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Convex Sets 

Set C  Rn  is convex if (1- )x1 + x2  C  whenever   

                   x1 , x2  C   0 ≤  ≤ 1 

x1  
x2  

convex  x1  

x2  
non-convex  

(the segment joining x1 , x2 is contained in C) 

• Show that the unit ball B = {x  Rn : ||x|| ≤ 1} is convex. (Hint 

use the triangle inequality ||x+y|| ≤ ||x||+ ||y||)  



Half-spaces 

Example of convex sets: half-spaces 

H 

x1  H  aTx1 ≤ a0  (1- ) aTx1 ≤ (1- ) a0 

x2  H  aTx2 ≤ a0  aTx2 ≤  a0  

summing up x2  H  aT ((1- ) x1 +  x2) ≤ a0 

0 ≤  ≤ 1 

(1- ) x1 +  x2  H  

H = {xRn: aTx ≤ a0} 



Convex Cones 

The set of solutions to a linear system of equation is a polyhedron.  

H = {xℝn: Ax = b} H = {xℝn: Ax ≤ b , -Ax ≤ -b } 

Convex Cone:  C ⊆ℝn   if   𝜆1 x1 + 𝜆2 x2 ∈ C  
whenever  x1, x2 ∈ C and 𝜆1 , 𝜆2 ≥ 0.    

Each convex cone is a convex set. (show)  

Let A ∈ ℝm,n
.  Then C = {xℝn: Ax ≤ 0} is a convex cone (show).  

Let x1,…,xt ∈ ℝ
n, and 𝜆1,…,𝜆 t  ≥ 0. The vector x =  𝜆𝑗

𝑡
𝑗=1 xj  is 

a nonnegative (or conical) combination of x1,…,xt  

The set C(x1,…,xt) of all nonnegative combinations of x1,…,xt ∈ ℝ
n  

is a convex cone (show), called finitely generated cone.  



Linear Programming 

Property: C1 , C2 convex sets → C1 ∩ C2 convex (show!)    

𝑎11x1+ … +𝑎1𝑛 
⋮

𝑎𝑚1x1+ +𝑎𝑚𝑛 

 

     xn ≤ 𝑏1

      xn ≤ 𝑏𝑚

 

maximize    c1x1 + … + cn xn 

Subject to 

x1 , …,  xn ≥ 0 

max {cTx: x ϵ P }, with P  = {xRn: Ax ≤ b, x≥ 0}  

Find the optimum solution in P  

P  intersection of a finite number of half-spaces: convex set (polyhedron)   

x = (x1, …, xn) 

P 

Linear programming:   

The set of optimal solutions to a linear program is a polyhedron 
(show!) 



Convex Combinations 

Let x1,…,xt ∈ ℝ
n, and 𝜆1,…,𝜆 t  ≥ 0, such that  𝜆𝑗

𝑡
𝑗=1  = 1. The vector   

x  =  𝜆𝑗𝑥𝑗
𝑡
𝑗=1  is called convex combination of x1,…,xt  
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Convex Combinations 

Theorem: a set C is convex if and only if  it contains all convex 
combinations of its points.   

If C contains all convex combinations → it contains all 

convex combinations of any 2 points → C is convex 

Suppose C contains all convex combinations of t-1 points.  

True if t ≤ 3 (since C convex). 

Let x1,…,xt ∈ ℝ
n, and let x =  𝜆𝑗

𝑡
𝑗=1 xj where 𝜆1,…,𝜆 t  > 0,  𝜆𝑗

𝑡
𝑗=1  = 1 

x = 𝜆1 x1 +  𝜆𝑗
𝑡
𝑗=2 xj   = 𝜆1 x1 + (1- 𝜆1)  (𝜆𝑗/(1 − 𝜆1

𝑡
𝑗=2 )) xj  

 𝜆𝑗
𝑡
𝑗=1  = 1 →   (𝜆𝑗/(1 − 𝜆1

𝑡
𝑗=2 ) = 1    (𝜆𝑗/(1 − 𝜆1

𝑡
𝑗=2 )) xj = y ∈ C  

x = 𝜆1 x1 + (1- 𝜆1) y ∈ C     



Convex and Conical Hull 

There many convex sets containing a given 
set of points S.   

The smallest is the set conv(S) of all convex 
combinations of the points in S.  

conv(S) is called convex hull of S 

The set cone(S) of all nonnegative 
(conical) combinations of points in  
S is called conical hull   



Convex Hull 

Proposition 2.2.1 (Convex hull). 

Let S•⊆ ℝn. Then conv(S) is 

equal to the intersection of all 

convex sets containing S.  

If S is finite, conv(S) is called polytope.  

Consider the following optimization problem:  

max {cTx: x ϵ P}, with P = conv(S), S = {x1,…,xt}  

Let x*: cTx* = max {cTx: x ϵ S } = v  (x* optimum in S) 

For any y ϵ P  there exist 𝜆1,…,𝜆t  ≥ 0,  𝜆𝑗
𝑡
𝑗=1  = 1, such that  y =  𝜆𝑗

𝑡
𝑗=1 xj   

cTy = cT 𝜆𝑗
𝑡
𝑗=1 xj =  𝜆𝑗

𝑡
𝑗=1 cTxj ≤  𝜆𝑗

𝑡
𝑗=1 cTx* =  𝜆𝑗

𝑡
𝑗=1 v = v 

x* optimum in P 



Affine independence 

A set of vectors x1,…,xt ∈ ℝ
n, are affinely independent if  𝜆𝑗𝑥𝑗

𝑡
𝑗=1 = 0 

and  𝜆𝑗
𝑡
𝑗=1  = 0 imply 𝜆1=…=𝜆t = 0.  

Proposition 2.3.1 (Affine independence). The vectors x1,…,xt ∈ ℝ
n  are 

affinely independent if and only if the t-1 vectors x2-x1,…,xt-x1 are 

linearly independent. 

Only if. x1,…,xt ∈ ℝ
n  affinely independent and assume 𝜆2,…,𝜆t ∈ ℝ

n  with 

 𝜆𝑗(𝑥𝑗−𝑥1)
𝑡
𝑗=2 = 0  -( 𝜆𝑗)𝑥1

𝑡
𝑗=2 +  𝜆𝑗𝑥𝑗

𝑡
𝑗=2 = 0 

x1,…,xt 
 affinely independent  -( 𝜆𝑗) 

𝑡
𝑗=2 +  𝜆𝑗

𝑡
𝑗=2 = 0 and  

𝜆2=…=𝜆t = 0 x2-x1,…,xt-x1  linearly independent. 



Affine independence 

Proposition 2.3.1 (Affine independence). The vectors x1,…,xt ∈ ℝ
n  are 

affinely independent if and only if the t-1 vectors x2-x1,…,xt-x1 are 

linearly independent. 

if. x2-x1,…,xt-x1 linearly independent.  

Assume   𝜆𝑗𝑥𝑗
𝑡
𝑗=1 = 0   and    𝜆𝑗

𝑡
𝑗=1  = 0. Then 𝜆1 = - 𝜆𝑗

𝑡
𝑗=2   

  0 =  𝜆𝑗𝑥𝑗
𝑡
𝑗=1 = −( 𝜆𝑗)𝑥1

𝑡
𝑗=2 +  𝜆𝑗𝑥𝑗

𝑡
𝑗=2 =  𝜆𝑗(𝑥𝑗−𝑥1)

𝑡
𝑗=2  

As x2-x1,…,xt-x1 linearly independent 𝜆2=…=𝜆t = 0 

Also 𝜆1 = - 𝜆𝑗
𝑡
𝑗=2  = 0  

Corollary. There are at mots n+1 affinely independent vectors in ℝn. 



Dimension 

The dimension dim(S) of a set S  •⊆ ℝn is the maximal 

number of affinely independent points of S minus 1.  
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Ex. S = {x1 = (0,0), x2 = (0,1), x3 = (1,0)}.  

dim(S) = 2  (x2 – x1 ,  x3 – x1  are linearly independent)   

A simplex  P  •⊆ ℝn is the convex hull of a set S of affinely 

independent vectors in ℝn  



There are 𝜇1,…,𝜇t not all 0 such that  𝜇𝑗𝑥𝑗 = 0 
𝑡
𝑗=1 and  𝜇𝑗 = 0 

𝑡
𝑗=1  

Caratheodory’s theorem 

Theorem. 2.5.1 (Caratheodory’s theorem) Let S  •⊆ ℝn . Then each 

x ∈ conv(S) is the convex combination of m affinely independent 

points in S, with m ≤ n+1.   

x  =  𝜆𝑗𝑥𝑗
𝑡
𝑗=1  with  𝜆1,…,𝜆t  > 0,  𝜆𝑗

𝑡
𝑗=1  = 1 and t smallest possible   

Then x1,…,xt are affinely independent (with t ≤ n+1).  Suppose not. 

Then there is at least one positive coefficient, say𝜇1 

x can be obtained as a convex combination of points in S 

Choose one with smallest number of points: 



Caratheodory’s theorem 

  Combining x  =  𝜆𝑗𝑥𝑗  
𝑡
𝑗=1 and α 𝜇𝑗𝑥𝑗 = 0 

𝑡
𝑗=1  for α ≥ 0 

x  =  (𝜆𝑗−
𝑡
𝑗=1  α𝜇𝑗)𝑥𝑗 

Increase α from 0 to α0 until the first coefficient becomes 0, say the r-th.  

  𝜇𝑗𝑥𝑗 = 0 
𝑡
𝑗=1 ,  𝜇𝑗 = 0 , 𝜇1 > 0

𝑡
𝑗=1  

Then 𝑥 is obtained as a convex combination of t-1 point in S,  contrad.   

 (𝜆𝑗−
𝑡
𝑗=1  α𝜇𝑗) =  𝜆𝑗−

𝑡
𝑗=1  α𝜇𝑗 =  𝜆𝑗=1

𝑡
𝑗=1

𝑡
𝑗=1  

𝜆𝑗  − α𝜇𝑗 ≥ 0      𝑗 = 1,… , 𝑡  and  𝜆𝑟  − α𝜇𝑟 = 0     

Theorem. 2.5.2. (Caratheodory’s theorem for conical hulls). Let 

S  •⊆ ℝn . Then each x ∈ cone(S) is the conical combination of m 

linearly  independent points in S, with m ≤ n.   

A similar result for conical hulls.  



Caratheodory’s theorem for cones 

Any point in conv(S)  Rn can be generated by (at most) n+1 
points of S.  

The generators of a point x are not necessarily unique. 

The generators of different points may be different.  

x x 

y 

S 
conv(S) 



Caratheodory’s theorem and LP 

Consider  LP: max {cTx: x  P}, with P = {x  Rn : Ax = b, x ≥ 0} 

A  Rm,n   ,  m ≤ n.  Let a1, …, an  Rm  be the columns of A  

Ax can be written as  𝑥𝑗a𝑗
𝑛
𝑗=1  ,  x1, …, xn  R+  

P ≠  if and only if b  cone({a1, …, an})  

Caratheodory: b can be obtained conical combination of t ≤ m  
linearly independent aj’s. 

Equivalently: there exists a non-negative x  Rn  with at least n-t 
components being 0 and Ax = b … 

 … and the non-zeros of x correspond to linearly independent 
columns of A (basic fesible solution)  

Fundamental result: if an LP is non-empty then it contains a basic 
feasible solution   



Supporting Hyperplanes 

A hyperplane is a set H ⊂ ℝn of the form H = {x ∈ ℝn : aTx = α} 

for some nonzero vector a and a real number α.  

Let H- = {x ∈ ℝn : aTx ≤ α}  and H+ = {x ∈ ℝn : aTx ≥ α} be the two 
halfspaces identified by H.  

H is a convex set (H = H- ∩ H+).  

If S ⊂ ℝn is contained in one of the two halfspaces H- and H+, and 
S ∩ H is non-empty, then H is a supporting hyperplane of S.  

H supports S at x for x ∈ S ∩ H. If S is convex, then S ∩ H is 
called exposed face of S, which is convex (S and H are convex).    

S 
S 



Faces  

Let C be a convex set. A convex subset F of C is a face if x1,x2 ∈ C 

and (1-λ) x1 + λ x2 ∈ F for some 0 < λ < 1, then x1,x2∈F 

 (if a relative interior point of the line segment between two points 

of C lies in F then the whole line segment lies in F) 

The sides and the vertices of the square are faces. 

The diagonal is not a face (show it!) 

 A face F with dim(F) = 0 is called extreme point. The set of all extreme 

points of C is ext(C). A bounded face F with dim(F) = 1 is called edge. 

 An unbounded face F with dim(F) = 1 is either a line or a halfline (ray). 

{i.e. a set {x0+ λz: λ≥0}) and is called extreme halfline (ray).  

The set of all extreme halflines of C is exthl(C).  



Exposed Faces are Faces 

 Proposition 4.1.1 Let C be a nonempty convex set. Each exposed 

face F of C is also a face of C.  

Let H = {x ∈ ℝn: cTx = v} and F = C ∩ H. H supporting C implies 

(say) C ⊆ H- = {x ∈ ℝn: cTx ≤ v} and v = max {cTx :x ∈ C}.   

So F is the set of points of C maximizing cTx.        

Let x1,x2∈C and suppose (1-λ) x1 + λ x2 ∈ F for some 0 < λ < 1.   

x1,x2∈C imply (i) cTx1≤v and (ii) cTx2≤v. Suppose x1 ∉ F. Then cTx1<v.   

λ , 1-λ > 0 implies (1-λ) cTx1 < (1-λ)v and λ cTx2 ≤ λ v.   

v >  (1-λ) cTx1 + λ cTx2 = cT( λ (1-λ) x1 + λ x2) = v, contraddiction.  



Recession Cone 

 extreme point 

 extreme ray 

Let C be a closed convex set. The set of directions of halflines from x 

that lie in C are denoted by rec(C,x) = {z ∈ ℝn : x+ λ z ∈ C for all λ ≥0} 

 x 

Proposition 4.2.1  rec(C,x) does not depend on x.  

One can show the following:  

Let rec(C) = rec(C,x) (x ∈ C) be the recession cone of C 

 Show that rec{x  Rn : Ax ≤ b} = {x  Rn : Ax ≤ O} 



Inner Description 

Corollary 4.3.3 (Inner description). Let C ⊆ ℝn be a nonempty and 

line-free (pointed) closed convex set. Choose a direction vector z for 

each extreme halfline of C and let Z be the set of these direction 

vectors. Then we have that 

      C = conv(ext(C)) + rec(C) = conv(ext(C)) + cone(Z). 

Let C be a closed convex set.  

Let Z be the set of directions of the extreme rays (halflines) of C. 

One can show that the recession cone of C is the conical 
combination of the directions in Z, namely rec(C) = cone(Z). 

Corollary 4.3.4 (Minkowsky theorem). Let C ⊆ ℝn be a bounded 

closed (compact) convex (set, then C is the convex hull of its 

extreme points:      C = conv(ext(C)) 



Polytopes and Polyhedra 

We consider a non-empty, line-free polyhedron P = {x∈ℝn: Ax ≤ b}, 
where A∈ℝm,n , b∈ℝm.   

P  pointed implies rank(A) = n and m ≥ n.  

(If rank(A) < n then there exists a non zero vector z: Az = 0; then for 
any x0 ∈ P we have Ax0 ≤ b and A(x0+z) ≤ b for any ∈R and P 
contains the line through x0 having direction z).    

A point x0 ∈ P is called a vertex if it is the unique solution to 

n linear independent equations from the system Ax = b.  

x0 vertex of P: there exists an n×n non-singular sub-matrix A0 of 
A, such that A0x0=b0, with b0 sub-vector of b corresponding to A0 

A 
b 

A0 b0  x0 = 



Vertices and extreme points 

Lemma 4.4.1. A point x0 ∈ P = {x∈ℝn: Ax ≤ b} is a 

vertex of P if and only if it is an extreme point of P.  

only if. By contradiction. x0  vertex but not extreme point  

x0 = 
1

2
𝑥1 + 

1

2
𝑥2   with 𝑥1, 𝑥2∈P and A0x0=b0 with A0 nonsingular 

Let ai be any row of  𝐴0 (treated as a row vector) 

since 𝑥1,𝑥2∈P , ai x1≤bi and ai x2≤bi 

if ai x1< bi then ai x0 = 
1

2
ai 
𝑥1 + 

1

2
ai 
𝑥2 < bi , contradiction.  

Since ai  is any row , we have A0 x1 = b0 , and A0 x2 = b0 .  

A0 nonsigular implies x1 = x2 = x0   



Vertices and extreme points 

Lemma 4.4.1. A point x0 ∈ P = {x∈ℝn: Ax ≤ b} is a 

vertex of P if and only if it is an extreme point of P.  

if. Suppose x0  is not a vertex.  

Let A0x0=b0  corresponding system. x0 non vertex → rank(A0) < n 

Consider all 𝑖 for which aix0=bi and let A0  be the associated submatrix  

rank(A0) < n → there is a nonzero vector z such that A0z = O 

There is small ε > 0 such that x1= x0 + ε ∙ 𝑧 ∈ P and x2= x0 -ε ∙ 𝑧 ∈ P 

Then x0 = 
1

2
𝑥1 + 

1

2
𝑥2   with 𝑥1, 𝑥2∈P  and 𝑥1≠ 𝑥2 

(since if ai not in A0  then aix0<bi)  



Extreme Halflines (rays) 

Lemma 4.4.2 (extreme halfline). R = x0 + cone({z}) ⊆ P is 

an extreme halfline of P if and only if A0z = O for some (n-

1)×n submatrix of A with rank(A0) = n-1.  

A face F of P is a halfline if  F = x0 + cone({z}) = {x0 + λz: λ ≥ 0} 

F extreme if there are not two distinct z1,z2∈rec(P) with z=z1+z2  

Since there are only 
𝑚

𝑛 − 1
 ways of choosing n-1 rows of A, the 

number of extreme halflines is finite.  

Similarly, the number of extreme points is finite.  



The main theorem for Polyhedra 

Theorem 4.4.4 Each polyhedron P may be written as P = conv(V ) + 

cone(Z) for finite sets V, Z ⊂ ℝn. In particular, if P is pointed, we may 

here let V be the set of vertices and let Z consist of a direction vector 

of each extreme halfline of P. 

Conversely, if V and Z are finite sets in ℝn, then P=conv(V)+cone(Z) 

is a polyhedron. i.e., there is a matrix A ∈ ℝm,n  and a vector b ∈ ℝm 

for some m such that conv(V) + cone(Z) = {x ∈ ℝn : Ax ≤ b}.  

Corollary 4.4.5  A set is a polytope if and only if it is a 

bounded polyhedron. 



Exercises 

 Show that the unit ball B = {x  Rn : ||x|| ≤ 1} is convex. (Hint use the 

triangle inequality ||x+y|| ≤ ||x||+ ||y||)  

 Show that C1 , C2 convex sets → C1 ∩ C2  is a convex set 

 The set of optimal solutions to a linear program is a polyhedron  

 Each convex cone is a convex set.  

 Show that 2 distinct points are affinely independent 

 Show that the diagonal of the square is not a face 

 Let x be an extreme point of a convex set C, then there do not exist two 

distinct points of C such that x is the convex combination of such points 

 What is rec(C) when C is a polytope? 

 Show that rec{x  Rn : Ax ≤ b} = {x  Rn : Ax ≤ O} 


