Convexity and Polyhedra

Carlo Mannino (from Geir Dahl notes on convexity)

University of Oslo, INF-MAT5360 - Autumn 2011 (Mathematical optimization)

Convex Sets

• Set
$$C \subseteq \mathbb{R}^n$$
 is convex if $(1 - \lambda)x_1 + \lambda x_2 \in C$ whenever
 $x_1, x_2 \in C$ $0 \le \lambda \le 1$

(the segment joining x_1 , x_2 is contained in C)

• Show that the unit ball $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is convex. (Hint use the triangle inequality $||x+y|| \le ||x|| + ||y||$)

Half-spaces

 $\begin{aligned} x_1 &\in H \to a^T x_1 \leq a_0 \to (1 - \lambda) \ a^T x_1 \leq (1 - \lambda) \ a_0 &\quad 0 \leq \lambda \leq 1 \\ x_2 &\in H \to a^T x_2 \leq a_0 \to \lambda a^T x_2 \leq \lambda \ a_0 & \end{aligned}$

summing up $x_2 \in H \rightarrow a^T((1-\lambda) x_1 + \lambda x_2) \leq a_0$

 $(1-\lambda) x_1 + \lambda x_2 \in H$

Convex Cones

The set of solutions to a linear system of equation is a polyhedron.

 $H = \{x \in \mathbb{R}^n : Ax = b\} \qquad \longrightarrow \qquad H = \{x \in \mathbb{R}^n : Ax \le b, -Ax \le -b\}$

Convex Cone: $C \subseteq \mathbb{R}^n$ if $\lambda_1 x_1 + \lambda_2 x_2 \in C$ whenever $x_1, x_2 \in C$ and $\lambda_1, \lambda_2 \ge 0$.

• Each convex cone is a convex set. (show)

• Let $A \in \mathbb{R}^{m,n}$. Then $C = \{x \in \mathbb{R}^n : Ax \le 0\}$ is a convex cone (show).

Let $x_1, ..., x_t \in \mathbb{R}^n$, and $\lambda_1, ..., \lambda_t \ge 0$. The vector $x = \sum_{j=1}^t \lambda_j x_j$ is a *nonnegative* (or *conical*) *combination* of $x_1, ..., x_t$

• The set $C(x_1, ..., x_t)$ of all nonnegative combinations of $x_1, ..., x_t \in \mathbb{R}^n$ is a convex cone (show), called *finitely generated cone*.

Linear Programming

• Property: C_1 , C_2 convex sets $\rightarrow C_1 \cap C_2$ convex (show!)

Linear programming: $x = (x_1, ..., x_n)$

maximize $c_1 x_1 + \dots + c_n x_n$ Subject to $a_{11}x_1 + \dots + a_{1n}x_n \leq b_1$ \vdots $a_{m1}x_1 + \dots + a_{mn}x_n \leq b_m$ $x_1, \dots, x_n \geq 0$

max { $c^{T}x$: $x \in P$ }, with $P = \{x \in \mathbb{R}^{n}: Ax \leq b, x \geq 0\}$

Find the optimum solution in P

P intersection of a finite number of half-spaces: convex set (polyhedron)

 The set of optimal solutions to a linear program is a polyhedron (show!)

Convex Combinations

Let $x_1, ..., x_t \in \mathbb{R}^n$, and $\lambda_1, ..., \lambda_t \ge 0$, such that $\sum_{j=1}^t \lambda_j = 1$. The vector $x = \sum_{j=1}^t \lambda_j x_j$ is called *convex combination* of $x_1, ..., x_t$

Convex Combinations

Theorem: a set C is convex if and only if it contains all convex combinations of its points.

If C contains all convex combinations \rightarrow it contains all convex combinations of any 2 points \rightarrow C is convex

Suppose C contains all convex combinations of t-1 points. True if $t \le 3$ (since C convex).

Let $x_1, \ldots, x_t \in \mathbb{R}^n$, and let $x = \sum_{j=1}^t \lambda_j x_j$ where $\lambda_1, \ldots, \lambda_t > 0$, $\sum_{j=1}^t \lambda_j = 1$

$$\mathbf{x} = \lambda_1 \mathbf{x}_1 + \sum_{j=2}^t \lambda_j \mathbf{x}_j = \lambda_1 \mathbf{x}_1 + (1 - \lambda_1) \sum_{j=2}^t (\lambda_j / (1 - \lambda_1)) \mathbf{x}_j$$

 $\sum_{j=1}^{t} \lambda_j = 1 \rightarrow \sum_{j=2}^{t} (\lambda_j / (1 - \lambda_1) = 1 \implies \sum_{j=2}^{t} (\lambda_j / (1 - \lambda_1)) x_j = y \in C$

$$\implies x = \lambda_1 x_1 + (1 - \lambda_1) y \in C$$

Convex and Conical Hull

- There many convex sets containing a given set of points S.
- The smallest is the set conv(S) of all convex combinations of the points in S.
- conv(S) is called convex hull of S

 The set cone(S) of all nonnegative (conical) combinations of points in S is called conical hull

Convex Hull

Proposition 2.2.1 (Convex hull). Let $S \subseteq \mathbb{R}^n$. Then conv(S) is equal to the intersection of all convex sets containing S.

- If S is finite, conv(S) is called *polytope*.
- Consider the following optimization problem: max {c^Tx: x ∈ P}, with P = conv(S), S = {x₁,...,x_t}

Let $x^*: c^T x^* = \max \{c^T x: x \in S\} = v \ (x^* \text{ optimum in } S)$

For any $y \in P$ there exist $\lambda_1, \dots, \lambda_t \ge 0$, $\sum_{j=1}^t \lambda_j = 1$, such that $y = \sum_{j=1}^t \lambda_j x_j$

$$c^{T}y = c^{T}\sum_{j=1}^{t} \lambda_{j} x_{j} = \sum_{j=1}^{t} \lambda_{j} c^{T} x_{j} \leq \sum_{j=1}^{t} \lambda_{j} c^{T} x^{*} = \sum_{j=1}^{t} \lambda_{j} v = v$$

x^{*} optimum in P

Affine independence

A set of vectors $x_1, ..., x_t \in \mathbb{R}^n$, are affinely independent if $\sum_{j=1}^t \lambda_j x_j = 0$ and $\sum_{j=1}^t \lambda_j = 0$ imply $\lambda_1 = ... = \lambda_t = 0$.

Proposition 2.3.1 (Affine independence). The vectors $x_1, ..., x_t \in \mathbb{R}^n$ are affinely independent if and only if the *t*-1 vectors $x_2 - x_1, ..., x_t - x_1$ are linearly independent.

Only if. $x_1, \ldots, x_t \in \mathbb{R}^n$ affinely independent and assume $\lambda_2, \ldots, \lambda_t \in \mathbb{R}^n$ with

$$\sum_{j=2}^{t} \lambda_j (x_j - x_1) = 0 \qquad \Longrightarrow \qquad -(\sum_{j=2}^{t} \lambda_j) x_1 + \sum_{j=2}^{t} \lambda_j x_j = 0$$
$$-(\sum_{j=2}^{t} \lambda_j) + \sum_{j=2}^{t} \lambda_j = 0 \qquad \text{and} \qquad x_1, \dots, x_t \text{ affinely independent}$$

 $\rightarrow \lambda_2 = \dots = \lambda_t = 0 \quad \longrightarrow \quad x_2 - x_1, \dots, x_t - x_1 \text{ linearly independent.}$

Affine independence

Proposition 2.3.1 (Affine independence). The vectors $x_1, ..., x_t \in \mathbb{R}^n$ are affinely independent if and only if the *t*-1 vectors $x_2 - x_1, ..., x_t - x_1$ are linearly independent.

if. $x_2 - x_1, \dots, x_t - x_1$ linearly independent. Assume $\sum_{j=1}^t \lambda_j x_j = 0$ and $\sum_{j=1}^t \lambda_j = 0$. Then $\lambda_1 = -\sum_{j=2}^t \lambda_j$ $0 = \sum_{j=1}^t \lambda_j x_j = -(\sum_{j=2}^t \lambda_j) x_1 + \sum_{j=2}^t \lambda_j x_j = \sum_{j=2}^t \lambda_j (x_j - x_1)$ As $x_2 - x_1, \dots, x_t - x_1$ linearly independent $\lambda_2 = \dots = \lambda_t = 0$ Also $\lambda_1 = -\sum_{j=2}^t \lambda_j = 0$

Corollary. There are at mots n+1 affinely independent vectors in \mathbb{R}^n .

Dimension

The *dimension* dim(S) of a set $S \subseteq \mathbb{R}^n$ is the maximal number of affinely independent points of S minus 1.

A simplex $P \subseteq \mathbb{R}^n$ is the convex hull of a set S of affinely independent vectors in \mathbb{R}^n

Theorem. 2.5.1 (Caratheodory's theorem) Let $S \subseteq \mathbb{R}^n$. Then each $x \in \text{conv}(S)$ is the convex combination of *m* affinely independent points in *S*, with $m \le n+1$.

x can be obtained as a convex combination of points in *S* Choose one with smallest number of points:

 $x = \sum_{j=1}^{t} \lambda_j x_j$ with $\lambda_1, \dots, \lambda_t > 0$, $\sum_{j=1}^{t} \lambda_j = 1$ and t smallest possible

Then x_1, \ldots, x_t are affinely independent (with $t \le n+1$). Suppose not.

There are μ_1, \dots, μ_t not all 0 such that $\sum_{j=1}^t \mu_j x_j = 0$ and $\sum_{j=1}^t \mu_j = 0$

Then there is at least one positive coefficient, say μ_1

Caratheodory's theorem

$$\sum_{j=1}^{t} \mu_j x_j = 0$$
 , $\sum_{j=1}^{t} \mu_j = 0$, $\mu_1 > 0$

Combining
$$x = \sum_{j=1}^{t} \lambda_j x_j$$
 and $\alpha \sum_{j=1}^{t} \mu_j x_j = 0$ for $\alpha \ge 0$
 $\implies \quad x = \sum_{j=1}^{t} (\lambda_j - \alpha \mu_j) x_j$

Increase α from 0 to α_0 until the first coefficient becomes 0, say the *r*-th.

$$\lambda_j - \alpha \mu_j \ge 0$$
 $j = 1, ..., t$ and $\lambda_r - \alpha \mu_r = 0$

$$\sum_{j=1}^{t} (\lambda_j - \alpha \mu_j) = \sum_{j=1}^{t} \lambda_j - \sum_{j=1}^{t} \alpha \mu_j = \sum_{j=1}^{t} \lambda_j = 1$$

Then *x* is obtained as a convex combination of *t*-1 point in *S*, contrad.

A similar result for conical hulls.

Theorem. 2.5.2. (Caratheodory's theorem for conical hulls). Let $S \subseteq \mathbb{R}^n$. Then each $x \in \text{cone}(S)$ is the conical combination of *m* linearly independent points in *S*, with $m \le n$.

Caratheodory's theorem for cones

- Any point in conv(S) ⊆ Rⁿ can be generated by (at most) n+1 points of S.
- The generators of a point *x* are not necessarily unique.
- The generators of different points may be different.

Caratheodory's theorem and LP

- Consider LP: max { $c^T x$: $x \in P$ }, with $P = \{x \in R^n : Ax = b, x \ge 0\}$
- $A \in \mathbb{R}^{m,n}$, $m \le n$. Let $a_1, \ldots, a_n \in \mathbb{R}^m$ be the columns of A
- Ax can be written as $\sum_{j=1}^{n} x_j a_j$, $x_1, \dots, x_n \in R_+$
- $P \neq \emptyset$ if and only if $b \in \operatorname{cone}(\{a_1, \ldots, a_n\})$
- Caratheodory: *b* can be obtained conical combination of *t* ≤ *m* linearly independent a_i's.
- Equivalently: there exists a non-negative x ∈ Rⁿ with at least n-t components being 0 and Ax = b ...
- ... and the non-zeros of x correspond to linearly independent columns of A (basic fesible solution)
- Fundamental result: if an LP is non-empty then it contains a basic feasible solution

Supporting Hyperplanes

A *hyperplane* is a set $H \subset \mathbb{R}^n$ of the form $H = \{x \in \mathbb{R}^n : a^T x = \alpha\}$ for some nonzero vector *a* and a real number α .

- Let $H^{-} = \{x \in \mathbb{R}^{n} : a^{T}x \leq \alpha\}$ and $H^{+} = \{x \in \mathbb{R}^{n} : a^{T}x \geq \alpha\}$ be the two halfspaces identified by H.
- *H* is a convex set $(H = H^{+} \cap H^{+})$.
- If $S \subset \mathbb{R}^n$ is contained in one of the two halfspaces H^- and H^+ , and $S \cap H$ is non-empty, then H is a supporting hyperplane of S.
- *H* supports *S* at *x* for $x \in S \cap H$. If *S* is convex, then $S \cap H$ is called *exposed face* of *S*, which is convex (*S* and *H* are convex).

Faces

Let *C* be a convex set. A convex subset *F* of *C* is a *face* if $x_1, x_2 \in C$ and $(1-\lambda) x_1 + \lambda x_2 \in F$ for some $0 < \lambda < 1$, then $x_1, x_2 \in F$

(if a relative interior point of the line segment between two points of C lies in F then the whole line segment lies in F)

The sides and the vertices of the square are faces.

The diagonal is not a face (show it!)

A face F with dim(F) = 0 is called *extreme point*. The set of all extreme points of C is ext(C). A bounded face F with dim(F) = 1 is called *edge*.

An unbounded face *F* with dim(*F*) = 1 is either a line or a halfline (*ray*). {i.e. a set { $x_0 + \lambda z$: $\lambda \ge 0$ }) and is called *extreme halfline* (*ray*).

The set of all extreme halflines of C is exthl(C).

Proposition 4.1.1 Let C be a nonempty convex set. Each exposed face F of C is also a face of C.

Let $H = \{x \in \mathbb{R}^n : c^T x = v\}$ and $F = C \cap H$. *H* supporting *C* implies (say) $C \subseteq H^r = \{x \in \mathbb{R}^n : c^T x \leq v\}$ and $v = max \{c^T x : x \in C\}$.

So *F* is the set of points of *C* maximizing $c^T x$.

Let $x_1, x_2 \in C$ and suppose $(1-\lambda) x_1 + \lambda x_2 \in F$ for some $0 < \lambda < 1$.

 $x_1, x_2 \in C$ imply (i) $c^T x_1 \leq v$ and (ii) $c^T x_2 \leq v$. Suppose $x_1 \notin F$. Then $c^T x_1 < v$.

 λ , 1- λ > 0 implies (1- λ) $c^T x_1 < (1-\lambda) v$ and $\lambda c^T x_2 \leq \lambda v$.

v > (1- λ) $c^T x_1 + \lambda c^T x_2 = c^T (\lambda (1-\lambda) x_1 + \lambda x_2) = v$, contraddiction.

Recession Cone

Let *C* be a *closed convex set*. The set of directions of halflines from *x* that lie in *C* are denoted by $rec(C,x) = \{z \in \mathbb{R}^n : x + \lambda | z \in C \text{ for all } \lambda \ge 0\}$

One can show the following:

Proposition 4.2.1 rec(C, x) does not depend on x.

Let rec(C) = rec(C,x) ($x \in C$) be the *recession cone* of C

• Show that $\operatorname{rec}\{x \in \mathbb{R}^n : Ax \le b\} = \{x \in \mathbb{R}^n : Ax \le 0\}$

Inner Description

- Let C be a closed convex set.
- Let Z be the set of directions of the extreme rays (halflines) of C.
- One can show that the recession cone of C is the conical combination of the directions in Z, namely rec(C) = cone(Z).

Corollary 4.3.3 (Inner description). Let $C \subseteq \mathbb{R}^n$ be a nonempty and line-free (*pointed*) closed convex set. Choose a direction vector z for each extreme halfline of C and let Z be the set of these direction vectors. Then we have that

 $C = \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{rec}(C) = \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{cone}(Z).$

Corollary 4.3.4 (Minkowsky theorem). Let $C \subseteq \mathbb{R}^n$ be a bounded closed (compact) convex (set, then *C* is the convex hull of its extreme points: C = conv(ext(C))

Polytopes and Polyhedra

- We consider a non-empty, line-free polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$, where $A \in \mathbb{R}^{m,n}$, $b \in \mathbb{R}^m$.
- *P* pointed implies rank(A) = n and $m \ge n$.

(If rank(A) < n then there exists a non zero vector z: Az = 0; then for any $x_0 \in P$ we have $Ax_0 \le b$ and $A(x_0 + \lambda z) \le b$ for any $\lambda \in R$ and Pcontains the line through x_0 having direction z).

A point $x_0 \in P$ is called a *vertex* if it is the unique solution to *n* linear independent equations from the system Ax = b.

• x_0 vertex of *P*: there exists an $n \times n$ non-singular sub-matrix A_0 of *A*, such that $A_0 x_0 = b_0$, with b_0 sub-vector of *b* corresponding to A_0

Vertices and extreme points

Lemma 4.4.1. A point $x_0 \in P = \{x \in \mathbb{R}^n : Ax \le b\}$ is a *vertex of P* if and only if it is an extreme point of *P*.

only if. By contradiction. x_0 vertex but not extreme point

$$\Rightarrow x_0 = \frac{1}{2}x_1 + \frac{1}{2}x_2 \text{ with } x_1, x_2 \in P \text{ and } A_0 x_0 = b_0 \text{ with } A_0 \text{ nonsingular}$$

Let a_i be any row of A_0 (treated as a row vector) since $x_1, x_2 \in P$, $a_i x_1 \leq b_i$ and $a_i x_2 \leq b_i$ if $a_i x_1 < b_i$ then $a_i x_0 = \frac{1}{2}a_i x_1 + \frac{1}{2}a_i x_2 < b_i$, contradiction. Since a_i is any row, we have $A_0 x_1 = b_0$, and $A_0 x_2 = b_0$.

 A_0 nonsigular implies $x_1 = x_2 = x_0$

Vertices and extreme points

Lemma 4.4.1. A point $x_0 \in P = \{x \in \mathbb{R}^n : Ax \le b\}$ is a *vertex of P* if and only if it is an extreme point of *P*.

if. Suppose x_0 is not a vertex.

Consider all *i* for which $a_i x_0 = b_i$ and let A_0 be the associated submatrix Let $A_0 x_0 = b_0$ corresponding system. x_0 non vertex $\rightarrow \operatorname{rank}(A_0) < n$ $\operatorname{rank}(A_0) < n \rightarrow$ there is a nonzero vector *z* such that $A_0 z = 0$ There is small $\varepsilon > 0$ such that $x_1 = x_0 + \varepsilon \cdot z \in P$ and $x_2 = x_0 - \varepsilon \cdot z \in P$ (since if a_i not in A_0 then $a_i x_0 < b_i$)

Then
$$x_0 = \frac{1}{2}x_1 + \frac{1}{2}x_2$$
 with $x_1, x_2 \in P$ and $x_1 \neq x_2$

Extreme Halflines (rays)

A face *F* of *P* is a halfline if $F = x_0 + \text{cone}(\{z\}) = \{x_0 + \lambda z: \lambda \ge 0\}$

F<u>extreme</u> if there are not two distinct $z_1, z_2 \in rec(P)$ with $z = z_1 + z_2$

Lemma 4.4.2 (extreme halfline). $R = x_0 + \operatorname{cone}(\{z\}) \subseteq P$ is an extreme halfline of *P* if and only if $A_0z = O$ for some (*n*-1)×*n* submatrix of *A* with rank(A_0) = *n*-1.

- Since there are only $\binom{m}{n-1}$ ways of choosing *n*-1 rows of *A*, the number of extreme halflines is finite.
- Similarly, the number of extreme points is finite.

Theorem 4.4.4 Each polyhedron P may be written as $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$ for finite sets $V, Z \subset \mathbb{R}^n$. In particular, if P is pointed, we may here let V be the set of vertices and let Z consist of a direction vector of each extreme halfline of P.

Conversely, if *V* and *Z* are finite sets in \mathbb{R}^n , then $P=\operatorname{conv}(V)+\operatorname{cone}(Z)$ is a polyhedron. i.e., there is a matrix $A \in \mathbb{R}^{m,n}$ and a vector $b \in \mathbb{R}^m$ for some *m* such that $\operatorname{conv}(V) + \operatorname{cone}(Z) = \{x \in \mathbb{R}^n : Ax \le b\}$.

Corollary 4.4.5 A set is a polytope if and only if it is a bounded polyhedron.

Exercises

- Show that the unit ball $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is convex. (Hint use the triangle inequality $||x+y|| \le ||x|| + ||y||$)
- Show that C_1 , C_2 convex sets $\rightarrow C_1 \cap C_2$ is a convex set
- The set of optimal solutions to a linear program is a polyhedron
- Each convex cone is a convex set.
- Show that 2 distinct points are affinely independent
- Show that the diagonal of the square is not a face

• Let *x* be an extreme point of a convex set *C*, then there do not exist two distinct points of C such that *x* is the convex combination of such points

- What is rec(C) when C is a polytope?
- Show that $\operatorname{rec}\{x \in \mathbb{R}^n : Ax \le b\} = \{x \in \mathbb{R}^n : Ax \le 0\}$