INF-MAT 5360 Mathematical optimization

Compulsory Project 2, Part 2
Completed by November 16, 2010

The compulsory project shall be made and handed in individually (paper version
or as a single pdf file). You may discuss the problems with fellow students, but
copying other students answers is not permitted; see the general rules for compul-
sory projects at Ifi. To pass you should at least device the separation algorithm,
and show reasonable attempts to implement the dynamic simplex method as
explained below.

Consider the 0,1 knapsack problem:

max ..y Wi%;

s.t.
(1) Dien @i < b (1)
(17) 0<ux; <1 (1€ N)

(iii) =€ {0,1}V.

where N = {1,...,n} is the set of items, w € R" is the weight vector and
a € IR" is the knapsack coefficients vector. In our case we assume a; to be a
non-negative integer for all i € N. Denote by S C {0, 1}" the set of solutions
satisfying (4), (i7) and (ii7).

Constraint (7) is the so called knapsack constraint. If we drop the integrality
stipulation (i7i) on z we obtain a formulation for S, namely the set (polytope)
P? of the points satisfying (i) and (i7). By solving the associated linear program
we can compute an upper bound on the optimal value of the original 0,1 knapsack
problem. However, a better formulation (than P') can be obtained by considering
the so called cover inequalities.

A set of items C' C N is a cover of the knapsack if), . a; > .

Consider, for example, the following knapsack constraint:

4xqy + 3x9 + 323 + 224 < 6 (2)

where N = {1,2,3,4}. Then a cover of (2) is C!' = {1,2}, since a; + ay; =7 > 6.
Also C% = {2,3,4} is a cover.

A set of items 7" C N is a knapsack solution if) .. a; < b (and the set S pre-
viously introduced is the set of incidence vectors of all such knapsack solutions).

1

Since all knapsack coefficients are strictly positive, a knapsack solution 7' cannot
contain a cover C, that is T'N C # C. This is equivalent to [T NC| < |C] — 1.

Now, let x € S, that is x is the incidence vector of a knapsack solution 7". Then
the above condition can be immediately rewritten as a linear inequality in x:

Z%‘ < |C| — 1. (3)

ieC
The above inequality is called cover inequality associated with the cover C.

In our example, the cover inequality associated with C! is

T+ w9 < 1,

whereas the one associated with C? reads as:

Ty + a3+ 24 < 2.

Cover inequalities must be satisfied by the incidence vector of every knapsack
solution and thus they can be added to our formulation P'. Denoting by C,; the
set of all knapsack covers, we can thus consider the following linear program:

max ;. Wil

s.t.

(1) Dien @iri < b; (4)
(i) 0<z<I;

(ii]) Siemi <|C] =1 (C € Cuy).

Solving (4) instead of (1) will provide, in general, a better upper bound for the
optimal solution value to the 0,1 knapsack problem. However, there is typically a
very large number of constraints (ii7) and they cannot be considered all explicitly.
We may instead apply the dynamic simplex method. That is, we start by solving
the linear relaxation (P') associated to constraints (i) and (7). We get an optimal
solution, say z'. Then we invoke a separation oracle for constraints (iii), that is
an algorithm which either establishes that x! satisfies all cover inequalities (and
in this case we stop) or finds one such inequality violated by x!. In the latter case
the violated inequality is added to (P') to build a new program (P?) which is
then solved to optimality and the method iterates.

The student is required to devise a separation oracle for inequalities of type (ii7).
As a hint, one possible way is to define a suitable 0,1 linear program, much
likely the separation oracle for the subtour elimination constraints of the forest
polytope (I invite the student to carefully go through the technique described in
the course notes and in the lecture notes).

In particular, the feasible solutions Z C {0,1}" to such 0,1 linear program should
be the incidence vectors of all the knapsack covers. Another hint: when writing
down the constraints of your program, recall that they should be either equalities,
or inequalities of the form > or < (why?). You may exploit the integrality of the
knapsack coefficients to obtain this easily.

Now, we need to find a solution z € Z, that is the incidence vector of a cover
C C N, such that the corresponding cover inequality is violated by the current
point &, that is) . #; > |C|—1. Try to state such condition as a linear constraint
in z (recall that in your separation problem z is unknown, while is a given point).
Use also the fact that, if z is the incidence vector of C', then |C| = 3. \ 2. Then
this constraint should suggest a form for a possible objective function of your 0,1
linear program. Finally by solving such 0,1 linear program and by looking at the
objective function optimal value you may identify a cover (inequality) violated
by & or prove that it does not exist.

Once such oracle has been identified (with the corresponding linear programming
problem), the student is required to implement both the sequence of programs
(PY),(P?),... and the (0,1 linear program) separation oracle by using OPL. In
principle, a single .mod file suffices for all programs (P!), (P?),..., and only the
corresponding .dat files must be updated. The same applies to the separation
oracle. Monday, November the 2nd, I will post on the web page a .dat OPL file
named project2.dat containing the knapsack weight vector w and the knapsack
coefficient vector a. That is, the file will look more or less like this:

Nitems = 4;
w =[5, 3, 5, 2J;
a=14,3,3, 2]

Once problem (P1') is solved to optimality by CPLEX (the LP solver used by
OPL), the solution found must be printed out to be used by the separation oracle
(it could be included in the corresponding .dat file simply by cut-and-paste).
The separation oracle must also be implemented using OPL. If the separation

oracle returns a violated inequality, this should be printed out and added to
the .dat file associated to (P!) in order to create (P?). Again this can be done
by cut-and-paste. This half-manual procedure must be iterated until either the
separation oracle finds no violated inequalities or the student is exhausted (at
least 6 iterations).

The student should finally write a report containing:

1.

2.
3.
4

a formal description of the separation oracle for the cover inequalities

the single model file associated to the sequence of problems (P'), (P?),....
the single model file associated to the separation oracle

the sequence of optimal solutions, optimal solutions value and violated in-
equalities associated to problems (P1), (P?),....

For a discussion on separation and see our notes on Combinatorial Optimization
Section 1.2 and available in the web at

http://heim.ifi.uio.no/ geird/comb_notes.pdf

Good Luck again.

