
Chapter 8: Introduction to classes

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Oct 15, 2023

0.1 Plan for Week 42
Tuesday 17/10:
• Exercises 5.16, 5.18 (numpy, plotting, file reading, modules)

• Exercise 6.7, 6.9 (Dictionaries, strings)

• Introduction to classes

Thursday 19/10:
• Class intro continued

• Exercise 7.1, 7.2

• More about classes:

– Protected attributes
– Special methods

• Exercise 6.11 (?)

0.2 Basics of classes (1)

• Classes are an essential part of object oriented programming

• We have used classes since day 1 in IN1900:

>>> S = "This is a string"
>>> type(S)
<class 'str'>
>>> L = S.split()
>>> type(L)
<class 'list'>

0.3 Basics of classes (2)

• Classes pack together data and functions that naturally belong together

• Every time we make a string object in Python, we create an instance of
the built-in class str

• Calls like S.split() calls the function split() belonging the instance S

• We will now learn how to make our own classes

0.4 New terms and definition

• Class: Definition of a new data type, containing data and functions that
naturally belong together.

• Instance: An object created from a class. After defining a class, we can
create many instances of it.

• Method: A function bound to an instance of a class.

• Attribute: A variable bound to an instance of a class.

• A class consists of attributes and methods

0.5 Class = functions + data (variables) in one unit

• A class packs together data (attributes) and functions (methods) as one
single unit

• As a programmer you can create a new class and thereby a new object
type (like float, list, file, ...)

• A class is much like a module: a collection of “global” variables and
functions that belong together

• There is only one instance of a module while a class can have many instances
(copies)

• Modern programming applies classes to a large extent

• It usually takes some time to master the class concept

• Let’s start with an example

2

0.6 Representing a function by a class; background (1)
Consider a function of t with a parameter v0:

y(t; v0) = v0t − 1
2gt2

We need both v0 and t to evaluate y (and g = 9.81), but how should we
implement this?

Having t and v0 as arguments?
def y(t, v0):

g = 9.81
return v0*t - 0.5*g*t**2

0.7 Representing a function by a class; background (2)
The implementation with two arguments usually works, but is not always

convenient.

And what if the function is to be passed as an argument to another function
that expects it to take a single argument only?

This is a very common situation in Python programs, consider for instance
the implementation of Newton’s method in Section 4.4 of the course book. The
function Newton(f, dfdx, x0, tol) expects the first argument to be a Python
function taking a single argument as input. If we pass it our y(t,v0) function
it will fail.

0.8 Possible (sub-optimal) solutions
Having t as argument and v0 as global variable?

def y(t):
g = 9.81
return v0*t - 0.5*g*t**2

Motivation: y(t) is a function of t only

Having t as argument and v0 as local variable?
def y(t):

v0 = 3
g = 9.81
return v0*t - 0.5*g*t**2

0.9 Better solution; write a class

y(t; v0) = v0t − 1
2gt2

3

• Recall that a class packs together variables and functions that naturally
belong together

• We can make a class holding v0 and g as variables (attributes), and a
function (method) y(t)

• With a class, y(t) can be a function of t only, but still have v0 and g as
parameters with given values.

• The class packs together a function y(t) and data (v0, g)

0.10 Representing a function by a class; technical overview

• We make a class Y for y(t; v0) with variables v0 and g and a function
value(t) for computing y(t; v0)

• Any class should also have a function __init__ for initialization of the
variables

• With the class in place, we can make instances of it, with different values
of v0

0.11 Representing a function by a class; the code

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Usage:
y = Y(v0=3) # create instance (object)
v = y.value(0.1) # compute function value

• We make a class Y for y(t; v0) with variables v0 and g and a function
value(t) for computing y(t; v0)

• Any class should also have a function __init__ for initialization of the
variables

• With the class in place, we can make instances of it, with different values
of v0

4

0.12 Representing a function by a class; the constructor
When we write

y = Y(v0=3)

we create a new variable (instance) y of type Y. Y(v0=3) is a call to the con-
structor :

def __init__(self, v0):
self.v0 = v0
self.g = 9.81

0.13 What is this self variable? (Don’t worry, you will
get used to it)

• Think of self as y, i.e., the new variable (attribute) to be created. self.v0
= ... means that we attach an attribute v0 to self (i.e., to y).

• Y(3) means Y.__init__(y, 3), i.e., call the constructor with self=y,
v0=3

• Remember: self is always the first parameter in the implementation of a
method, but is never inserted in the call!

• After y = Y(3), y has two attributes v0 and g

print(y.v0)
print(y.g)

In mathematics you don’t understand things. You just get used to
them. John von Neumann, mathematician, 1903-1957.

0.14 Representing a function by a class; the value method
Here is the value method:

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Example of a call:
v = y.value(t=0.1)

We do not include self in the call, but Python automatically inserts y as
the self argument inside the value method. Think of the call as

Y.value(y, t=0.1)

Inside value things “appear” as
return y.v0*t - 0.5*y.g*t**2

self gives access to “global variables” in the class object.

5

More details are found in Section 8.1 (page 119) in the book

0.15 Sketch of a general Python class

class MyClass:
def __init__(self, p1, p2):

self.attr1 = p1
self.attr2 = p2

def method1(self, arg):
return self.attr1 + self.attr2 + arg

def method2(self):
print('Hello!')

m = MyClass(4, 10)
print(m.method1(-2))
m.method2()

0.16 Summary of class introduction

• A class is simply a collection of functions and data that naturally belong
together

• Functions in a class are usually called methods, data are called attributes

• We create instances (or objects) of a class, and each instance can have
different values for the attributes

• All classes should have a method __init__, called a constructur, which is
called every time a new instance is created

• The constructur will typically initialize all data in an instance

• All methods in a class should have self as first argument in the definition,
but not in the call. This may be confusing at first, but one gets used to it.

0.17 Why use classes (1)?

• For short, simple Python programs, classes are never really necessary, but
they can make a program more tidy and readable

• For large and complex programs, tidy and readable code is extremely
important

• More important in other programming languages (Java, C++, etc)

6

• Python has convenient built-in data types (lists, dictionaries) that makes
it less important to make your own classes

• Classes and object-oriented programming (OOP) are standard tools in
software development

• OOP was invented at the University of Oslo (!)

0.18 Why use classes (2)
Think about how we have used the str class:

>>> a = "this is a string"
>>> type(a)
<class 'str'>
>>> l = a.split()

The Python developers could have solved this without classes, by making
split a global function:
>>> a = "this is a string"
>>> l = split(a)

(Warning: this does not work, it is just a thought-example.) The advantage of
the class solution is that it packs together data and functions that naturally
belong together.

0.19 Another class example: a bank account

• Attributes: name of owner, account number, balance

• Methods: deposit, withdraw, pretty print

class Account:
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = f'{self.name}, {self.no}, balance: {self.balance}'
print(s)

7

0.20 Example on using class Account

>>> a1 = Account('John Olsson', '19371554951', 20000)
>>> a2 = Account('Liz Olsson', '19371564761', 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print("a1's balance:", a1.balance)
a1's balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

0.21 How the class should not be used
Possible, but not intended use:

>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:

• The attributes should not be changed!

• The balance attribute can be viewed

• Changing balance is done through withdraw or deposit

Remedy: Attributes and methods not intended for use outside the class can
be marked as protected by prefixing the name with an underscore (e.g., _name).
This is just a convention - and no technical way of avoiding attributes and
methods to be accessed.

0.22 Improved class with attribute protection (underscore)

class AccountP:
def __init__(self, name, account_number, initial_amount):

self._name = name
self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self): # NEW - read balance value

8

return self._balance

def dump(self):
s = f'{self._name}, {self._no}, balance: {self._balance}'
print(s)

0.23 Usage of improved class AccountP

a1 = AccountP('John Olsson', '19371554951', 20000)
a1.withdraw(4000)

print(a1._balance) # it works, but a convention is broken

print(a1.get_balance()) # correct way of viewing the balance

a1._no = '19371554955' # also works, but is a "serious crime"!

0.24 Question: Why is this useful?
Hint: Think of large library codes, that will be used by many other program-

mers for many years.

9

	Plan for Week 42
	Basics of classes (1)
	Basics of classes (2)
	New terms and definition
	Class = functions + data (variables) in one unit
	Representing a function by a class; background (1)
	Representing a function by a class; background (2)
	Possible (sub-optimal) solutions
	Better solution; write a class
	Representing a function by a class; technical overview
	Representing a function by a class; the code
	Representing a function by a class; the constructor
	What is this self variable? (Don't worry, you will get used to it)
	Representing a function by a class; the value method
	Sketch of a general Python class
	Summary of class introduction
	Why use classes (1)?
	Why use classes (2)
	Another class example: a bank account
	Example on using class Account
	How the class should not be used
	Improved class with attribute protection (underscore)
	Usage of improved class AccountP
	Question: Why is this useful?

