
Ch.3: Loops and lists

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Aug 31, 2023

0.1 Plan for 31 August

• Short quiz on topics from Tuesday

• Controlling output format (leftover from Tuesday)

• Exercise 1.12 from Primer on Scientific Programming with Python

• Loops and lists

– The while loop
– Boolean expressions (True/False)
– The for loop

• Exercise 2.1 and 2.3 from Primer on Scientific Programming with Python

• More on loops and lists (most likely next week, partly self study):

– range, zip, list comprehensions,...

0.2 Quiz question 1
Which of the following code segments are wrong (if any)? What is wrong?

Code 1
a = "Hello world"
a = 2

Code 2
pi = 3.14159
pi = 2 * pi

Code 3
b = x**2 + 3 * x + 1
x = 2.3

0.3 Answer to question 1

#code 1
a = "Hello world"
a = 2

#code 2
pi = 3.14159
pi = 2 * pi

#Code 3
b = x**2 + 3 * x + 1
x = 2.3

Terminal> python quiz1.py
Traceback (most recent call last):

File "quiz1.py", line 10, in <module>
b = x**2 + 3 * x + 1

NameError: name 'x' is not defined

In programming, variables must be defined before they are used (unlike mathe-
matics).

0.4 Question 2
What are the types of the variables in the following code:

a = 2
b = 2.5
s = "hello"
t = a * s

0.5 Answer to question 2

a = 2
b = 2.5
s = "hello"
t = a * s

print('a is ', type(a), ' b is ', type(b), \
' s is ', type(s), ' t is ', type(t))

2

Terminal> python quiz2.py
a is <class 'int'> b is <class 'float'> s is <class 'str'> t is <class 'str'>

0.6 Question 3
Which of these codes are wrong (if any)?

from math import sin, pi
x = sin(pi / 2)

import math
x = sin(pi / 2)

from math import *
x = sin(pi / 2)

0.7 Answer to question 3
The second import code is wrong. If you import a module in this way, all

functions and variables from the module must be prefixed with the module name:
import math
x = math.sin(math.pi / 2)

0.8 Question 4 (discussion)
The Python module cmath is for computing with complex numbers, while

numpy is a module for computing with arrays (many numbers at once).
Why is this code segment a bad idea:
from math import *
from numpy import *
from cmath import *

(...)
x = sin(pi / 2)

0.9 Answer to question 4
The three modules have many functions with identical names. If we import

them like this it is very difficult to know which functions we use. When combining
modules with potential name conflicts, we should use something like:

3

import math
import numpy
import cmath

(...)
x = math.sin(math.pi / 2)

0.10 Question 5 (discussion)
In Python, we can make and later change a variable like this:

a = 2
(...)
a = 0.5*2

In many other languages, we must write something like:
int a;
a = 2;
(...)

Python obviously saves some typing, but can you think of any potential
problems with the Python way of defining variables?

0.11 Answer to question 5
This toy example illustrates one potential pitfall of dynamic typing:

#create a variable x0:
x0 = 10.0

#Do something useful...

#change x0:
xO = 14.0

#More important calculations with x0...
print('The value of x0 is ', x0)

0.12 Main topics of Chapter 3

• Using loops for repeating similar operations:

– The while loop
– The for loop

• Boolean expressions (True/False)

• Lists

4

0.13 Make a table of Celsius and Fahrenheit degrees
-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

How can a program write out such a table?

0.14 Making a table: the simple naive solution
We know how to make one line in the table:

C = -20
F = 9.0/5*C + 32
print(C, F)

We can just repeat these statements:
C = -20; F = 9.0 / 5 * C + 32; print(C, F)
C = -15; F = 9.0 / 5 * C + 32; print(C, F)
...
C = 35; F = 9.0 / 5 * C + 32; print(C, F)
C = 40; F = 9.0 / 5 * C + 32; print(C, F)

• Very boring to write, easy to introduce a typo

• When programming becomes boring, there is usually a construct that
automates the writing!

• The computer is extremely good at performing repetitive tasks

• For this purpose we use loops

0.15 The while loop makes it possible to repeat similar
tasks

A while loop executes repeatedly a set of statements as long as a boolean
condition is true

while condition:
<statement 1>
<statement 2>
...

<first statement after loop>

• All statements in the loop must be indented!

• The loop ends when an unindented statement is encountered

5

0.16 Example 1: table with while loop
The while loop is a far more efficient way to make the Fahrenheit-Celcius table

described on the previous slides.
Task: Given a range of Celsius degrees from -20 to 40, in steps of 5, calculate

the corresponding degrees Fahrenheit and print both values to the screen.

0.17 The while loop for making a table

print('------------------') # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0 / 5) * C + 32 # 1st statement inside loop
print(C, F) # 2nd statement inside loop
C = C + dC # last statement inside loop

print('------------------') # end of table line

0.18 The program flow in a while loop
Let us simulate the while loop by hand:

• First C is -20, −20 ≤ 40 is true, therefore we execute the loop statements

• Compute F, print, and update C to -15

• We jump up to the while line, evaluate C ≤ 40, which is true, hence a
new round in the loop

• We continue this way until C is updated to 45

• Now the loop condition 45 ≤ 40 is false, and the program jumps to the
first line after the loop - the loop is over

0.19 Boolean expressions are true or false
An expression with value true or false is called a boolean expression. Examples:

C = 40, C 6= 40, C ≥ 40, C > 40, C < 40.
C == 40 # note the double ==, C = 40 is an assignment!
C != 40
C >= 40
C > 40
C < 40

We can test boolean expressions in a Python shell:
>>> C = 41
>>> C != 40
True
>>> C < 40
False
>>> C == 41
True

6

0.20 Combining boolean expressions
Several conditions can be combined with and/or:

while condition1 and condition2:
...

while condition1 or condition2:
...

Rule 1: C1 and C2 is True if both C1 and C2 are True
Rule 2: C1 or C2 is True if one of C1 or C2 is True

>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0 # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False

0.21 Lists are objects for storing a sequence of things (ob-
jects)

So far, one variable has referred to one number (or string), but sometimes we
naturally have a collection of numbers, say degrees −20,−15,−10,−5, 0, . . . , 40

Simple solution: one variable for each value

C1 = -20
C2 = -15
C3 = -10
...
C13 = 40

Stupid and boring solution if we have many values!
Better: a set of values can be collected in a list

C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

Now there is one variable, C, holding all the values

0.22 List operations 1: initialization and indexing
Initialize with square brackets and comma between the Python objects:

L1 = [-91, 'a string', 7.2, 0]

Elements are accessed via an index: L1[3] (index=3).
List indices start at 0: 0, 1, 2, ... len(L1)-1.

7

>>> mylist = [4, 6, -3.5]
>>> print(mylist[0])
4
>>> print(mylist[1])
6
>>> print(mylist[2])
-3.5
>>> len(mylist) # length of list
3

0.23 List operations 2: append, extend, length

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30]
>>> C.append(35) # add new element 35 at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]
>>> C = C + [40, 45] # extend C at the end
>>> len(C) # length of list
12

0.24 The for loop is used for iterating over a list
A for loop iterates over elements in a list, and performs operations on each:

for element in list:
<statement 1>
<statement 2>
...

<first statement after loop>

• Simpler than the while loop (no conditional needed)

• Slightly less flexible

0.25 Example: For loop for temperature conversion
Task: Create a list of Celsius values similar to the previous one. Use a for-loop to
iterate over the list, compute the corresponding Fahrenheit values and printing
the values to the screen

0.26 Loop over elements in a list with a for loop
Use a for loop to loop over a list and process each element:

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print('Celsius degrees:', C)
F = 9/5.*C + 32
print('Fahrenheit:', F)

print('The degrees list has', len(degrees), 'elements')

As with while loops, the statements in the loop must be indented!

8

0.27 Making a table with a for loop
Table of Celsius and Fahreheit degrees:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15,
20, 25, 30, 35, 40]

for C in Cdegrees:
F = (9.0/5)*C + 32
print(C, F)

Note: print(C, F) gives ugly output. Use an f-string to nicely format the two
columns:

print(f'{C:5d} {F:5.1f}')

Output:
-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
......

35 95.0
40 104.0

0.28 A for loop can always be translated to a while loop
The for loop

for element in somelist:
process element

can always be transformed to a corresponding while loop
index = 0
while index < len(somelist):

element = somelist[index]
process element
index += 1

But not all while loops can be expressed as for loops!

0.29 Storing the table columns as lists
Let us put all the Fahrenheit values in a list as well:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10,
15, 20, 25, 30, 35, 40]

Fdegrees = [] # start with empty list
for C in Cdegrees:

F = (9.0/5)*C + 32
Fdegrees.append(F) # add new element to Fdegrees

print(Fdegrees)

print(Fdegrees) results in
[-4.0, 5.0, 14.0, 23.0, 32.0, 41.0, 50.0, 59.0,
68.0, 77.0, 86.0, 95.0, 104.0]

9

0.30 Using range to loop over indices
Sometimes we don’t have a list, but want to repeat an operation N times.

The Python function range returns a list of integers:

C = 0
for i in range(N):

F = (9.0/5)*C + 32
print(F)

• range(start, stop, inc) generates a list of integers start, start+inc,
start+2*inc, and so on up to, but not including, stop.

• range(stop) is short for range(0, stop, 1).

(In Python 3, range returns an iterator, which is not strictly a list, but
behaves similarly when used in a for loop.)

0.31 Implement a mathematical sum via a loop

S =
N∑

i=1
i2

N = 14

S = 0
for i in range(1, N+1):

S += i**2

Or (less common):

S = 0
i = 1
while i <= N:

S += i**2
i += 1

Mathematical sums appear often so remember the implementation!

0.32 How can we change the elements in a list?
Say we want to add 2 to all numbers in a list:

>>> v = [-1, 1, 10]
>>> for e in v:
... e = e + 2
...
>>> v
[-1, 1, 10] # unaltered!!

10

0.33 Changing a list element requires assignment to an
indexed element

What is the problem?
Inside the loop, e is an ordinary (int) variable, first time e becomes 1, next

time e becomes 3, and then 12 - but the list v is unaltered
Solution: must index a list element to change its value:

>>> v[1] = 4 # assign 4 to 2nd element (index 1) in v
>>> v
[-1, 4, 10]
>>>
>>> for i in range(len(v)):
... v[i] = v[i] + 2
...
>>> v
[1, 6, 12]

0.34 List comprehensions: compact creation of lists
Example: compute two lists in a for loop.

n = 16
Cdegrees = []; Fdegrees = [] # empty lists

for i in range(n):
Cdegrees.append(-5 + i*0.5)
Fdegrees.append((9.0/5)*Cdegrees[i] + 32)

Python has a compact construct, called list comprehension, for generating
lists from a for loop:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

General form of a list comprehension:

somelist = [expression for element in somelist]

where expression involves element

0.35 Traversing multiple lists simultaneously with zip
Can we have one loop running over two lists? Solution 1: loop over
indices

for i in range(len(Cdegrees)):
print(Cdegrees[i], Fdegrees[i])

Solution 2: use the zip construct (more “Pythonic”):

for C, F in zip(Cdegrees, Fdegrees):
print(C, F)

Example with three lists:

11

>>> l1 = [3, 6, 1]; l2 = [1.5, 1, 0]; l3 = [9.1, 3, 2]
>>> for e1, e2, e3 in zip(l1, l2, l3):
... print(e1, e2, e3)
...
3 1.5 9.1
6 1 3
1 0 2

0.36 Nested lists: list of lists

• A list can contain any object, also another list

• Instead of storing a table as two separate lists (one for each column), we
can stick the two lists together in a new list:

Cdegrees = list(range(-20, 41, 5)) #range returns an iterator, convert to a list
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table1 = [Cdegrees, Fdegrees] # list of two lists

print(table1[0]) # the Cdegrees list
print(table1[1]) # the Fdegrees list
print(table1[1][2]) # the 3rd element in Fdegrees

0.37 Extracting sublists (or slices)
We can easily grab parts of a list:

>>> A = [2, 3.5, 8, 10]
>>> A[2:] # from index 2 to end of list
[8, 10]

>>> A[1:3] # from index 1 up to, but not incl., index 3
[3.5, 8]

>>> A[:3] # from start up to, but not incl., index 3
[2, 3.5, 8]

>>> A[1:-1] # from index 1 to next last element
[3.5, 8]

>>> A[:] # the whole list
[2, 3.5, 8, 10]

Note: sublists (slices) are copies of the original list!

0.38 Iteration over general nested lists
List with many indices: somelist[i1][i2][i3]...

12

Loops over list indices:
for i1 in range(len(somelist)):

for i2 in range(len(somelist[i1])):
for i3 in range(len(somelist[i1][i2])):

for i4 in range(len(somelist[i1][i2][i3])):
value = somelist[i1][i2][i3][i4]
work with value

Loops over sublists:
for sublist1 in somelist:

for sublist2 in sublist1:
for sublist3 in sublist2:

for sublist4 in sublist3:
value = sublist4
work with value

0.39 Iteration over a specific nested list
L = [[9, 7], [-1, 5, 6]]
for row in L:

for column in row:
print(column)

Simulate this program by hand!

Question. How can we index element with value 5?

0.40 Tuples are constant lists
Tuples are constant lists that cannot be changed:

>>> t = (2, 4, 6, 'temp.pdf') # define a tuple
>>> t = 2, 4, 6, 'temp.pdf' # can skip parenthesis
>>> t[1] = -1
...
TypeError: object does not support item assignment

>>> t.append(0)
...
AttributeError: 'tuple' object has no attribute 'append'

>>> del t[1]
...
TypeError: object doesn't support item deletion

Tuples can do much of what lists can do:
>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, 'temp.pdf', -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, 'temp.pdf', -1.0, -2.0)
>>> 6 in t # membership
True

13

0.41 Why tuples when lists have more functionality?

• Tuples are constant and thus protected against accidental changes

• Tuples are faster than lists

• Tuples are widely used in Python software
(so you need to know about them!)

• Tuples (but not lists) can be used as keys is dictionaries
(more about dictionaries later)

0.42 Key topics from this chapter
• While loops

• Boolean expressions

• For loops

• Lists

• Nested lists

• Tuples

0.43 Summary of loops, lists and tuples
While loops and for loops:

while condition:
<block of statements>

for element in somelist:
<block of statements>

Lists and tuples:

mylist = ['a string', 2.5, 6, 'another string']
mytuple = ('a string', 2.5, 6, 'another string')
mylist[1] = -10
mylist.append('a third string')
mytuple[1] = -10 # illegal: cannot change a tuple

14

0.44 List operations self study: insert, delete

>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> C.insert(0, -15) # insert -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

0.45 List operations self study: search, negative indices

>>> C.index(10) # index of the first element with value 10
3
>>> 10 in C # is 10 an element in C?
True
>>> C[-1] # the last list element
45
>>> C[-2] # the next last list element
40
>>> somelist = ['book.tex', 'book.log', 'book.pdf']
>>> texfile, logfile, pdf = somelist # assign directly to variables
>>> texfile
'book.tex'
>>> logfile
'book.log'
>>> pdf
'book.pdf'

15

0.46 List operations self study: summary
Construction Meaning

a = [] initialize an empty list
a = [1, 4.4, ’run.py’] initialize a list
a.append(elem) add elem object to the end
a + [1,3] add two lists
a.insert(i, e) insert element e before index i
a[3] index a list element
a[-1] get last list element
a[1:3] slice: copy data to sublist (here: index 1, 2)
del a[3] delete an element (index 3)
a.remove(e) remove an element with value e
a.index(’run.py’) find index corresponding to an element’s value
’run.py’ in a test if a value is contained in the list
a.count(v) count how many elements that have the value v
len(a) number of elements in list a
min(a) the smallest element in a
max(a) the largest element in a
sum(a) add all elements in a
sorted(a) return sorted version of list a
reversed(a) return reversed sorted version of list a
b[3][0][2] nested list indexing
isinstance(a, list) is True if a is a list
type(a) is list is True if a is a list

16

	Plan for 31 August
	Quiz question 1
	Answer to question 1
	Question 2
	Answer to question 2
	Question 3
	Answer to question 3
	Question 4 (discussion)
	Answer to question 4
	Question 5 (discussion)
	Answer to question 5
	Main topics of Chapter 3
	Make a table of Celsius and Fahrenheit degrees
	Making a table: the simple naive solution
	The while loop makes it possible to repeat similar tasks
	Example 1: table with while loop
	The while loop for making a table
	The program flow in a while loop
	Boolean expressions are true or false
	Combining boolean expressions
	Lists are objects for storing a sequence of things (objects)
	List operations 1: initialization and indexing
	List operations 2: append, extend, length
	The for loop is used for iterating over a list
	Example: For loop for temperature conversion
	Loop over elements in a list with a for loop
	Making a table with a for loop
	A for loop can always be translated to a while loop
	Storing the table columns as lists
	Using range to loop over indices
	Implement a mathematical sum via a loop
	How can we change the elements in a list?
	Changing a list element requires assignment to an indexed element
	List comprehensions: compact creation of lists
	Traversing multiple lists simultaneously with zip
	Nested lists: list of lists
	Extracting sublists (or slices)
	Iteration over general nested lists
	Iteration over a specific nested list
	Tuples are constant lists
	Why tuples when lists have more functionality?
	Key topics from this chapter
	Summary of loops, lists and tuples
	List operations self study: insert, delete
	List operations self study: search, negative indices
	List operations self study: summary

