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0.1 Special methods

• The class constructor has a special name: __init__

• The name is recognized by Python, and ensures this method is called when
a new class instance is created; e.g. y = MyClass(4)

• The constructor is an example of a special method

• Special methods have names with leading and trailing double underscores

• Special methods are recognized by Python, and automatically called when
we perform various operations on the class instances

0.2 The call special method; motivation
Recall the class for representing a function:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

y = Y(3)
v = y.value(0.1)

But it would be more natural to use the class like this:
y = Y(3)
v = y(0.1)



0.3 The call special method; implementation
Simply replace the value method by a call special method:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

Now we can write

y = Y(3)
v = y(0.1) # same as v = y.__call__(0.1) or Y.__call__(y, 0.1)

Note:

• The instance y now behaves and looks as a function!

• The value(t) method does the same, but __call__ allows nicer syntax
for computing function values

0.4 Special method for printing

• In Python, we can usually print an object a by print(a), works for built-in
types (strings, lists, floats, ...)

• Python does not know how to print objects of a user-defined class, but
if the class defines a method __str__, Python will use this method to
convert an object to a string

Example:

class Y:
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

Demo:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print(y)
v0*t - 0.5*g*t**2; v0=1.5
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0.5 Class Y revisited with print method

class Y:
"""Class for function y(t; v0, g) = v0*t - 0.5*g*t**2."""

def __init__(self, v0):
"""Store parameters."""
self.v0 = v0
self.g = 9.81

def __call__(self, t):
"""Evaluate function."""
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
"""Pretty print."""
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

0.6 Special methods for arithmetic operations

c = a + b # c = a.__add__(b)

c = a - b # c = a.__sub__(b)

c = a*b # c = a.__mul__(b)

c = a/b # c = a.__div__(b)

c = a**e # c = a.__pow__(e)

0.7 Special methods for comparisons

a == b # a.__eq__(b)

a != b # a.__ne__(b)

a < b # a.__lt__(b)

a <= b # a.__le__(b)

a > b # a.__gt__(b)

a >= b # a.__ge__(b)

0.8 The programmer is in charge of defining special meth-
ods!

How should, for instance, __add__(self, other) and __mul__(self, other)
be defined?

This is completely up to the programmer, depending on what are meaningful
results of object1 + object2 and object1 * object2.
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0.9 Class for vectors in the plane
Mathematical operations for vectors in the plane:

(a, b) + (c, d) = (a + c, b + d)
(a, b) − (c, d) = (a − c, b − d)
(a, b) · (c, d) = ac + bd

(a, b) = (c, d) if a = c and b = d

Desired application code:
>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> print(u + v)
(1, 1)
>>> a = u + v
>>> w = Vec2D(1,1)
>>> a == w
True
>>> print(u - v)
(-1, 1)
>>> print(u*v)
0

0.10 Class for vectors; implementation

class Vec2D:
def __init__(self, x, y):

self.x = x; self.y = y

def __add__(self, other):
return Vec2D(self.x+other.x, self.y+other.y)

def __sub__(self, other):
return Vec2D(self.x-other.x, self.y-other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return f'({self.x}, {self.y})'

0.11 Class for polynomials; functionality
A polynomial can be specified by a list of its coefficients. For example, 1−x2+2x3

is

1 + 0 · x − 1 · x2 + 2 · x3

and the coefficients can be stored as [1, 0, -1, 2]
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Desired application code:
>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> print(p1(x=0.5))
0.5
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print(p3.coeff)
[1, 0, 0, 0, -6, -1]
>>> print(p3)
1 - 6*x^4 - x^5
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

How can we make class Polynomial?

0.12 Class Polynomial; basic code

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

0.13 Class Polynomial; addition

class Polynomial:
...

def __add__(self, other):
# return self + other

# start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):

coeffsum = self.coeff[:] # copy!
for i in range(len(other.coeff)):

coeffsum[i] += other.coeff[i]
else:

coeffsum = other.coeff[:] # copy!
for i in range(len(self.coeff)):

coeffsum[i] += self.coeff[i]
return Polynomial(coeffsum)

0.14 Class Polynomial; multiplication
Mathematics: Multiplication of two general polynomials:
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The coeff. corresponding to power i + j is ci · dj . The list r of coefficients of the result:
r[i+j] = c[i]*d[j] (i and j running from 0 to M and N , resp.)

Implementation:
class Polynomial:

...
def __mul__(self, other):

M = len(self.coeff) - 1
N = len(other.coeff) - 1
coeff = [0]*(M+N+1) # or zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
coeff[i+j] += self.coeff[i]*other.coeff[j]

return Polynomial(coeff)

0.15 Class Polynomial; differentation
Mathematics: Rule for differentiating a general polynomial:

d

dx

n∑
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cix
i =
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If c is the list of coefficients, the derivative has a list of coefficients, dc, where dc[i-1] =
i*c[i] for i running from 1 to the largest index in c. Note that dc has one element less than
c.

Implementation:
class Polynomial:

...
def differentiate(self): # change self

for i in range(1, len(self.coeff)):
self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]

def derivative(self): # return new polynomial
dpdx = Polynomial(self.coeff[:]) # copy
dpdx.differentiate()
return dpdx

0.16 Class Polynomial; pretty print

class Polynomial:
...
def __str__(self):

s = ''
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += f' + {self.coeff[i]}*x^{i}'
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# fix layout (lots of special cases):
s = s.replace('+ -', '- ')
s = s.replace(' 1*', ' ')
s = s.replace('x^0', '1')
s = s.replace('x^1 ', 'x ')
s = s.replace('x^1', 'x')
if s[0:3] == ' + ': # remove initial +

s = s[3:]
if s[0:3] == ' - ': # fix spaces for initial -

s = '-' + s[3:]
return s

0.17 Class for polynomials; usage
Consider

p1(x) = 1 − x, p2(x) = x − 6x4 − x5

and their sum

p3(x) = p1(x) + p2(x) = 1 − 6x4 − x5

>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

0.18 Example; "automatic" differentiation
Given some mathematical function in Python, say

def f(x):
return x**3

can we make a class Derivative and write

dfdx = Derivative(f)

so that dfdx behaves as a function that computes the derivative of f(x)?

print(dfdx(2)) # computes 3*x**2 for x=2
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0.19 Automagic differentiation; solution
Method. We use numerical differentiation “behind the curtain”:

f ′(x) ≈ f(x + h) − f(x)
h

for a small (yet moderate) h, say h = 10−5

Implementation.
class Derivative:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

0.20 Automagic differentiation; demo

>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

0.21 Automagic differentiation; useful in Newton’s method
Newton’s method solves nonlinear equations f(x) = 0, but the method requires

f ′(x)
def Newton(f, xstart, dfdx, epsilon=1E-6):

...
return x, no_of_iterations, f(x)

Suppose f ′(x) requires boring/lengthy derivation, then class Derivative is
handy:

>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> xstart = 1.01
>>> Newton(f, xstart, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)
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0.22 Class introduction - summary

• Classes pack together data and functions that naturally belong together

• We define a class, and then create instances (or objects) of that class

– Different instances will have different data, but they all have the same
functions operating on that data

• In IN1900 codes, classes are never really necessary, but sometimes conve-
nient

• In "real-world" programs, with tens of 1000s of lines, the extra organization
offered by classes may be the difference between a code that works and
one that doesn’t

0.23 Summary of special methods

• c = a + b implies c = a.__add__(b)

• There are special methods for a+b, a-b, a*b, a/b, a**b, -a, if a:, len(a),
str(a) (pretty print), etc.

• With special methods we can create new mathematical objects like vec-
tors, polynomials and complex numbers and write “mathematical code”
(arithmetics)

• The call special method is particularly handy: v = c(5) means v = c.__call__(5)

• Functions with parameters should be represented by a class with the
parameters as attributes and with a call special method for evaluating the
function
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