Introduction Basic Physics Introduction to Sonar Underwater sound INF-GEO4310 Sonar Theory 2 Sonar types Position Estimation Roy Edgar Hansen Signal processing Department of Informatics, University of Oslo Sonar Applications

Outline

Basics

Fish finding

HUGIN AUV Mapping Imaging Summary

RH, INF-GEO4310 (Ifi/UiO)

September 2013

	4		500
RH, INF-GEO4310 (Ifi/UiO)	Sonar	Sept. 2013	1 / 77

Sonar Basics

Outline

Basics

- Introduction
- Basic Physics
- Underwater sound

- Sonar types
- Position Estimation
- Signal processing

- Fish finding
- HUGIN AUV
- Mapping
- Imaging

-		Þ	4	ð	Þ	•	æ	×.	•	æ	Þ	2	5

Sept. 2013

3/77

RH, INF-GEO4310 (Ifi/UiO)

RH, INF-GEO4310 (Ifi/UiO)

Image from wikipedia.org.

• If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.

Leonardo da Vinci, 1490

- In 1687 Isaac Newton wrote his Mathematical Principles of Natural Philosophy which included the first mathematical treatment of sound
- In 1877 Lord Rayleigh wrote the Theory of Sound and established modern acoustic theory

Sonar Basics Introduction

History of Underwater Acoustics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Sept. 2013

Sonar Basics Introduction

History of SONAR

- SOund Navigation And Ranging
- A lot of activity after the loss of British passenger liner RMS Titanic in 1912
- English meteorologist Lewis Richardson, April/May 1912: Patent on Iceberg detection using acoustic echolocation in air and water
- German physicist Alexander Behm 1913: patent on echo sounder
- Canadian engineer Reginald Fessenden, 1914: Demonstrated depth sounding, underwater communications (Morse Code) and echo ranging detecting an iceberg at two miles range
- French physicist Paul Langevin and Russian immigrant electrical engineer, Constantin Chilowski 1916/17: US patents on ultrasonic submarine detector using an electrostatic method

	Imag	je from wikipedi	a.org.
•		<	৩৫৫
nar		Sept. 2013	5/77
D	⊲ onar	Imag 《 다 ▷ 《 ⑦ ▷ 《 군 ▷ onar	Image from wikipedi

Sonar Basics Introduction

Similar technologies

- SONAR = Sound Navigation And Ranging
- RADAR = Radio Detection And Ranging
- Medical ultrasound, higher frequencies, shorter range and more complex medium
- Seismic exploration, lower frequencies, more complex medium

The masters in sonar

From wikipedia.org.

	4		
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	6 / 77

Sonar Basics Introduction

Literature

- Course text: sonar_introduction_2012.pdf
- Course presentation: sonar_presentation_2012.pdf
- Xavier Lurton, An introduction to underwater acoustics Springer Praxis, First edition 2002, Second edition 2010
- www.wikipedia.org
 - sonar
 - underwater acoustics
 - side-scan sonar
 - biosonar, animal echolocation
 - beamforming
- Ocean Acoustics Library http://oalib.hlsresearch.com/

RH, INF-GEO4310 (Ifi/UiO)

Sept. 2013

Sonar Basics Physics

Basic Physics

- Sound is waves travelling in pressure perturbations
- Or: compressional wave, longitudal wave, mechanical wave
- The acoustic vibrations can be characterized by
 - ▶ Wave period T [s]
 - Frequency f = 1/T [Hz]
 - Wavelength $\lambda = c/f$ [m]
 - Sound speed c [m/s]

Sonar Basics

Underwater sound

• Acoustics is the only long range information carrier under water

Underwater sound

- The pressure perturbations are very small
- Obtainable range is determined by
 - free space loss and absorption
 - the sensitivity to the receiver
- The ocean environment affects sound propagation:
 - sea surface
 - seafloor
 - temperature and salinity
 - currents and turbulence
- Underwater sound propagation is frequency dependent

Absorption

- Seawater is a dissipative medium through viscosity and chemical processes
- Acoustic absorption in seawater is frequency dependent
- Lower frequencies will reach longer than higher frequencies

f [kHz]	<i>R</i> [km]	λ [m]
0.1	1000	15
1	100	1.5
10	10	0.15
100	1	0.015
1000	0.1	0.0015

(ロトス合) スヨトスヨト 3 RH, INF-GEO4310 (Ifi/UiO) Sept. 2013 13/77

Sonar Basics Underwater sound

The Ocean as Acoustic Medium

- The sound velocity environmental dependency
- Layering and refraction waveguides
- The sea floor and the sea surface scattering
- Noise sources

Transmission loss

- Transmission loss is geometrical spread + absorption
- Logarithmic (dB) scale: $I_{dB} = 10 \log_{10}(I)$
- A certain frequency will have a certain maximum range
- Frequency is a critical design parameter

Sonar Basics Underwater sound

Reflection and Refraction in Acoustics

- Recall from first lecture on optical imaging
- The reflection angle is equal to the incident angle
- The angle of refraction is given by Snell's law

 $\frac{\sin \theta_1}{=}$ $\sin \theta_2$ C_1 C_2

- The index of refraction $n = c_2/c_1$
- Snells law can be derived from Fermats principle or from the general boundary conditions

From Wikipedia

RH, INF-GEO4310 (Ifi/UiO)

RH, INF-GEO4310 (Ifi/UiO)

Sept. 2013 15/77

(個)((国)((国))(国)

Refraction and the underwater sound velocity

Medvins formula:

 $c = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3 + (1.34 - 0.010T)(S - 35) + 0.016D$

The sound velocity depends on 3 major parts:

- Temperature T in degrees Celsius
- Salinity S in parts per thousand
- Depth *D* in meters

The sound velocity contains information about the ocean environment. Example: T = 12.5 °C, S = 35 ppt, D = 100 m gives c = 1500 m/s

Sound refraction

• The sound will refract towards areas of slower speed

SOUND IS LAZY

Deep sound velocity variation

Sonar Basics Underwater sound

Underwater sound channel

- waves are trapped in a guide
- The energy spreads in one dimension instead of two $I \sim 1/R$
- Much longer range
- Acoustical Oceanography: Map the effect of the medium on underwater acoustics

RH, INF-GEO4310 (Ifi/UiO)

Sept. 2013 19 / 77

Coastal variability

Factors that affect sound propagation:

- The sound velocity profile
- The sea surface
- Internal waves
- Turbulence
- Ocean current

(ロ・・(型・・(目・・(ロ・)

-

Coastal variability

- The sound is trapped in a waveguide
- The boundaries of the waveguide changes the properties of the sound wave

		< ₽ > < ≣	► < Ξ >	3	うくで
RH, INF-GEO4310 (Ifi/UiO)			Sept. 2013	3	22 / 77

Sonar Basics Underwater sound

Reflection: the sea surface

- The sea surface (sea-air interface)
- Air: *Z* = 415
- Seawater: $Z_0 = 1.54 \times 10^6$
- Reflection coefficient

$$R=\frac{Z-Z_0}{Z+Z_0}\approx -1$$

• The sea surface is a perfect reflector

Reflection: basic physics

- Characteristic impedance $Z_0 = \rho c$
 - ρ is the density [kg/m³]
 - c is the sound speed [m/s]
- Reflection coefficient (normal incidence)

$$R(f)=\frac{Z-Z_0}{Z+Z_0}$$

Transmission coefficient (normal incidence)

$$T(f)=\frac{2Z_0}{Z+Z_0}$$

 $\begin{array}{c} \text{Sand} & 5.5\times10^6\\ \text{Sandstone} & 7.7\times10^6 \end{array}$

The characteristic impedance is

Impedance

415

 1.54×10^{6}

 $5.3 imes 10^{6}$

 16×10^{6}

 47×10^{6}

(個)((国)((国))(国)

Sept. 2013

23/77

a material property

Material

Seawater

Air

Clay

Granite

Steel

RH, INF-GEO4310 (Ifi/UiO)

ar

Sept. 2013 24 / 77

白 医脊髓 医脊髓 医医脊髓下颌

Reflection: the sea floor (or bottom)

- The sea floor (sea-bottom interface)
- Sand: $Z = 5.5 \times 10^6$
- Seawater: $Z_0 = 1.54 \times 10^6$
- Reflection coefficient

RH, INF-GEO4310 (Ifi/UiO)

$$R=\frac{Z-Z_0}{Z+Z_0}\approx 0.56$$

- Sandy seafloors partially reflects, partially transmits
- Estimated reflection coefficient can be used in classification of bottom type

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Sept. 2013

25/77

Scattering - smooth surfaces

Scattering from rough surfaces Source Specular direction The sea surface The seafloor Other scattering sources Volume scattering from fluctuations Diffuse scattering Scattering from marine life Surface

A smooth surface gives mainly specular reflection

	4	ロト イタト イヨト イヨト ニョ	গ প ৫
RH, INF-GEO4310 (Ifi/UiO)	Sonar	Sept. 2013	26 / 77

Sonar Basics Underwater sound

Ambient Noise

The ocean is a noisy environment

- Hydrodynamic
 - Tides, ocean current, storms, wind, surface waves, rain
- Seismic
 - Movement of the earth (earthquakes)
- Biological
 - Produced by marine life
- Man made
 - Shipping, industry

Scattering - rough surfaces Scattering from rough surfaces Source Specular direction The sea surface The seafloor Other scattering sources Volume scattering from fluctuations Diffuse scatter Scattering from marine life Surface

Sonar Basics Underwater sound

A rough surface gives specular reflection and diffuse scattering

э.

28/77

Marine Life and Acoustics

- Dolphins and whales use acoustics for echolocation and communication.
- Whale songs are in the frequency between 12 Hz and a few kHz.
- Dolphins use a series of high frequency clicks in the range from 50 to 200 kHz for echolocation.

From wikipedia.org. Courtesy of NASA.

From wikipedia.org. Author Zorankovacevic.

	<	ロケスロケスロケスロケ	三 わえの
RH, INF-GEO4310 (Ifi/UiO)		Sept. 201	3 29/77

Sonar types Theory

Active sonar

- Transmits a signal
- The signal propagates towards the object of interest
- The signal is reflected by the target
- The signal is recorded by a receiver

3

31/77

Sept. 2013

Outline

- Introduction
- Basic Physics
- Underwater sound

Sonar Theory 2

- Sonar types
- Position Estimation
- Signal processing
- - Fish finding
 - HUGIN AUV
 - Mapping
 - Imaging

	4	《문》《문》 문	うくで
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	30 / 77

Sonar types Theory

Active sonar

(日本) (日本) (日本)

1**2** • 1 = • 1 = •

Theory Sonar types

Passive sonar

• Passive sonar only records signals

Theory Positioning

Range Resolution

- The minimum distance two echoes can be seperated
- Related to the pulse length T_p for *non-coded* pulses

$$\delta R = \frac{cT_p}{2}$$

• Related to bandwidth *B* for *coded* pulses

Range Estimation

- Estimation of time delay (or two way travel time) τ
- Relate time delay to range

$$R = \frac{c\tau}{2}$$

Sound velocity must be known

Theory Positioning

Pulse forms 1 - active sonar

Different pulse forms for different applications

- Gated Continuous Wave (CW) Simple and good Doppler sensitivity but does not have high BT
- Linear Frequency Modulated (LFM) (or chirp) Long range and high resolution but cannot handle Doppler

Positioning Theory

Pulse forms 2 - active sonar

Different pulse forms for different applications

- Hyperbolic Frequency Modulated (HFM) pulses Long range and high resolution and Doppler resistive
- Pseudo Random Noise (PRN) BPSK Coded CW High resolution and good Doppler sensitivity but low efficiency

Theory Positioning

Bearing estimation - arbitrary Rx positions

 Direction of arrival can be calculated from the time difference of arrival

Directivity

- Transducers (or antennas or loudspeakers) are directive
- The beamwidth (or field of view) of a disc of size *D* is

 $\beta \approx \frac{\lambda}{D}$

• The beamwidth is frequency dependent. Higher frequency gives narrower beam.

Positioning Theory

Bearing estimation - array sensor

• By delaying the data from each element in an array, the array can be steered (electronically)

EO4310 (Ifi/UiO)	Sonar				Sep	t. 2013		38/77	
	4	• • •	∂•	く臣	▶ ∢ 3	≣≯ _	Ð,	୬ବ୍	×

RH. INF-G

Sept. 2013 39/77

-

Theory Positioning

Bearing estimation - array sensor

• Direction of arrival from several reflectors can be estimated by using several receivers.

		▶ < E > E	nac
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	40 / 77

Theory Positioning

Beamforming defined

Beamforming

Processing algorithm that focus the array's signal capturing ability in a particular direction

- Beamforming is spatio-temporal filtering
- Beamforming turns recorded time series into images (from time to space)
- Beamforming can be applied to all types of multi-receiver sonars: active, passive, towed array, bistatic, multistatic, synthetic aperture

Imaging sonar / beamforming

- Echo location is estimation of range and bearing of an echo (or target)
- Imaging sonar is to produce an image by estimating the echo strength (target strength) in every direction and range

Algorithm for all directions for all ranges estimate echo strenght in each pixel end end

Theory Positioning

Beamforming algorithm in time domain

Algorithm

for all directions
for all ranges
for all receivers
Calculate the time delay
Interpolate the received time series
Apply appropriate amplitude factor
end
sum over receivers and store in result(x,y)
end
end

3

Theory Positioning

Imaging sonar resolution

- Range resolution given by pulse length (actually bandwidth)
- Azimuth resolution given by array length measured in wavelengths
- Field of view is given by element length measured in wavelengths

Array signal processing in imaging is the primary topic in INF 5410

	4		*) Q (*
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	44 / 77

Theory Signal processing

Sonar signal model

Imaging: Performance measures

Detail resolution

Geometrical resolution - minimum resolvable distance

- Contrast resolution Value resolution, echogenicity, accuracy
- Temporal resolution Number of independent images per unit time
- Dynamic range Resolvability of small targets in the presence of large targets
- Sensitivity Detection ability of low level targets

		n 1 E n 1 H	
RH, INF-GEO4310 (Ifi/UiO)	Sonar	Sept. 2013	45 / 77

Theory Signal processing

The sonar equation

The sonar equation is an equation for energy conservation for evaluation of the sonar system performace.

- In its simplest form: Signal Noise + Gain > Threshold
- More detailed (for active sonar):

Applications Fish finding

- SL is source level
- TL is transmission loss
- TS is target strenght
- NL is noise level

RH, INF-GEO4310 (Ifi/UiO)

Echosounders

- DI is directivity index
- PG is processing gain
- RT is reception threshold

Outline

Basics

- Introduction
- Basic Physics
- Underwater sound
- Sonar Theory
 - Sonar types
 - Position Estimation
 - Signal processing

3 Sonar Applications

- Fish finding
- HUGIN AUV
- Mapping
- Imaging

4 Summary

	٩	7) (► < E >	₹.	うくで
RH, INF-GEO4310 (Ifi/UiO)	Sonar		Sept. 2013		49 / 77

Applications Fish finding

Stock abundance and species characterisation

Applications

From www.simrad.com. Courtesy of Kongsberg Maritime

RH, INF-GEO4310 (Ifi/UiO)

▲□▶▲御▶★臣▶★臣▶ 臣 のの

• The echosounder is oriented vertically

- The target strength is estimated in every range (depth)
- The ship moves forward to make a 2D map of fish density
- The target strength is related to fish Rasize (biomass)
- Different frequencies can be used for species characterisation

Sept. 2013 51 / 77

Fish detection range

- Modern echosounders can detect a single fish at 1000 m range.
- Some fish have a swimbladder (air filled) which gives extra large target strength

From www.simrad.com.

Courtesy of Kongsberg Maritime

RH, INF-GEO4310 (Ifi/UiO)

hders le fish filled) large

The HUGIN autonomous underwater vehicle

	4		≣ ୬۹୯
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	53 / 77

Applications

HUGIN AUV

Applications HUGIN AUV

The HUGIN autonomous underwater vehicle

- Free swimming underwater vehicle
- Preprogrammed (semi-autonomous)
- Used primarily to map and image the seafloor
- Runs up to 60 hours, typically in 4 knots (2 m/s)
- Maximum depth: 1000, 3000, 4500 m

Sept. 2013

54/77

Acoustic sensors on HUGIN

- Multibeam echosounder
- Imaging sonar
- Altimeter

- Anti collision sonar
- Doppler velocity logger
- Subbottom profiler
- Acoustic communications

Applications Mapping

Multibeam echosounders

- Multibeam echosounders maps the seafloor by estimating the range in different direction
- The map resolution is determined by the 2D beamwidth and the range resolution

	4	ロ・スピ・スティー	≣
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	56 / 77

Applications Mapping

MBE Example 2

- Data collected by HUGIN AUV
- Maps from the Ormen Lange field
- The ridge is 900 m long and 50 m high.

Courtesy of Geoconsult / Norsk Hydro. RH, INF-GEO4310 (Ifi/UiO)

MBE Example 1

- Data collected by HUGIN AUV
- Maps from the Ormen Lange field
- The peaks are 50 m high

Countesy of Geoconsult / Norsk Hydro.	4		ક
RH, INF-GEO4310 (Ifi/UiO)	Sonar	Sept. 2013	57 / 77

Applications Mapping

MBE Example 3

of Coopennuit / Norek Hudre

- Data collected by HUGIN AUV
- Example area with large sand ripples

Courtesy of Kongsberg Maritime / FFI.

Applications Mapping

MBE Example 3

- Hull mounted MBE
- 70 100 kHz
- Magic T (Mills cross) layout

D#720est-2005-01-21 🖤 🕸 Rescan (D#720_992 💌 🔐 🔐 🔐 ன ன ன

From www.simrad.com. Courtesy of Kongsberg Maritime

	4	► E >	₽.	$\mathcal{O}\mathcal{Q}$
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013		60 / 77

Applications Imaging

Sidescan sonar

- Sidescan sonar: sidelooking sonar to image the seafloor
- Typical platform: towfish, hull mounted, AUV
- An image is created by moving and stacking range lines
- Typically frequency 100 kHz 500 kHz
- Typical range 100 500 m

MBE Example 4

- Hull mounted MBE
- 70 100 kHz
- Colour coded seafloor depth

Applications

Mapping

From www.simrad.com. Courtesy of Kong	sberg Maritime	★ E → ★ E → E	500
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	61 / 77

Applications Imaging

Sidescan sonar area coverage

- Range resolution is given by the pulse length (or bandwidth)
- Along-track resolution is range dependent

RH, INF-GEO4310 (Ifi/UiO)

A 3 5 A 3 5 5

Sept. 2013

3

62/77

Sidescan sonar example

Applications Imaging

Synthetic aperture sonar principle

- The length of the synthetic aperture increases with range
- Along-track resolution becomes independent of range
- Along-track resolution becomes independent of frequency

Synthetic aperture sonar principle

- Collect succesive pulses in a large synthetic array (aperture)
- Increase the azimuth (or along-track) resolution
- Requires accurate navigation within a fraction of a wavelength
- Very similar to Synthetic Aperture Radar (SAR)

	4	▶ < 클 > < 클 >	≣ ୬ ୯ ୯
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	65 / 77

Applications Imaging

Sidelooking Example - very high resolution (SAS)

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

Resolution matters

 RH, INF-GEO4310 (Ifi/UiO)
 Sonar
 Sept. 2013
 68 / 77

Applications Imaging

Properties in a sonar image

- Geometry: Range and elevation
- Resolution
- Random variability speckle
- Signal to noise
- Object highlight and shadow

Example: Fishing boat

Applications Imaging

Example large scene with small objects

Sonar

Sept. 2013 70 / 77

Applications Imaging

Comparison of sonar image with optical image

• Sonar range: 112 m

• Optical range: 4.5 m

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - 釣��

RH, INF-GEO4310 (Ifi/UiO)	Sept. 2013 72 /	77

Summary

Outline

- Introduction
- Basic Physics
- Underwater sound

- Sonar types
- Position Estimation
- Signal processing

- Fish finding
- HUGIN AUV
- Mapping
- Imaging

Summary

Comparison of sonar image with optical image

Applications

Imaging

• Sonar range: 73 m

• Optical range: 5 m

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

		1940
RH, INF-GEO4310 (Ifi/UiO)	Sept. 2013	73/77

Summary

Summary

- Acoustics is the only long ranging information carrier under water
- Sound velocity variations cause refraction of acoustic waves
- The ocean is lossy: higher frequencies have shorter range
- SONAR is used for
 - positioning
 - velocity estimation
 - characterisation
- Applications:
 - Fish finding
 - Imaging of the seafloor
 - Mapping of the seafloor
 - Military

(ロト・日本・ (日下・日本・)の(の) Sept. 2013

74/77

Sept. 2013 75/77

På Norsk

Engelsk	Norsk
beam	stråle
beamwidth	strålebredde
range	avstand
bearing	retning
echosounder	ekkolodd
sidescan sonar	sidesøkende sonar
multibeam echosounder	multistråle ekkolodd

	<	▶ ★ 문 ▶ _ 문	うくで
RH, INF-GEO4310 (Ifi/UiO)		Sept. 2013	76/77