
Ch.6: Array computing and curve
plotting

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Sep 19, 2023

0.1 Plan for week 38
Tuesday 19 september

• Short quiz

• Live programming of ex 4.5, 4.6

• Intro to NumPy arrays and plotting

• Ex 5.9, 5.10, 5.11

Thursday 21 september

• Short quiz (including ex 5.7)

• Live programming of ex 5.10, 5.11, 5.13, (4.6 left as self study)

• Plotting a discontinuous function

• Making movies and animations from plots

0.2 Repetition quiz (1)
What is printed when the following code is run?

def f(x,y):
return 2*x + y

x = 2
y = 3
print(f(1,2))

(Mid term exam 2018)

0.3 Repetition quiz (2)
What is printed when the following code is run?

x = 4
y = 5
print(x > 4 and y > 4)

(Mid term 2019)

0.4 Repetition quiz (3)
The following code is in a file barometric.py:

import sys
from math import exp

h = sys.argv[1]

p0 = 100
h0 = 8400
print(p0*exp(-h/h0))

When we run the code we get the following output. What is wrong?
python barometric.py 2469
Traceback (most recent call last):

File "/Users/sundnes/Desktop/baro_test.py", line 8, in <module>
print(p0*exp(-h/h0))

TypeError: bad operand type for unary -: 'str'

0.5 Recap from last week - user input
Alternative 1:

The function input makes the program stop and wait for user input:
var = input('Please provide some input data:')

Simple and intuitive to use, slow and annoying in the long run
Alternative 2:

Use sys.argv to access command line arguments:
import sys
var = sys.argv[1]

Run the program from the terminal:
python myprog.py 2.05

Or in iPython/Spyder:
run myprog.py 2.05

2

0.6 Recap from last week - file read/write
Reading from a file:

with open('myfile.txt','r') as infile:
l = infile.readline() #read a single line

for line in infile:
words = line.split()
var = float(words[-1]) # etc

Write to a file:
data = [...]
with open('myfile.txt','w') as outfile:

for myvar in data:
outfile.write(myvar)
outfile.write('\n') #linebreak

0.7 Recap from last week - error handling with try-except

• Rather than test if something is wrong, recover from error, else do what
we indended to do, it is common in Python (and many other languages) to
try to do what we indend to, and if it fails, we recover from the error

• This principle makes use of a try-except block

try:
<statements we intend to do>

except:
<statements for handling errors>

If something goes wrong in the try block, Python raises an exception and
the execution jumps immediately to the except block.

3

0.8 Goal: learn to visualize functions

0.9 We need to learn about a new object: array

• Curves y = f(x) are visualized by drawing straight lines between points
along the curve

• Need to store the coordinates of the points along the curve in lists or arrays
x and y

• Arrays ≈ lists, but computationally much more efficient

• To compute the y coordinates (in an array) we need to learn about array
computations or vectorization

• Array computations are useful for much more than plotting curves!

0.10 The minimal need-to-know about vectors

• Vectors are known from high school mathematics, e.g.,
point (x, y) in the plane, point (x, y, z) in space

• In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

• Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

4

0.11 Arrays can have more than one index
Just as nested lists, arrays can have multiple indices: Ai,j , Ai,j,k

Example: table of numbers, one index for the row, one for the column

 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

 A =

 A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1

• The no of indices in an array is the rank or number of dimensions

• Vector = one-dimensional array, or rank 1 array

• In Python code, we use Numerical Python arrays instead of nested lists
to represent mathematical arrays (because this is computationally more
efficient)

0.12 Storing (x,y) points on a curve in lists
Collect points on a function curve y = f(x) in lists:

def f(x):
return x**3

xlist = []
ylist = []

n = 5 # no of points
dx = 1.0/(n-1) # x spacing in [0,1]

for i in range(n):
xlist.append(i*dx)
ylist.append(f(x))

#turn lists into NumPy arrays
import numpy as np # module for arrays
x = np.array(xlist) # turn list xlist into array
y = np.array(ylist)

0.13 Make arrays directly (instead of lists)
Or drop the lists and make NumPy arrays directly:

>>> n = 5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)
>>> for i in range(n):
... y[i] = f(x[i])
...

5

0.14 Arrays are not as flexible as list, but computationally
much more efficient

• List elements can be any Python objects

• Array elements can only be of one object type

• Arrays are very efficient to store in memory and compute with
if the element type is float, int, or complex

• Rule: use arrays for sequences of numbers!

0.15 We can work with entire arrays at once - instead of
one element at a time

Compute the sine of an array:

from math import sin

for i in range(len(x)):
y[i] = sin(x[i])

However, if x is array, y can be computed by

import numpy as np
y = np.sin(x) # x: array, y: array

The loop is now inside np.sin and implemented in very efficient C code.

Vectorization gives:

• shorter, more readable code, closer to the mathematics

• much faster code

0.16 A function f(x) written for a number x usually works
for array x too

from numpy import sin, exp, linspace

def f(x):
return x**3 + sin(x)*exp(-3*x)

x = 1.2 # float object
y = f(x) # y is float

x = linspace(0, 3, 10001) # 10000 intervals in [0,3]
y = f(x) # y is array

6

0.17 NOTE: math is for numbers and numpy for arrays
>>> import math, numpy
>>> x = numpy.linspace(0, 1, 11)
>>> math.sin(x[3])
0.2955202066613396
>>> math.sin(x)
...
TypeError: only length-1 arrays can be converted to Python scalars
>>> numpy.sin(x)
array([0. , 0.09983, 0.19866, 0.29552, 0.38941,

0.47942, 0.56464, 0.64421, 0.71735, 0.78332,
0.84147])

0.18 Very important application: vectorized code for com-
puting points along a curve

f(x) = x2e− 1
2 x sin(x− 1

3π), x ∈ [0, 4π]

Vectorized computation of n+ 1 points along the curve.
import numpy as np

n = 100
x = np.linspace(0, 4*pi, n+1)
y = 2.5 + x**2*np.exp(-0.5*x)*np.sin(x-pi/3)

0.19 New term: vectorization

• Scalar : a number

• Vector or array: sequence of numbers (vector in mathematics)

• We speak about scalar computations (one number at a time) versus vec-
torized computations (operations on entire arrays, no Python loops)

• Vectorized functions can operate on arrays (vectors)

• Vectorization is the process of turning a non-vectorized algorithm with
(Python) loops into a vectorized version without (Python) loops

• Mathematical functions in Python without if tests automatically work for
both scalar and vector (array) arguments (i.e., no vectorization is needed
by the programmer)

0.20 Small quiz:
What is output from the following code? Why?

7

import numpy as np

l = [0,0.25,0.5,0.75,1]
a = np.array(l)

print(l*2)
print(a*2)

0.21 Plotting the curve of a function: the very basics
Plot the curve of y(t) = t2e−t2 :

import matplotlib.pyplot as plt # import and plotting
import numpy as np

Make points along the curve
t = np.linspace(0, 3, 51) # 50 intervals in [0, 3]
y = t**2*np.exp(-t**2) # vectorized expression

plt.plot(t, y) # make plot on the screen
plt.savefig('fig.pdf') # make PDF image for reports
plt.savefig('fig.png') # make PNG image for web pages
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8

0.22 A plot should have labels on axis and a title

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y
My First Matplotlib Demo

t^2*exp(-t^2)

0.23 The code that makes the last plot

import matplotlib.pyplot as plt
import numpy as np

def f(t):
return t**2*np.exp(-t**2)

t = np.linspace(0, 3, 51) # t coordinates
y = f(t) # corresponding y values

plt.plot(t, y,label="t^2*exp(-t^2)")

plt.xlabel('t') # label on the x axis
plt.ylabel('y') # label on the y axix
plt.legend() # mark the curve
plt.axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
plt.title('My First Matplotlib Demo')
plt.show()

0.24 Plotting several curves in one plot
Plot t2e−t2 and t4e−t2 in the same plot:

import matplotlib.pyplot as plt
import numpy as np

9

def f1(t):
return t**2*np.exp(-t**2)

def f2(t):
return t**2*f1(t)

t = np.linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plt.plot(t, y1, 'r-', label = 't^2*exp(-t^2)')
plt.plot(t, y2, 'bo', label = 't^4*exp(-t^2)')

plt.xlabel('t')
plt.ylabel('y')
plt.legend()
plt.title('Plotting two curves in the same plot')
plt.savefig('tmp2.png')
plt.show()

0.25 The resulting plot with two curves

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y

Plotting two curves in the same plot

t^2*exp(-t^2)
t^4*exp(-t^2)

10

0.26 Controlling line styles
When plotting multiple curves in the same plot, the different lines (normally)

look different. We can control the line type and color, if desired:

plot(t, y1, 'r-') # red (r) line (-)
plot(t, y2, 'bo') # blue (b) circles (o)

or
plot(t, y1, 'r-', t, y2, 'bo')

Documentation of colors and line styles, see the online Matplotlib documen-
tation or

Unix> pydoc matplotlib.pyplot

0.27 Quick plotting with minimal typing
A lazy pro would do this:

t = np.linspace(0, 3, 51)
plt.plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

0.28 Example: plot a discontinuous function
The Heaviside function is frequently used in science and engineering:

H(x) =
{

0, x < 0
1, x ≥ 0

Python implementation:

def H(x):
if x < 0:

return 0
else:

return 1

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

11

0.29 Plotting the Heaviside function: first try
Standard approach:

x = np.linspace(-10, 10, 5) # few points (simple curve)
y = H(x)
plt.plot(x, y)

First problem: ValueError error in H(x) from if x < 0
Let us debug in an interactive shell:
>>> x = np.linspace(-10,10,5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

0.30 if x < 0 does not work if x is array
Remedy 1: use a loop over x values.

def H_loop(x):
r = zeros(len(x)) # or r = x.copy()
for i in range(len(x)):

r[i] = H(x[i])
return r

n = 5
x = np.linspace(-5, 5, n+1)
y = H_loop(x)

#or loop over x and call the original function
y = np.zeros_like(x)
for i in range(len(x)):

y[i] = H(x[i])

Downside: much to write, slow code if n is large

0.31 if x < 0 does not work if x is array
Remedy 2: use numpy.vectorize.

Automatic vectorization of function H
Hv = np.vectorize(H)
Hv(x) works with array x

Downside: The resulting function is as slow as Remedy 1

0.32 if x < 0 does not work if x is array
Remedy 3: code the if test differently.

def Hv(x):
return np.where(x < 0, 0.0, 1.0)

12

More generally:
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

0.33 Back to plotting the Heaviside function
With a vectorized Hv(x) function we can plot in the standard way

x = linspace(-10, 10, 5) # linspace(-10, 10, 50)
y = Hv(x)
plot(x, y, axis=[x[0], x[-1], -0.1, 1.1])

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

0.34 How to make the function look discontinuous in the
plot?

We could use a lot of x points to make the curve look steeper, but it does still
not really look like a discontinuous function.

Question. How can we make the plot look like a proper discontinuous function?

0.35 Example: Plot function given on the command line
Task: plot function given on the command line.

Terminal> python plotf.py expression xmin xmax
Terminal> python plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

13

Should plot e−0.2x sin(2πx), x ∈ [0, 4π]. plotf.py should work for “any” mathe-
matical expression.

0.36 Solution
Complete program:

from numpy import *
import matplotlib.pyplot as plt
import sys

formula = sys.argv[1]
xmin = eval(sys.argv[2])
xmax = eval(sys.argv[3])

x = linspace(xmin, xmax, 101)
y = eval(formula)
plt.plot(x, y)
plt.title(formula)
plt.show()

0.37 Let’s make a movie/animation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

0.38 The Gaussian/bell function

f(x;m, s) = 1√
2π

1
s

exp
[
−1

2

(
x−m
s

)2
]

• m is the location of the peak

14

• s is a measure of the width of the function

• Make a movie (animation) of how f(x;m, s) changes shape as s goes from
2 to 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

0.39 Movies are made from a (large) set of individual plots

• Goal: make a movie showing how f(x) varies in shape as s decreases

• Idea: put many plots (for different s values) together
(exactly as a cartoon movie)

• Very important: fix the y axis! Otherwise, the y axis always adapts to the
peak of the function and the visual impression gets completely wrong

0.40 Three alternative recipes

1. Let the animation run live, without saving any files

• Not possible to pause, slow down etc

2. Loop over all data values, plot and make a hardcopy (file) for each value,
combine all hardcopies to a movie

15

• Requires separate software (for instance ImageMagick) to see the
animation

3. Use a ’FuncAnimation’ object from ’matplotlib’

• Plays the animation live
• Relies on external software to save a movie file

0.41 Alt. 1: General idea

• Fix the axes!

• Use a ’for’-loop to loop over s-values

• Compute new y-values and update the plot for each run through the loop

0.42 Alt. 1: Complete code

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y) #Returns a list of line objects!

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel('x')
plt.ylabel('f')

for s in s_values:
y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.pause(0.1)

16

0.43 Alt. 2: General idea

• Same ’for’-loop as alternative 1

• Use f-string formatting to generate a unique file name for each plot

• Save file

0.44 Alt. 2: Complete code

import matplotlib.pyplot as plt
import numpy as np

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plt.plot(x,y)

plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel('x')
plt.ylabel('f')

frame_counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
plt.draw()
plt.savefig(f'tmp_{frame_counter:04d}.png') #unique filename
frame_counter += 1

0.45 How to combine plot files to a movie (video file)
We now have a lot of files:

tmp_0000.png tmp_0001.png tmp_0002.png ...

We use some program to combine these files to a video file:

• convert for animated GIF format (if just a few plot files)

• ffmpeg (or avconv) for MP4, WebM, Ogg, and Flash formats

17

0.46 Make and play animated GIF file
Tool: convert from the ImageMagick software suite.
Unix command:

Terminal> convert -delay 20 tmp_*.png movie.gif

Delay: 30/100 s, i.e., 0.5 s between each frame.
Play animated GIF file with animate from ImageMagick:

Terminal> animate movie.gif

or open the file in a browser.

0.47 Alt. 3: General idea

• Make a function to update the plot:

– Updates the plot by calculating values and calling set_ydata

– (Optional function to initialize the plot)

• Make a list or array of the argument that changes (here s)

• Pass the function and the list as arguments to create a FuncAnimation
object

• Use functions in that object to animate, save a movie file etc.

0.48 Alt. 3: Complete code

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

def f(x, m, s):
return (1.0/(np.sqrt(2*np.pi)*s))*np.exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start,s_stop,30)

x = np.linspace(-3*s_start,3*s_start, 1000)

max_f = f(m,m,s_stop)

plt.axis([x[0],x[-1],0,max_f])
plt.xlabel('x')
plt.ylabel('y')

y = f(x,m,s_start)
lines = plt.plot(x,y) #initial plot to create the lines object

18

def next_frame(frame):
y = f(x, m, frame)
lines[0].set_ydata(y)
return lines

ani = FuncAnimation(plt.gcf(), next_frame, frames=s_values, interval=100)
ani.save('movie.mp4',fps=20)
plt.show()

0.49 Notes on making movies

• Making actual movie files require external software such as ImageMagick
or ffmpeg

• The software may be tricky to install (simple recipes exist, but don’t always
work)

• For the animation assignments in this course, you do not have to make
movie files. You either:

– Use Alt 1 or Alt 3 to make the animation run live
– Use Alt 2 to create a lot of image files

• If you can also make the movie files this is great, but it will not be required

19

	Plan for week 38
	Repetition quiz (1)
	Repetition quiz (2)
	Repetition quiz (3)
	Recap from last week - user input
	Recap from last week - file read/write
	Recap from last week - error handling with try-except
	Goal: learn to visualize functions
	We need to learn about a new object: array
	The minimal need-to-know about vectors
	Arrays can have more than one index
	Storing (x,y) points on a curve in lists
	Make arrays directly (instead of lists)
	Arrays are not as flexible as list, but computationally much more efficient
	We can work with entire arrays at once - instead of one element at a time
	A function f(x) written for a number x usually works for array x too
	NOTE: math is for numbers and numpy for arrays
	Very important application: vectorized code for computing points along a curve
	New term: vectorization
	Small quiz:
	Plotting the curve of a function: the very basics
	A plot should have labels on axis and a title
	The code that makes the last plot
	Plotting several curves in one plot
	The resulting plot with two curves
	Controlling line styles
	Quick plotting with minimal typing
	Example: plot a discontinuous function
	Plotting the Heaviside function: first try
	if x < 0 does not work if x is array
	if x < 0 does not work if x is array
	if x < 0 does not work if x is array
	Back to plotting the Heaviside function
	How to make the function look discontinuous in the plot?
	Example: Plot function given on the command line
	Solution
	Let's make a movie/animation
	The Gaussian/bell function
	Movies are made from a (large) set of individual plots
	Three alternative recipes
	Alt. 1: General idea
	Alt. 1: Complete code
	Alt. 2: General idea
	Alt. 2: Complete code
	How to combine plot files to a movie (video file)
	Make and play animated GIF file
	Alt. 3: General idea
	Alt. 3: Complete code
	Notes on making movies

