INF1060:
Introduction to Operating Systems and Data Communication

Operating Systems:

Introduction

Pal Halvorsen

Wednesday, September 19, 2012

I Overview

= Basic execution environment — an Intel example
= What is an operating system (OS)?

= OS components and services
(extended in later lectures)

= Booting

= Kernel organization

‘@1 University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

I Hardware

* Central Processing Units (CPUs)

= Memory
(cache(s), RAM, ROM, Flash, ...)

= 1/O Devices
(network cards, disks, CD, keyboard, mouse, ...)

= Links
(interconnects, busses, ...)

‘@1 University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

Example:

Intel Hub Architecture (850 Chi set)
Intel D850MD Motherboard:

Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

; xﬂ - - 1
‘Q@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

Example:

Intel Hub Architecture (850 Chipset

mouse, keyboard, parallel, serial,
netw‘rk and USB connectors

Intel D850MD Motherbo'afd:/

II:MHII

@ .,.r f’zi; m @ Memory Controller

|'”’ L |'||'L |||I- Hub
i BSJ(DLY ICOX L ICD

AGP slot B2 T ee, s,

Pentium 4 socket

/0 Controller Hub SRR

n rface ®
ts A A\ BUS RDRAM —

bt~ 2 banks (4 slots)

Firmware Hub —
including BIOS

Power connector

prrrrercsiaad
Yy ¥

B Diskette connector

IDE dnve connectors

& \,7 - - :
‘\@@‘ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

Battery

' Iixﬁnfpelel: Hub Architecture (850 Chipset)

application

; file system

system bus
(64-bit, 400/533 MHz
>n~24-32 Gbps)

e/ B RAM interface

oo1111re = B8 (two 64-bit, 200 MHz
hub > ~24 Gbps)

hub interface
(four 8-bit, 66 MHz
- 2 Gbps)

I/0

controller

hub PCI bus
(32-bit, 33 MHz
- 1 Gbps)

'@U‘ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

xample:
' Iintel Platform Controller Hub Architecture

Sandy Bridge
E integrated
memory
controller

iGraphics

controller '.'_'_'_'_'_'_'_'_'_'_'_'___
hub

Controller
[[T]5)

‘\@1}‘ University of Oslo

INF1060, Pal Halvorsen

[simula.research laboratory]

I Intel 32-bit Architecture (IA32): Basic Execution Environment

= Address space: 1 — 2% (64 GB),

‘@/ University of Oslo

each process may have a linear address space of 4 GB (23?)

Basic program execution registers:
— 8 general purpose registers (data: EAX, EBX, ECX, EDX, address: ESI, EDI, EBP, ESP)

6 segment registers (CS, DS, SS, ES, FS and GS)
1 flag register (EFLAGS)
1 instruction pointer register (EIP)

Stack — a continuous array of memory locations

Current stack is referenced by the SS register

ESP register — stack pointer

EBP register — stack frame base pointer (fixed reference)
PUSH — stack grows, add item (esp decrement)

POP — remove item, stack shrinks (esp increment)

Several other registers like Control, MMX/FPU,
Memory Type Range Registers (MTRRS),
SSEx (XMM), performance monitoring, ...

INF1060, Pal Halvorsen

PUSH %eax
PUSH %ebx
PUSH %ecx

<do something>

POP %ecx
POP %ebx
POP %eax

X

i

X"
o

[s5imuléa

GPRs:

EAX:

>

EBX:

<

ECX:

EDX:

ESI:

EDI:

EBP:

ESP:

_STACK:

VA

Y

X

= 0x0...

Oxfff...

.research laboratory |

Intel 32-bit Architecture (IA32): Basic Execution Environment

code segment:

= Example:
8048314 <main>:
=eeeal>MAIN (VOId) b gy —p | 8048314: push _ %ebp
{ %) | 8048315: mov $esp, sebp
- INt@ =4, b=2,¢=0; —p | 8048317: sub $0x18, 3esp
mesos> C = a + D) =P | 804831a: and SOXEfEFEEE0, Sesp
m}} P | 804831cC: mov $0x0, $eax
insert value 4 in variable a on stack: = | 8048322: sub %eax, sesp
Oxffffffc = -(OXFHfHF — Oxffffffic) = -0x4 ——p | 8048324: movl $0x4,O0xfffffffc (3ebp)
a’s memory address = EBP - 4 =P | 304832b: movl $0x2,0xfffffff8 (%ebp)
stack: 0:0... —p | 8048332: movl $0x0,0xfffffff4 (3ebp)
=P | 8048339: mov Oxfffffff8 (%ebp), $eax
- sub 24 (0x18) bytes =P | 804833c: add Oxfffffffc (%ebp), $eax
—_— (add space for 24 bytes) —> | 804833f: mov Seax, OxEffffff4 (3ebp)
=P | 8048342: leave
alignment — sub "X" (here 8) byteS =P | 3048343 ot
6 —
2
4
—- old EBP
EAX: EBP:
— Accumulator for operands and results data | a | | Ox PO | Pointer to data on stack (base)
ESP: EPI:
OXfff... Stack pointer | Oxffiff® | | 8048338 | Pointer to next instruction to be executed

‘ﬁi University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

C Function Calls & Stack

= A calling function does

— push the parameters into stack in reverse order
— push return address (current EIP value) onto stack

= When called, a C function does
— push frame pointer (EBP) into stack - saves frame pointer register and gives easy return if necessary
— let frame pointer point at the stack top, i.e., point at the saved stack pointer (EBP = ESP)
— shift stack pointer (ESP) upward (to lower addresses) to allocate space for local variables

= When returning, a C function does
— put return value in the return value register (EAX)
— copy frame pointer into stack pointer - stack top now contains the saved frame pointer
— pop stack into frame pointer (restore), leaving the return program pointer on top of the stack

— the RET instruction pops the stack top into the program counter register (EIP), causing the CPU to
execute from the "return address" saved earlier

= When returned to calling function, it does
— copy the return value into right place
— pop parameters — restore the stack

54 N .
‘@ University of Oslo INF1060, Pal Halvorsen [. research laboratory |

C Function Calls & Stack

int add (int a, int b)

code segment:

Example:
p { 8048314 <add>:
return a + b; b —> | 8048314: push %ebp
} dum ~g 8048315: mov %esp, $ebp
8048317: mgwv Oxc (%ebp) , $eax
main (void) |804831a;" |d 0x8(%ebp), veax
{ 1. Pop return instruction pointer b s/
int into the EIP register N %
_ 2. Release parameters (ESP
C=3. R e caller execution
} be nice if thiS f?
stack: \-_'\Ca\\y
e toma %p
=P | “main” EBP man ed‘.‘-'?? _ o
=P | 804834a t“ng Svstem \ $0x0, $eax
— 4 > opera
2@l Suld Feax, sesp
2 \ﬁ2f' movl $0x0,0xfffffffc (%ebp)
8048336: movl $0x2,0x4 (%esp)
804833e: movl S0x4, (%esp)
procedure’in the EIP register 8048345: call 8048314 <add>
3. Begin execution 804834a: mov seax,0xfffffffc (%ebp)
6 804834d: leave
— old EBP 804834e: ret
804834f: nop
. L — X

@/ University of Oslo INF1060, Pal Halvorsen

. research laboratory]

C Function Calls & Stack

int add (int a, int b)
{

}

main (void)

{

return a + b;

intc = 0;
c = add(4, 2);
}

stack:
0x0...

“main” EBP

804834a
4

2

HH

old EBP

Oxfff...

S

—_—

Pop return instruction pointer
into the EIP register

Release parameters (ESP)
Resume caller execution

Push EIP register

Loads the offset of the called
procedure in the EIP register
Begin execution

code segment: ndOU
8048314 <add>:

8048314: push %ebp

8048315: mov %esp, $ebp

8048317: mov Oxc (%ebp) , $eax
804831la: add 0x8 (%ebp) , $eax
804831d: pop %ebp

804831le: ret

804831f <main>:

804831f: push %ebp

8048320: mov sesp, sebp

8048322: sub $0x18, sesp

8048325: and SOxfffffff0, Sesp
8048328: mov $S0x0, seax

804832d: sub %eax, sesp

804832f: movl $0x0,0xfffffffc (%ebp)
8048336: movl S50x2,0x4 (%esp)
804833e: movl S0x4, (%esp)

8048345: call 8048314 <add>
804834a: mov $eax,0xfffffffc (%ebp)
804834d: leave

804834e: ret

804834f: nop

‘@/ University of Oslo

INF1060, Pal Halvorsen

[simula.research laboratory]

I Different Hardware

Opepgitigabicatiem Opéekpphgaiigstem

Hardware X Hardware Y

(7\’ T
‘\ﬁ@‘ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

I Many Concurrent Tasks

= Better utilization

— many concurrent
processes
» performing different Web browser Spreadsheet
tasks
 using different parts of
the machine Word Presentation
processor graphics

— many concurrent users

= Challenges
— “concurrent” access o i aS L
— protection/security perating System Layer
— fairness
Hardware layer
’;ﬁ@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

| What is an Operating System (OS)?

= "An operating system (OS) is a collection of programs that acts as an
intermediary between the hardware and its user(s), providing a high-level
interface to low level hardware resources, such as the CPU, memory, and
I/O devices. The operating system provides various facilities and services
that make the use of the hardware convenient, efficient and safe”

Lazowska, E. D.: Contemporary Issues in Operating Systems , in: Encyclopedia of Computer Science, Ralston, A., Reilly, E. D. (Editors), IEEE Press, 1993, pp.980

user

= It is an extended machine (top-down view)

— Hides the messy details I
— Presents a virtual machine, easier to use

application

I
= It is a resource manager (bottom-up view) _

— Each program gets time/space on the resource I

‘ﬁi University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

| Where do we find OSes?

Computers

Game Boxes ..

cameras,
other vehicles/crafts,
set-top boxes,

watches,
Sensors,
;e“i:‘T""}\Z\‘ L
‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

I Operating System Categories

= Single-user, single-task:
historic, and rare (only a few PDAs use this)

= Single-user, multi-tasking:
PCs and workstations may be configured like this

= Multi-user, multi-tasking:
used on large, old mainframes; and handhelds, PCs, workstations and servers today

= Distributed OSes:

support for administration of distributed resources

= Real-time OSes:
support for systems with real-time requirements like cars, nuclear reactors, etc.

= Embedded OSes:

built into a device to control a specific type of equipment like cellular phones, micro
waves, etc.

‘ﬁ; University of Oslo INF1060, Pal Halvorsen [simula. research laboratory]

I History

= OSes have evolved over the last 60 years

= Early history ('40s and early '50s):

—first machines did not include OSes
—programmed using mechanical switches or wires

= Second generation ('50s and '60s):

—transistors introduced in mid-'50s
—batch systems
—card readers

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

I History

* Third generation (mid-'60s to the '80s)
—integrated circuits and simple multiprogramming
—timesharing
—graphical user interface
—UNIX ('69-"70)

—BSD ('77)

" Newer times (‘80s to present)

—personal computers & workstations
—MS-DOS (’82), Win (‘85), Minix (‘87), Linux (91), Win95, ...

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

| Why Study OSes?

* Understand how computers work under the hood
— “you need to understand the system at all abstraction levels or you don't” (Yale Patt)

= Easier to do things right and efficient if one knows what happens

- Mac?ic to provide infinite CPU cycles, memory, devices
and networked computing

= Tradeoffs between performance and functionality,
division of labor between HW and SW

" An OS is a key component in many systems

7’”1 . -
‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory]

\I Primary Components

= "Visible" to user
— Shell

— File system
— Device management

Operating system layer

User interface File Device
(shell) management management

) "TranSpa rent" Processor o
(or process) Memory Communication
— Processor management management management services

— Memory management
— Communication services

Hardware layer

‘@@‘ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

Primary Components

File Management (file system):
provides a mechanism for the user to
create, delete, modify and manipulate files

 Device Management:

provides the system with means to
control the systems peripheral devices
like keyboard, display, printer and disk

User Interface:
provides a mechanism for user and

application to communicate with OS
and use the machine resources

management

\ Communication:

provides a mechanism for the system
communicate with other processes (on
| same or another machine)

Management of processes:
provides a mechanism for the system
to efficiently and fair manage the

machine CPU cycles for the running

processes
Note: this list of components is
Memory Management: not complete. Some OSes have
provides a mechanism for the system fewer, others more. Some have
to efficiently manage the sy_s.tem S sub-components
memory recourses — allocating space
7 to processes
‘@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

e

| Device Management

= The OS must be able to control pheripal devices such as disk, keyboard,
network cards, screen, speakers, mouse, memory sticks, ...

= Device controllers often have registers to hold status, give commands, ...

= Each type is different and requires device-spesific software

= The software talking to the controller and giving commands is often called a
device driver

— usually running within the kernel
— mostly provided by the device vendors

— translating device-independent commands, e.g.,
read from file on disk: logical block number = device, cylinder, head, sector(s)

* A huge amount of code (95% of the Linux code!!??)

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

| Interfaces

A point of connection between components

The OS incorporates logic that support interfaces with both
hardware and applications, e.q.,

command line interface, e.g., a shell

graphical user interface (GUI)
interface consisting of windows, icons, menus and pointers
often not part of the OS (at least not kernel), but an own program

Example: X (see man X)

network transparent window system running on most ANSI C and POSIX
(portable OS interface for UNIX) compliant systems

uses inter-process communication to get input from and send output to
various client programs

xdm (X Display Manager) — usually set by administrator to run
automatically at boot time

xinit — manually starting X (startx, x11, xstart, ...)

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |
Qeec’

| Windows Interfaces

The GUI incorporates a
<~ command line shell similar
to the MS-DOS interface

Applications access HW
through the API consisting of
a set of routines, protocols and
Operating system layer other tools

Other operating system components

Hardware layer

S D L
‘@ University of Oslo INF1060, P&l Halvorsen [simula.research laboratory]

g

The WinXP Desktop Interface

-

T .
Humminabird
Nelghborhood
-
' . o] | OS6E
/ Internet) My Documents v
Internet Explorer
E-mail B My Recent Documents » —
Microsoft Outlook
-

&9 My Pictures

@ Windows Media Player b M .

J y Music
@ Windows Maovie Maker g«l My Computer
'@ Tour Windaws XP Control Panel

- Files and Settings Transfer % Connect To L
Wizard

;éé Printers and Faxes

!)) Help and Support

all Programs D Keep in touch with HP

@ Log OFf .(D Turn OFf Computer

14 start % Fullshot 99 [» 7i45PM

f f \

Start button Taskbar Notification area

Q@j‘ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

I UNIX Interfaces

Applications are accessed HW through Application <
the API consisting of a set of routines, program Y
protocols and other tools (e.g., POSIX — User

portable OS interface for UNIX)

A user can interact with the system
through the application interface or
using a command line prosessed by

a shell (not really a part of the OS)

Other operating system components

A plain command line interface may
be hard to use. Many UNIX systems
therefore have a standard graphical
interface (X Windows) which can run
a desktop system (like KDE, Ghome,

Fvwm, Afterstep, ...) Hardware layer

Windows is more or less similar...

=

€ @ University of Oslo INF1060, Pal Halvorsen [

Operating system layer

simula . research laboratory]

inux (KDE) Desktop Interface

1ORD

A i 2all
. Adresse Rediger Vis Gatil Bokmerker Verktey Innstillinger Vindu Hjelp
2.EoN 60 Fobhy QAABRLEE
v
| 5

IBIETE]

Navn %
INTEL-forum-presentation-1XP.ppt

% UiO-logo-e.gif

% UiO-storlogol. gif

‘- > Adresse: ‘ __J file:fififeinmyria/a00/paalh/INTEL forum
" I Sterrelse Filtype Endret Rettigheter I Eier I Gruppe
paalh paalh

- INTEL-forum

2.2 MB Microsoft PowerPoint “5kument 2004 17-16 12:51 nwxr-xr-x
3.7 KB GIF-bilde 2M14-1%-17 0'45:0. paalh
8.1 KB GIF-bilde 2004-03-17 08:07 | v paalh

3 elementer - 3 filer (2.2 MB Totalt) - 0 kataloger

=) all - Konsole [=][B][x]|
[vizzini][~ o -
[vizzini]~
A . ks
8]0 d U0 al't "
L
-
-
-
U e

CEIHIEE]

2004-07-16

'Q () - gxine 0.3.3 _ file: fififeinmyriafa00/paalh/INT | 72 emacs @vizzini.ifi.uio.no

| @ Skall - Konsole <3> ‘ & Skall - Konsole <2»

INF1060, Pal Halvorsen [.research laboratory |

Q@ University of Oslo

| Typical (UNIX) Line Commands

S command [-options] [arguments .. .]

‘ this symbol indicates

a list of file names

generally, file- or pathnames

one or more single-letter options

the minus sign distinguishes the options
from the arguments

command name

system prompt ($ for Bourne shell, % for C shell)

‘ﬁi University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

Svstem Calls Linux system calls
(2.4.19):

* The interface between the OS and
users is defined by a set of system
calls

= Making a system call is similar to a
procedure/function call, but system
calls enter the kernel:

appllcat\lon application appﬂcatlon user space
ﬁ /

system call interface

[/ N

S . -
‘ﬁ University of Oslo INF1060, Pal Halvorsen

OS components

kernel space
Linux:

x86
x86

sys—au]nnma EH’UWW’I‘N‘:X"W § ; uf Imﬁms ﬂags TSI TIT T T T

§¥ faich fubiiostsitichénid [ieizy flaget)

88 e o By dicifshiesty ett-tiimpaaSigretbflags,

V8 ted'$omgifi sumidt sihe)aiisigeet Viedgsy,

Y8 efdhificbedriftdgfihame, char *optval, int optlen)

Mwm&m,thfdewehsntbuﬁ‘amﬁ char *optval, int *optlen)
gg_g g @Mﬂnﬂgpmﬁ ihidprelity,unsigned int count)
g iyiGpietd nrmdgbdmrthﬁg]anhmgrmbﬂagsam;count)

w13 'mmtermﬁ)statbuf)
Wh& i LICE Stat * statbuf)
yEaKitt{irk piobpyicemel_stat * statbuf)
5t apstififir et pinticsifatct istGo)D,
gg/@dbal%t‘@ﬂlmtm;létmﬂt tirnbspsiz)*interval)
iy cglqnanfeuﬁgrqgt stat64 * statbuf, long flags)

e @‘IE %,mtmtatﬁ.@\?as):atbuf long flags)

3 n)ct stat64 * statbuf, long flags)
oK ﬂmmm&mﬁg anginedsighechthngpat g2arg)

gt ataliRosBR)id_t user, old_gid_t group)
égf g a'l"‘"‘méﬁ‘iialﬁg Bf@m&%@ﬁ&e“ﬂﬁ t group)
&

RN id_t group)
sepafstial a&maa%omzwe § flags)
§: i i{aulv: i \. wﬂt@fmmom arg)
bE i Hmm@mmnned long arg)
M&mghrﬁegm))
s e Eired (0Re k)
i@tuﬂﬂﬂﬁ%l" nEeMeXedid, old_uid_t *suid)
% il Emﬁd' e Qﬁ;&'e&&%)t sgid)
;!li;e R e@:‘;)egud old_gid_t *sgid)
: tamie size_t len, unsigned long prot)

LI PLLVLPPPLLOLY

222
' ‘f"”

Qs al@()udhgyjname)
5. IR RASE IS P+ mgmﬁg
§y§_§m ychar * ehhmtfdepor@kwbp name)
$ys_gENmOm(-@mmm@ﬂgwgrouphst)

plge . B mﬂﬁmm’)g}d;ttu@mﬂ_ﬂs *buf)

oL el i 01N

v2.4.19 entry.S > 242
v3.0-rc4 syscall_table_32.S > 347

FreeBSD:
V9 syscalls.c > 531

s&ls:shma-!t (iht shmid, char *shmaddr, int shm-fig, ulong *addr)
svs shmdt (char *shmaddr)

System Calls: read

= Cexample:
count = read(fd,buffer,nbyte)

1. push parameters on stack
2. call library code

3. put system call number in register

user space
kernel space

4. call kernel (TRAP)
v" kernel examines system call number
v finds requested system call handler
v' execute requested operation

5. return to library and clean up
v"increase instruction pointer
v' remove parameters from stack X

6. resume process

'\@U University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

| Interrupt Program Execution

—
%%

;“:“T"‘}\,‘\ L
‘@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

I Interrupts

= Interrupts are electronic signals that (usually) result in a forced
transfer of control to an interrupt handling routine

— alternative to polling

— caused by asynchronous events like finished disk operations, incoming
network packets, expired timers, ...

— an interrupt descriptor table (IDT) associates each interrupt with a code
descriptor (pointer to code segment)

— can be disabled or masked out

7"’1 . .
‘@ University of Oslo INF1060, Pal Halvorsen [. research laboratory |

| Exceptions

= Another way for the processor to interrupt program
execution is exceptions

— caused by synchronous events generated when the processor detects a
predefined condition while executing an instruction

— TRAPS: the processor reaches a condition the exception handler can
handle (e.g., overflow, break point in code like making a system call, ...)

— FAULTS: the processor reaches a fault the exception handler can correct
(e.qg., division by zero, wrong data format, ...)

— ABORTS: terminate the process due to an unrecoverable error
(e.g., hardware failure) which the process itself cannot correct

— the processor responds to exceptions (i.e., traps and faults) essentially as
for interrupts

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

| Interrupt (and Exception) Handling

= The IA-32 has an interrupt description table (IDT) with 256 entries for
interrupts and exceptions
— 32 (0 - 31) predefined and reserved
— 224 (32 - 255) is "user" (operating system) defined

= Each interrupt is associated with a code segment through
the IDT and a unique index value givina management like this:

'

2. capture state, switch control
and find right interrupt handler

user

3. execute the interrupt handler kernel

IDT: Interrupt routines:
IS

disk interrupt (x)
4. restore interrupted process ﬁ
5. continue execution /“%

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

IBooHng

= Memory is a volatile, limited resource: OS usually on disk

" Most motherboards contain a basic input/output system (BIOS)
chip (often flash RAM) — stores instructions for basic HW
initialization and management, and initiates the ...

= ... bootstrap: loads the OS into memory

— read the boot program from a known location on secondary storage
typically first sector(s), often called master boot record (MBR)
— run boot program
» read root file system and locate file with OS kernel
» |load kernel into memory
e run kernel

‘@1 University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

K&TVJ
V-4
[l

3

Bootin

Gather HW information and set up system
Load data from boot sector

Execute boot program an CPU

Load OS from disk

Run OS

Intel’ Pentium® 4
Processor

hwnhe

4.2 or 3.2 GB/s

boot

Intel®* Hub J Architecture

6 Channel
ATA 100 MB/s % Audio
2 IDE Channels

IChe.

VIB/s
LAN
Interface 4 USB Ports
Flash BIOS

“77. University of Oslo INF1060, P&l Halvorsen [simula.research laboratory]

| User Level vs. Kernel Level (Protection)

= Many OSes distinguish user and kernel level,
i.e., due to security and protection

Least privileged

= Usually, applications and many sub-systems
run in user mode (pentium level 3)

— protected mode

— not allowed to access HW or device drivers
directly, only through an API

— access to assigned memory only
— limited instruction set

]

Most privileged

Device drivers

Applications

= (O6Ses run in kernel mode
(under the virtual machine abstraction, pentium level 0)

— real mode

— access to the entire memory

— all instructions can be executed
— bypass security

7"’1 . .
‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory]

| OS Organization

= No standard describing how to organize a kernel (as it is for compilers,
communication protocols, etc.) and several approaches exist, e.q.:

= Monolithic kernels (“the big mess”): shell e
— written as a collection of functions linked into a single object
— usually efficient (no boundaries to cross)
— large, complex, easy to crash
— UNIX, Linux, ...
= Micro kernels
— kernel with minimal functionality (managing interrupts, memory, processor)
— other services are implemented in server processes running in user space
used in a client-server model et syt s
— lot of message passing 7 e e e e
(inefficient) I P pmon || G | e || e | e
— small, modular, ¥ T o f F oo
extensible, portable, ... AT /v """"" ¥ v { kernel mode
— MACH, L4, Chorus, ... T mi“‘lkef“e'
hardware

‘@ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

I Summary

= (OSes are found “everywhere” and provide virtual machines and
work as a resource managers

= Many components providing different services
= Users access the services using an interface like system calls

= In the next lectures, we look closer at some of the main
components and abstractions in an OS
— Processes management
— memory management
— storage management
— local inter-process communication

— inter-computer network communication is covered in the
last part of the course

‘@1 University of Oslo INF1060, Pal Halvorsen [- research laboratory |

