeling infectious diseases

– The SIR model as difference equations
– The SIR model as differential equations (recap from Monday)
– Extensions of the SIR model

Week 46:

• Monday: Project lecture/questions

• Wednesday: Project help ("orakel").

0.2 We shall model a complex phenomenon by simple
math

Plan:

• Use simple intuition to derive a system of difference equations to model
the spread of diseases

• Program the difference equations in the usual way (i.e. for-loops)

• Transform the difference equations to ordinary differential equations

• Explore possible model extensions

0.3 Assumptions:

• We consider a perfectly mixed population in a confined area

• No spatial transport, just temporal evolution

• We do not consider individuals, just a grand mix of them

We consider very simple models, but these can be extended to full models that are used
world-wide by health authorities. Typical diseases modeled are flu, measles, swine flu, HIV,
SARS, ebola, Covid19, ...

0.4 We keep track of 3 categories in the SIR model

• S: susceptibles - who can get the disease

• I: infected - who have developed the disease and infect susceptibles

• R: recovered - who have recovered and become immune

Mathematical quantities: S(t), I(t), R(t): no of people in each category

Goal: Find and solve equations for S(t), I(t), R(t)

2

0.5 The traditional modeling approach is very mathemat-
ical - our idea is to model, program and experiment

• Numerous books on mathematical biology treat the SIR model

• Quick modeling step (max 2 pages)

• Nonlinear differential equation model

• Cannot solve the equations, so focus is on discussing stability (eigenvalues),
qualitative properties, etc.

• Very few extensions of the model to real-life situations

0.6 Dynamics in a time interval ∆t: people move from S
to I

S-I interaction:

• In a total population of N people, with S susceptibles and I infected, the
chance of a single person in S meeting a person in I is proportional to I/N.

• The total number of such meetings will be proportional to SI/N. A certain
fraction of these meetings leads to disease transmission.

• In a (small) time interval ∆t, we assume that β∆tSI/N meetings where
the infected “successfully” infects the susceptible

• This gives a loss ∆t βSI/N in the S category and a corresponding gain in
the I category

Remark. It is reasonable that the fraction depends on ∆t (twice as many infected in 2∆t
as in ∆t). β is some unknown parameter we must measure, supposed to not depend on ∆t,
but maybe time t. β lumps a lot of biological and sociological effects into one number.

0.7 The equations describing S-I interaction become
Loss in S(t) from time t to t+ ∆t:

S(t+ ∆t) = S(t)−∆t β S(t)I(t)
N

Gain in I(t):

I(t+ ∆t) = I(t) + ∆t β S(t)I(t)
N

3

0.8 Modeling the transition from I to R
I-R transition:

• After some days, the infected has recovered and moves to the R category

• A simple model: in a small time ∆t (say 1 day), a fraction ∆t ν of the
infected are removed (ν must be measured)

We must subtract this fraction in the balance equation for I:

I(t+ ∆t) = I(t) + ∆t βS(t)I(t)−∆t νI(t)

The loss ∆t νI is a gain in R:

R(t+ ∆t) = R(t) + ∆t νI(t)

0.9 We have three equations for S, I, and R

S(t+ ∆t) = S(t)−∆t β S(t)I(t)
N

(1)

I(t+ ∆t) = I(t) + ∆t β S(t)I(t)
N

−∆tνI(t) (2)

R(t+ ∆t) = R(t) + ∆t νI(t) (3)

Before we can compute with these, we must

• know β and ν

• know S(0) (many), I(0) (few), R(0) (0?)

• choose ∆t

0.10 The computation involves just simple arithmetics
• Set ∆t = 0.1 (= 6 minutes)

• Set β = 0.06, ν = 0.008333

• Set S(0) = 50, I(0) = 1, R(0) = 0

4

S(∆t) = S(0)−∆t β S(0)I(0)
N

≈ 49.99

I(∆t) = I(0) + ∆t β S(0)I(0)
N

−∆t νI(0) ≈ 1.002

R(∆t) = R(0) + ∆t νI(0) ≈ 0.0008333

• We can continue, but quickly gets boring...

• Solve with a for-loop as usual

0.11 We use the standard notation
Sn = S(n∆t), In = I(n∆t), Rn = R(n∆t)

Sn+1 = S((n+ 1)∆t), In+1 = I((n+ 1)∆t), Rn+1 = R((n+ 1)∆t)

The equations can now be written more compactly (and computer friendly):

Sn+1 = Sn −∆t βSnIn/N (4)
In+1 = In + ∆t βSnIn/N −∆t νIn (5)
Rn+1 = Rn + ∆t νIn (6)

0.12 Store S,I,R in arrays and solve with a loop
import numpy as np
import matplotlib.pyplot as plt

beta = 0.06
nu =0.008333
dt = 0.1 # 6 min (time measured in hours)
D = 30 # simulate for D days
Steps = int(D*24/dt) # corresponding no of hours

t = np.linspace(0, Steps*dt, Steps+1)
S = np.zeros(Steps+1)
I = np.zeros(Steps+1)
R = np.zeros(Steps+1)

S[0] = 50
I[0] = 1
N = S[0]+I[0] #total population

for n in range(Steps):
S[n+1] = S[n] - dt*beta*S[n]*I[n]/N
I[n+1] = I[n] + dt*beta*S[n]*I[n]/N - dt*nu*I[n]
R[n+1] = R[n] + dt*nu*I[n]

Plot the graphs
plt.plot(t, S, 'k-', t, I, 'b-', t, R, 'r-')
plt.legend(['S', 'I', 'R'], loc='lower right')
plt.xlabel('hours')
plt.show()

5

0.13 We have predicted a disease!

0 100 200 300 400 500 600 700 800
hours

0

10

20

30

40

50

60

S
I
R

0.14 The standard mathematical approach: ODEs
We had from intuition established

S(t+ ∆t) = S(t)−∆t β S(t)I(t)
N

I(t+ ∆t) = I(t) + ∆t β S(t)I(t)
N

−∆t νI(t)

R(t+ ∆t) = R(t) + ∆t νR(t)

The mathematician will now make differential equations. Divide by ∆t and
rearrange:

S(t+ ∆t)− S(t)
∆t = −βS(t)I(t)

N
I(t+ ∆t)− I(t)

∆t = βt
S(t)I(t)
N

− νI(t)

R(t+ ∆t)−R(t)
∆t = νR(t)

6

0.15 A derivative arises as ∆t→ 0
If we let ∆t→ 0, we get derivatives on the left-hand side:

S′(t) = −βS(t)I(t)
N

I ′(t) = βt
S(t)I(t)
N

− νI(t)

R′(t) = νR(t)

This is a system of differential equations for the functions S(t), I(t), R(t).
For a unique solution, we need S(0), I(0), R(0).

0.16 The ODE system cannot be solved analytically
Recall the Forward Euler method: Approximate the derivative with a
finite difference, e.g.,

S′(t) ≈ S(t+ ∆t)− S(t)
∆t

and rearrange to get formulas like

S(t+ ∆t) = S(t)−∆t βS(t)I(t).

This brings us back to the first model, which we solved using a for-loop.

0.17 Or use a prebuilt solver like ODESolver

Implement the right hand side of the ODE system as a Python function:
def SIR_model(u,t):

beta = 0.06
nu = 0.008333
S, I, R = u[0], u[1], u[2]
N = S+I+R
dS = -beta*S*I/N
dI = beta*S*I/N - nu*I
dR = nu*I
return [dS,dI,dR]

0.18 Let us extend the model: no life-long immunity
Assumption. After some time, people in the R category lose the immunity.
In a small time ∆t this gives a leakage ∆t γR to the S category. (1/γ is the
mean time for immunity.)

7

S′(t) = −βS(t)I(t)
N

+ γR

I ′(t) = βt
S(t)I(t)
N

− νI(t)

R′(t) = νR(t)− γR

No complications in the computational model!

0.19 The effect of loss of immunity
1/γ = 50 days. β reduced by 2 and 4 (left and right, resp.):

0 500 1000 1500 2000 2500
hours

0

10

20

30

40

50

S
I
R

0 1000 2000 3000 4000 5000 6000 7000 8000
hours

0

10

20

30

40

50

S
I
R

0.20 Adding more categories: the SEIR model

• Diseases have an incubation period, a delay from when a person gets infected
until he/she has symptoms and can infect others

• For some applications, it is important to include the incubation period in
the models

• Add a new category E (for exposed).

• People move from S to E as they are infected, then from E to I

8

0.21 Equations of the SEIR model

S′(t) = −βSI/N + γR,

E′(t) = βSI/N − µE,
I ′(t) = µE − νI,
R′(t) = νI − γR.

0.22 The SEIR model implemented as a function
def SEIR(u,t):

S, E, I, R = u
N = S+I+R+E
beta=1.0; mu=1.0/5
nu=1.0/7; gamma=1.0/50
dS = -beta*S*I/N + gamma*R
dE = beta*S*I/N - mu*E
dI = mu*E - nu*I
dR = nu*I - gamma*R
return [dS,dE,dI,dR]

0.23 Parameter estimation is needed for predictive mod-
eling

• Any small ∆t will do

• One can reason about µ, ν, γ:

– 1/µ is the mean incubation time
– 1/ν is the mean recovery
– 1/γ is mean duration of immunity

• β is more complex, since it depends both on the disease and how people
behave

So, what if we don’t know β?

• Can still learn about the dynamics of diseases

• Can find the sensitivity to and influence of β

• Can apply parameter estimation procedures to fit β to data

9

0.24 A class is convenient for models with parameters

• The SEIR-function has all parameters explicitly defined in the code

• If we want to solve the model for multiple parameters, it is more convenient
to implement it as a class

• A constructor (__init__) to set all the parameters, a __call__ method
to implement the ODE system

0.25 Class implementation of the SEIR model
class SEIR:

def __init__(self, beta, mu, nu, gamma):
self.beta = beta
self.mu = mu
self.nu = nu
self.gamma = gamma

def __call__(self,u,t):
S, E, I, R = u
N = S+I+R+E
dS = -self.beta*S*I/N + self.gamma*R
dE = self.beta*S*I/N - self.mu*E
dI = self.mu*E - self.nu*I
dR = self.nu*I - self.gamma*R
return [dS,dE,dI,dR]

0.26 Summary

• The SIR model is a classic framework for modeling spread of diseases

• Easy to extend with more features, more dynamics and compartments

• Different versions; difference equations, ODEs, stochastic models all based
on the same fundamental ideas

• Parameters are directly linked to disease characteristics such as recovery
time and reproduction numbers

• Not all parameters are easy to estimate, makes model-based prediction
challenging in practice

10

	Plan for week 46-47
	We shall model a complex phenomenon by simple math
	Assumptions:
	We keep track of 3 categories in the SIR model
	The traditional modeling approach is very mathematical - our idea is to model, program and experiment
	Dynamics in a time interval t: people move from S to I
	The equations describing S-I interaction become
	Modeling the transition from I to R
	We have three equations for S, I, and R
	The computation involves just simple arithmetics
	We use the standard notation
	Store S,I,R in arrays and solve with a loop
	We have predicted a disease!
	The standard mathematical approach: ODEs
	A derivative arises as t0
	The ODE system cannot be solved analytically
	Or use a prebuilt solver like ODESolver
	Let us extend the model: no life-long immunity
	The effect of loss of immunity
	Adding more categories: the SEIR model
	Equations of the SEIR model
	The SEIR model implemented as a function
	Parameter estimation is needed for predictive modeling
	A class is convenient for models with parameters
	Class implementation of the SEIR model
	Summary

