Chapter 8: Classes part 2-special methods

Joakim Sundnes ${ }^{1,2}$
${ }^{1}$ Simula Research Laboratory
${ }^{2}$ University of Oslo, Dept. of Informatics

Oct 14, 2022

0.1 Special methods

- The class constructor has a special name: _ \qquad init__
- The name is recognized by Python, and ensures this method is called when a new class instance is created; e.g. y $=\mathrm{MyClass}(4)$
- The constructor is an example of a special method
- Special methods have names with leading and trailing double underscores
- Special methods are recognized by Python, and automatically called when we perform various operations on the class instances

0.2 The call special method; motivation

Recall the class for representing a function:

```
class Y:
    def __init__(self, v0):
        self.v0}= v
        self.g = 9.81
    def value(self, t):
        return self.v0*t - 0.5*self.g*t**2
y = Y(3)
v = y.value(0.1)
```

But it would be more natural to use the class like this:

$$
\begin{aligned}
& \mathrm{y}=\mathrm{Y}(3) \\
& \mathrm{v}=\mathrm{y}(0.1)
\end{aligned}
$$

0.3 The call special method; implementation

Simply replace the value method by a call special method:

```
class Y:
    def __init__(self, v0):
        self.v0}= = v
        self.g = 9.81
    def __call__(self, t):
        return self.v0*t - 0.5*self.g*t**2
```

Now we can write

$$
\begin{aligned}
& \mathrm{y}=\mathrm{Y}(3) \\
& \mathrm{v}=\mathrm{y}(0.1) \text { \# same as } v=y_{._{-}} \operatorname{call_{--}}(0.1) \text { or } Y_{._{--}} \operatorname{call_{--}}(y, 0.1)
\end{aligned}
$$

Note:

- The instance y now behaves and looks as a function!
- The value(t) method does the same, but __call__ allows nicer syntax for computing function values

0.4 Special method for printing

- In Python, we can usually print an object a by print (a), works for built-in types (strings, lists, floats, ...)
- Python does not know how to print objects of a user-defined class, but if the class defines a method __str__, Python will use this method to convert an object to a string

Example:

```
class Y:
    def __call__(self, t):
        return self.v0*t - 0.5*self.g*t**2
    def __str__(self):
        return f'v0*t - 0.5*g*t**2; v0={self.v0}'
```

Demo:

```
>>> y = Y(1.5)
>> y(0.2)
0.1038
>>> print(y)
v0*t - 0.5*g*t**2; v0=1.5
```


0.5 Class Y revisited with print method

```
class Y:
    """Class for function y(t;v0,g) = v0*t - 0.5*g*t**2."""
    def __init__(self, v0):
        """Store parameters."""
            self.v0 = v0
            self.g = 9.81
    def __call__(self, t):
        """Evaluate function."""
        return self.v0*t - 0.5*self.g*t**2
    def __str__(self):
        """"Prēty print."""
        return f'v0*t - 0.5*g*t**2; v0={self.v0}'
```


0.6 Special methods for arithmetic operations

$\mathrm{c}=\mathrm{a}+\mathrm{b} \quad \# \quad \mathrm{c}=\mathrm{a} \cdot{ }_{--} a d d_{-}(\mathrm{b})$
$\mathrm{c}=\mathrm{a}-\mathrm{b} \quad \# \quad \mathrm{c}=\mathrm{a}$. __ $\mathrm{sub} \mathrm{Z}_{-}$(b)
$\mathrm{c}=\mathrm{a} * \mathrm{~b} \quad \# \quad \mathrm{c}=\mathrm{a} \cdot \ldots \mathrm{mu} \mathrm{l}_{-}(\mathrm{b})$
$\mathrm{c}=\mathrm{a} / \mathrm{b} \quad \# \quad \mathrm{c}=\mathrm{a} ._{-} \mathrm{div}_{-}(\mathrm{b})$
$\mathbf{c}=\mathrm{a} * * \mathbf{e} \quad \# \quad c=a \cdot \ldots$ pow__ (e)

0.7 Special methods for comparisons

$\mathrm{a}==\mathrm{b} \quad \# \quad a_{.--} e q_{--}(b)$
$\mathrm{a}!=\mathrm{b} \quad \# \quad a_{\text {.__ }} n e_{--}(b)$
$\mathrm{a}<\mathrm{b} \quad \# \quad a_{.-} l t_{--}(b)$
$\mathrm{a}<=\mathrm{b} \quad \# \quad a_{\text {.__ }} l e_{--}(b)$
$\mathrm{a}>\mathrm{b} \quad \# \quad a_{\text {.__ }} g t_{\ldots-}(b)$
$\mathrm{a}>=\mathrm{b} \quad \# \quad a_{\text {.__ }} g e_{--}(\mathrm{b})$

0.8 The programmer is in charge of defining special methods!

How should, for instance, __add__(self, other) and __mul_(self, other) be defined?

This is completely up to the programmer, depending on what are meaningful results of object1 + object2 and object1 * object2.

0.9 Class for vectors in the plane

Mathematical operations for vectors in the plane:

$$
\begin{aligned}
(a, b)+(c, d) & =(a+c, b+d) \\
(a, b)-(c, d) & =(a-c, b-d) \\
(a, b) \cdot(c, d) & =a c+b d \\
(a, b) & =(c, d) \text { if } a=c \text { and } b=d
\end{aligned}
$$

Desired application code:

```
>>> u = Vec2D (0,1)
>>> v = Vec2D (1,0)
>>> print(u + v)
(1, 1)
>>> a = u + v
>>> w = Vec2D (1,1)
>>> a == w
True
>>> print(u - v)
(-1, 1)
>>> print(u*v)
0
```


0.10 Class for vectors; implementation

```
class Vec2D:
    def __init__(self, x, y):
        self.x = x; self.y = y
    def __add__(self, other):
        return Vec2D(self.x+other.x, self.y+other.y)
    def __sub__(self, other):
        return Vec2D(self.x-other.x, self.y-other.y)
    def __mul__(self, other):
        return self.x*other.x + self.y*other.y
    def __abs__(self):
        return math.sqrt(self.x**2 + self.y**2)
    def __eq__(self, other):
        return self.x == other.x and self.y == other.y
    def __str__(self):
        return f'({self.x}, {self.y})'
```


0.11 Class for polynomials; functionality

A polynomial can be specified by a list of its coefficients. For example, $1-x^{2}+2 x^{3}$ is

$$
1+0 \cdot x-1 \cdot x^{2}+2 \cdot x^{3}
$$

and the coefficients can be stored as [1, 0, -1, 2]

Desired application code:

```
>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> print(p1(x=0.5))
0.5
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print(p3.coeff)
[1, 0, 0, 0, -6, -1]
>>> print(p3)
1 - 6*x^4 - x^5
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4
```

How can we make class Polynomial?

0.12 Class Polynomial; basic code

```
class Polynomial:
    def __init__(self, coefficients):
        self.coeff = coefficients
    def __call__(self, x):
        s = 0
        for i in range(len(self.coeff)):
            s += self.coeff[i]*x**i
        return s
```


0.13 Class Polynomial; addition

```
class Polynomial:
    ...
    def __add__(self, other):
        # return self + other
        # start with the longest list and add in the other:
        if len(self.coeff) > len(other.coeff):
            coeffsum = self.coeff[:] # copy!
            for i in range(len(other.coeff)):
                coeffsum[i] += other.coeff[i]
        else:
            coeffsum = other.coeff[:] # copy!
            for i in range(len(self.coeff)):
            coeffsum[i] += self.coeff[i]
        return Polynomial(coeffsum)
```


0.14 Class Polynomial; multiplication

Mathematics: Multiplication of two general polynomials:

$$
\left(\sum_{i=0}^{M} c_{i} x^{i}\right)\left(\sum_{j=0}^{N} d_{j} x^{j}\right)=\sum_{i=0}^{M} \sum_{j=0}^{N} c_{i} d_{j} x^{i+j}
$$

The coeff. corresponding to power $i+j$ is $c_{i} \cdot d_{j}$. The list r of coefficients of the result: $r[i+j]=c[i] * d[j]$ (i and j running from 0 to M and N, resp.)

Implementation:

```
class Polynomial:
        def __mul__(self, other):
            M = len(self.coeff) - 1
            N = len(other.coeff) - 1
            coeff = [0]*(M+N+1) # or zeros(M+N+1)
            for i in range(0, M+1):
                for j in range(0, N+1):
                    coeff[i+j] += self.coeff[i]*other.coeff[j]
            return Polynomial(coeff)
```


0.15 Class Polynomial; differentation

Mathematics: Rule for differentiating a general polynomial:

$$
\frac{d}{d x} \sum_{i=0}^{n} c_{i} x^{i}=\sum_{i=1}^{n} i c_{i} x^{i-1}
$$

If c is the list of coefficients, the derivative has a list of coefficients, dc, where dc $[i-1]=$ $i * c[i]$ for i running from 1 to the largest index in c. Note that dc has one element less than c.

Implementation:

```
class Polynomial:
    def differentiate(self): # change self
        for i in range(1, len(self.coeff)):
            self.coeff[i-1] = i*self.coeff[i]
        del self.coeff[-1]
    def derivative(self): # return new polynomial
        dpdx = Polynomial(self.coeff[:]) # copy
        dpdx.differentiate()
        return dpdx
```


0.16 Class Polynomial; pretty print

```
class Polynomial:
    def __str__(self):
        s = 'l
        for i in range(0, len(self.coeff)):
            if self.coeff[i] != 0:
            s += f' + {self.coeff[i]}*x^{i}'
```

```
# fix layout (lots of special cases):
s = s.replace('+ -', '- ')
s = s.replace(' 1*', ' ')
s = s.replace('x^0', '1')
s = s.replace('x^1 ', 'x ')
s = s.replace('x^1', 'x')
if s[0:3] == ' + ': # remove initial +
    s = s[3:]
if s[0:3] == ' - ': # fix spaces for initial -
    s = '-' + s[3:]
return s
```


0.17 Class for polynomials; usage

Consider

$$
p_{1}(x)=1-x, \quad p_{2}(x)=x-6 x^{4}-x^{5}
$$

and their sum

$$
p_{3}(x)=p_{1}(x)+p_{2}(x)=1-6 x^{4}-x^{5}
$$

```
>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3-5*x^4
```


0.18 Example; "automatic" differentiation

Given some mathematical function in Python, say

```
def f(x):
    return x**3
```

can we make a class Derivative and write

```
dfdx = Derivative(f)
```

so that dfdx behaves as a function that computes the derivative of $f(x)$?

```
print(dfdx(2)) # computes 3*x**2 for x=2
```


0.19 Automagic differentiation; solution

Method. We use numerical differentiation "behind the curtain":

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

for a small (yet moderate) h, say $h=10^{-5}$

Implementation.

```
class Derivative:
    def __init__(self, f, h=1E-5):
        self.f=- f
        self.h = float(h)
    def __call__(self, x):
        f,h=-self.f, self.h # make short forms
        return (f(x+h) - f(x))/h
```


0.20 Automagic differentiation; demo

```
>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113
```


0.21 Automagic differentiation; useful in Newton's method

Newton's method solves nonlinear equations $f(x)=0$, but the method requires $f^{\prime}(x)$

```
def Newton(f, xstart, dfdx, epsilon=1E-6):
    return x, no_of_iterations, f(x)
```

Suppose $f^{\prime}(x)$ requires boring/lengthy derivation, then class Derivative is handy:

```
>>> def f(x):
... return 100000*(x - 0.9)**2*(x - 1.1)**3
>>> df = Derivative(f)
>>> xstart = 1.01
>>> Newton(f, xstart, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)
```


0.22 Class introduction - summary

- Classes pack together data and functions that naturally belong together
- We define a class, and then create instances (or objects) of that class
- Different instances will have different data, but they all have the same functions operating on that data
- In IN1900 codes, classes are never really necessary, but sometimes convenient
- In "real-world" programs, with tens of 1000 s of lines, the extra organization offered by classes may be the difference between a code that works and one that doesn't

0.23 Summary of special methods

- $c=a+b$ implies $c=a \cdot _$_add__($\left.b\right)$
- There are special methods for $\mathrm{a}+\mathrm{b}, \mathrm{a}-\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a} / \mathrm{b}, \mathrm{a} * * \mathrm{~b},-\mathrm{a}$, if $\mathrm{a}:$, len (a), str (a) (pretty print), etc.
- With special methods we can create new mathematical objects like vectors, polynomials and complex numbers and write "mathematical code" (arithmetics)
- The call special method is particularly handy: $v=c(5)$ means $v=c \cdot \ldots c a l l$
- Functions with parameters should be represented by a class with the parameters as attributes and with a call special method for evaluating the function

