
Chapter 8: Classes part 2 - special
methods

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Oct 15, 2023

0.1 Special methods

• The class constructor has a special name: __init__

• The name is recognized by Python, and ensures this method is called when
a new class instance is created; e.g. y = MyClass(4)

• The constructor is an example of a special method

• Special methods have names with leading and trailing double underscores

• Special methods are recognized by Python, and automatically called when
we perform various operations on the class instances

0.2 The call special method; motivation
Recall the class for representing a function:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

y = Y(3)
v = y.value(0.1)

But it would be more natural to use the class like this:
y = Y(3)
v = y(0.1)



0.3 The call special method; implementation
Simply replace the value method by a call special method:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

Now we can write

y = Y(3)
v = y(0.1) # same as v = y.__call__(0.1) or Y.__call__(y, 0.1)

Note:

• The instance y now behaves and looks as a function!

• The value(t) method does the same, but __call__ allows nicer syntax
for computing function values

0.4 Special method for printing

• In Python, we can usually print an object a by print(a), works for built-in
types (strings, lists, floats, ...)

• Python does not know how to print objects of a user-defined class, but
if the class defines a method __str__, Python will use this method to
convert an object to a string

Example:

class Y:
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

Demo:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print(y)
v0*t - 0.5*g*t**2; v0=1.5

2



0.5 Class Y revisited with print method

class Y:
"""Class for function y(t; v0, g) = v0*t - 0.5*g*t**2."""

def __init__(self, v0):
"""Store parameters."""
self.v0 = v0
self.g = 9.81

def __call__(self, t):
"""Evaluate function."""
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
"""Pretty print."""
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

0.6 Special methods for arithmetic operations

c = a + b # c = a.__add__(b)

c = a - b # c = a.__sub__(b)

c = a*b # c = a.__mul__(b)

c = a/b # c = a.__div__(b)

c = a**e # c = a.__pow__(e)

0.7 Special methods for comparisons

a == b # a.__eq__(b)

a != b # a.__ne__(b)

a < b # a.__lt__(b)

a <= b # a.__le__(b)

a > b # a.__gt__(b)

a >= b # a.__ge__(b)

0.8 The programmer is in charge of defining special meth-
ods!

How should, for instance, __add__(self, other) and __mul__(self, other)
be defined?

This is completely up to the programmer, depending on what are meaningful
results of object1 + object2 and object1 * object2.

3



0.9 Class for vectors in the plane
Mathematical operations for vectors in the plane:

(a, b) + (c, d) = (a + c, b + d)
(a, b) − (c, d) = (a − c, b − d)
(a, b) · (c, d) = ac + bd

(a, b) = (c, d) if a = c and b = d

Desired application code:
>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> print(u + v)
(1, 1)
>>> a = u + v
>>> w = Vec2D(1,1)
>>> a == w
True
>>> print(u - v)
(-1, 1)
>>> print(u*v)
0

0.10 Class for vectors; implementation

class Vec2D:
def __init__(self, x, y):

self.x = x; self.y = y

def __add__(self, other):
return Vec2D(self.x+other.x, self.y+other.y)

def __sub__(self, other):
return Vec2D(self.x-other.x, self.y-other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return f'({self.x}, {self.y})'

0.11 Class for polynomials; functionality
A polynomial can be specified by a list of its coefficients. For example, 1−x2+2x3

is

1 + 0 · x − 1 · x2 + 2 · x3

and the coefficients can be stored as [1, 0, -1, 2]

4



Desired application code:
>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> print(p1(x=0.5))
0.5
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print(p3.coeff)
[1, 0, 0, 0, -6, -1]
>>> print(p3)
1 - 6*x^4 - x^5
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

How can we make class Polynomial?

0.12 Class Polynomial; basic code

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

0.13 Class Polynomial; addition

class Polynomial:
...

def __add__(self, other):
# return self + other

# start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):

coeffsum = self.coeff[:] # copy!
for i in range(len(other.coeff)):

coeffsum[i] += other.coeff[i]
else:

coeffsum = other.coeff[:] # copy!
for i in range(len(self.coeff)):

coeffsum[i] += self.coeff[i]
return Polynomial(coeffsum)

0.14 Class Polynomial; multiplication
Mathematics: Multiplication of two general polynomials:

5



(
M∑

i=0

cix
i

)(
N∑

j=0

djxj

)
=

M∑
i=0

N∑
j=0

cidjxi+j

The coeff. corresponding to power i + j is ci · dj . The list r of coefficients of the result:
r[i+j] = c[i]*d[j] (i and j running from 0 to M and N , resp.)

Implementation:
class Polynomial:

...
def __mul__(self, other):

M = len(self.coeff) - 1
N = len(other.coeff) - 1
coeff = [0]*(M+N+1) # or zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
coeff[i+j] += self.coeff[i]*other.coeff[j]

return Polynomial(coeff)

0.15 Class Polynomial; differentation
Mathematics: Rule for differentiating a general polynomial:

d

dx

n∑
i=0

cix
i =

n∑
i=1

icix
i−1

If c is the list of coefficients, the derivative has a list of coefficients, dc, where dc[i-1] =
i*c[i] for i running from 1 to the largest index in c. Note that dc has one element less than
c.

Implementation:
class Polynomial:

...
def differentiate(self): # change self

for i in range(1, len(self.coeff)):
self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]

def derivative(self): # return new polynomial
dpdx = Polynomial(self.coeff[:]) # copy
dpdx.differentiate()
return dpdx

0.16 Class Polynomial; pretty print

class Polynomial:
...
def __str__(self):

s = ''
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += f' + {self.coeff[i]}*x^{i}'

6



# fix layout (lots of special cases):
s = s.replace('+ -', '- ')
s = s.replace(' 1*', ' ')
s = s.replace('x^0', '1')
s = s.replace('x^1 ', 'x ')
s = s.replace('x^1', 'x')
if s[0:3] == ' + ': # remove initial +

s = s[3:]
if s[0:3] == ' - ': # fix spaces for initial -

s = '-' + s[3:]
return s

0.17 Class for polynomials; usage
Consider

p1(x) = 1 − x, p2(x) = x − 6x4 − x5

and their sum

p3(x) = p1(x) + p2(x) = 1 − 6x4 − x5

>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 =(p1 + p2)
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

0.18 Example; "automatic" differentiation
Given some mathematical function in Python, say

def f(x):
return x**3

can we make a class Derivative and write

dfdx = Derivative(f)

so that dfdx behaves as a function that computes the derivative of f(x)?

print(dfdx(2)) # computes 3*x**2 for x=2

7



0.19 Automagic differentiation; solution
Method. We use numerical differentiation “behind the curtain”:

f ′(x) ≈ f(x + h) − f(x)
h

for a small (yet moderate) h, say h = 10−5

Implementation.
class Derivative:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

0.20 Automagic differentiation; demo

>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

0.21 Automagic differentiation; useful in Newton’s method
Newton’s method solves nonlinear equations f(x) = 0, but the method requires

f ′(x)
def Newton(f, xstart, dfdx, epsilon=1E-6):

...
return x, no_of_iterations, f(x)

Suppose f ′(x) requires boring/lengthy derivation, then class Derivative is
handy:

>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> xstart = 1.01
>>> Newton(f, xstart, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

8



0.22 Class introduction - summary

• Classes pack together data and functions that naturally belong together

• We define a class, and then create instances (or objects) of that class

– Different instances will have different data, but they all have the same
functions operating on that data

• In IN1900 codes, classes are never really necessary, but sometimes conve-
nient

• In "real-world" programs, with tens of 1000s of lines, the extra organization
offered by classes may be the difference between a code that works and
one that doesn’t

0.23 Summary of special methods

• c = a + b implies c = a.__add__(b)

• There are special methods for a+b, a-b, a*b, a/b, a**b, -a, if a:, len(a),
str(a) (pretty print), etc.

• With special methods we can create new mathematical objects like vec-
tors, polynomials and complex numbers and write “mathematical code”
(arithmetics)

• The call special method is particularly handy: v = c(5) means v = c.__call__(5)

• Functions with parameters should be represented by a class with the
parameters as attributes and with a call special method for evaluating the
function

9


	Special methods
	The call special method; motivation
	The call special method; implementation
	Special method for printing
	Class Y revisited with print method
	Special methods for arithmetic operations
	Special methods for comparisons
	The programmer is in charge of defining special methods!
	Class for vectors in the plane
	Class for vectors; implementation
	Class for polynomials; functionality
	Class Polynomial; basic code
	Class Polynomial; addition
	Class Polynomial; multiplication
	Class Polynomial; differentation
	Class Polynomial; pretty print
	Class for polynomials; usage
	Example; "automatic" differentiation
	Automagic differentiation; solution
	Automagic differentiation; demo
	Automagic differentiation; useful in Newton's method
	Class introduction - summary
	Summary of special methods

