
Pål Halvorsen

Wednesday, September 19, 2012

INF1060:
Introduction to Operating Systems and Data Communication

INF1060, Pål Halvorsen University of Oslo

Overview

  Processes
－ primitives for creation and termination
－ states
－ context switches
－ processes vs. threads

  CPU scheduling
－ classification
－ time slices
－ algorithms

Processes

INF1060, Pål Halvorsen University of Oslo

 What is a process?
 The execution of a program is called a process

  Process table entry (process control block, PCB):

Processes

Process
Program

INF1060, Pål Halvorsen University of Oslo

  A process can create another process using the
pid_t fork(void) system call (see man 2 fork) :

－ makes a duplicate of the calling process including a copy of virtual
address space, open file descriptors, etc…
(only PIDs are different – locks and signals are not inherited)

－  return value if …
•  …parent: child process’ PID when successful, -1 otherwise
•  …child: 0 (if successful - if not, there will not be a child)

－  both processes continue in parallel

  Other possibilities include
－  int clone(…) – shares memory, descriptors, signals (see man 2 clone)

－  pid_t vfork(void) – suspends parent in clone() (see man 2 vfork)

Process Creation

INF1060, Pål Halvorsen University of Oslo

Prosess 1

Process control block (process descriptor)
•  PID
•  address space (text, data, stack)
•  state
•  allocated resources
•  …

Process Creation – fork()

Prosess 2

fork()

make_s
andwit

ch()

make_b
urger(

)

make_b
ig_cak

e()

buy_ch
ampagn

e()

make_s
mall_c

ake()

make_c
offee(

)

right after fork()

after termination
(or any later time)

right after fork()

INF1060, Pål Halvorsen University of Oslo

Program Execution
  To make a process execute a program, one might use the

int execve(char *filename, char *params[], char *envp[])
system call (see man 2 execve):

－  executes the program pointed to by filename (binary or script) using
the parameters given in params and in the environment given by envp

－  return value
•  no return value on success, actually no process to return to
•  -1 is returned on failure (and errno set)

  Many other versions (frontends to execve) exist, e.g.,
execl, execlp, execle, execv and execvp (see man 3 exec)

INF1060, Pål Halvorsen University of Oslo

Process Waiting
  To make a process wait for another process, one

can use the pid_t wait(int *status)
system call (see man 2 wait):

－ waits until any of the child processes terminates
(if there are running child processes)

－  returns
•  -1 if no child processes exist

•  PID of the terminated child process and
puts the status of the process in location pointed to by status

－  see also wait4, waitpid

INF1060, Pål Halvorsen University of Oslo

Process Termination
  A process can terminate in several different ways:

－  no more instructions to execute in the program –
unknown status value

－  a function in a program finishes with a return –
parameter to return the status value

－  the system call void exit(int status) terminates a process and
returns the status value (see man 3 exit)

－  the system call int kill(pid_t pid, int sig) sends a signal to a
process to terminate it (see man 2 kill, man 7 signal)

  A status value of 0 indicates success,
other values indicate errors

INF1060, Pål Halvorsen University of Oslo

Process States

Termination

Creation

INF1060, Pål Halvorsen University of Oslo

Context Switches

  Context switch: the process of switching one running process to another

1.  stop running process 1

2.  storing the state (like registers, instruction pointer) of process 1
(usually on stack or PCB)

3.  restoring state of process 2

4.  resume operation on new program counter for process 2

－  essential feature of multi-tasking systems

－  computationally intensive, important to optimize the use of context switches

－  some hardware support, but usually only for general purpose registers

  Possible causes:
－  scheduler switches processes (and contexts) due to algorithm and time slices

－  interrupts

－  required transition between user-mode and kernel-mode

INF1060, Pål Halvorsen University of Oslo

Process

Processes vs. Threads
  Processes: resource grouping and execution
  Threads (light-weight processes)
－  enable more efficient cooperation among execution units
－  share many of the process resources (most notably address space)
－  have their own state, stack, processor registers and program counter

－  no memory address switch
－  thread switching is much cheaper
－  parallel execution of concurrent tasks within a process

  No standard, several implementations (e.g., Win32 threads, Pthreads, C-threads)
(see man 3 pthreads)

Process
- address space
- registers
- program counter
- stack
- …

- address space
- registers
- program counter
- stack
- …

- address space
- other global process data

- state
- registers
- program counter
- stack

- state
- registers
- program counter
- stack

information global to
all threads in a process

information local
to each thread ...

INF1060, Pål Halvorsen University of Oslo

Example
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main(void){
 pid_t pid, n;
 int status = 0;

 if ((pid = fork()) == -1) {printf("Failure\n"); exit(1);}

 if (pid != 0) { /* Parent */
 printf("parent PID=%d, child PID = %d\n",

 (int) getpid(), (int) pid);

 printf("parent going to sleep (wait)...\n");

 n = wait(&status);

 printf("returned child PID=%d, status=0x%x\n",
 (int)n, status);

 return 0;
 } else { /* Child */
 printf("child PID=%d\n", (int)getpid());
 printf("executing /store/bin/whoami\n");
 execve("/store/bin/whoami", NULL, NULL);
 exit(0); /* Will usually not be executed */
 }
}

[vizzini] > ./testfork
parent PID=2295, child PID=2296
parent going to sleep (wait)...
child PID=2296
executing /store/bin/whoami
paalh
returned child PID=2296, status=0x0

[vizzini] > ./testfork
child PID=2444
executing /store/bin/whoami
parent PID=2443, child PID=2444
parent going to sleep (wait)...
paalh
returned child PID=2444, status=0x0

Two concurrent processes
running, scheduled differently

CPU Scheduling

INF1060, Pål Halvorsen University of Oslo

Scheduling
  A task is a schedulable entity/something that can run

(a process/thread executing a job, e.g.,
a packet through the communication
system or a disk request through the file system)

  In a multi-tasking system, several
tasks may wish to use a resource
simultaneously

  A scheduler decides which task
that may use the resource,
i.e., determines order
by which requests are serviced,
using a scheduling algorithm

resource

requests

scheduler

INF1060, Pål Halvorsen University of Oslo

Scheduling
  A variety of (contradicting) factors to consider
－ treat similar tasks in a similar way
－ no process should wait forever
－ short response times (time request submitted - time response given)

－ maximize throughput
－ maximum resource utilization (100%, but 40-90% normal)

－ minimize overhead
－ predictable access
－ …

  Several ways to achieve these goals, …
…but which criteria is most important?

INF1060, Pål Halvorsen University of Oslo

Scheduling
  “Most reasonable” criteria depends upon who you are

－  Kernel
•  Resource management and scheduling

  processor utilization, throughput, fairness

－  User
•  Interactivity

  response time
(Example: when playing a game, we will not accept waiting 10s each time we
use the joystick)

•  Predictability
  identical performance every time

(Example: when using the editor, we will not accept waiting 5s one time and 5ms
another time to get echo)

  “Most reasonable” depends upon environment
－  Server vs. end-system
－  Stationary vs. mobile
－  …

INF1060, Pål Halvorsen University of Oslo

Scheduling
  “Most reasonable” criteria depends upon target system

－  All systems
•  fairness – giving each process a fair share
•  balance – keeping all parts of the system busy

－  Batch systems
•  turnaround time – minimize time between submission and termination
•  throughput – maximize number of jobs per hour
•  (CPU utilization – keep CPU busy all the time)

－  Interactive systems
•  response time – respond to requests quickly
•  proportionality – meet users’ expectations

－  Real-time systems
•  meet deadlines – avoid loosing data
•  predictability – avoid quality degradation in multimedia systems

INF1060, Pål Halvorsen University of Oslo

Scheduling
  Scheduling algorithm classification:
－  dynamic

•  make scheduling decisions at run-time
•  flexible to adapt
•  considers only the actual task requests and execution time parameters
•  large run-time overhead finding a schedule

－  static
•  make scheduling decisions at off-line (also called pre-run-time)
•  generates a dispatching table for run-time dispatcher at compile time
•  needs complete knowledge of the task before compiling
•  small run-time overhead

－  preemptive
•  currently executing task may be interrupted (preempted) by higher priority processes
•  preempted process continues later at the same state
•  overhead of contexts switching

－  non-preemptive
•  running tasks will be allowed to finish its time-slot (higher priority processes must wait)
•  reasonable for short tasks like sending a packet (used by disk and network cards)
•  less frequent switches

INF1060, Pål Halvorsen University of Oslo

Preemption
  Tasks waits for processing

  Scheduler assigns priorities

  Task with highest priority will be scheduled first

  Preempt current execution if
－  a higher priority (more urgent) task arrives

－  timeslice is consumed

－  …

  Real-time and best effort priorities
－  real-time processes have higher priority

(if exists, they will run)

  To kinds of preemption:
－  preemption points

•  predictable overhead
•  simplified scheduler accounting

－  immediate preemption
•  needed for hard real-time systems
•  needs special timers and fast interrupt and context switch

handling

resource

requests

scheduler preemption

INF1060, Pål Halvorsen University of Oslo

Why Spend Time on Scheduling?

－  Bursts of CPU usage alternate with periods of I/O wait

  Optimize the system to the given goals
－  e.g., CPU utilization, throughput, response time, waiting time, fairness, …

  Example: CPU-Bound vs. I/O-Bound Processes:

INF1060, Pål Halvorsen University of Oslo

  Example: CPU-Bound vs. I/O-Bound Processes (cont.) – observations:

－  schedule all CPU-bound processes first, then I/O-bound

－  schedule all I/O-bound processes first, then CPU-bound?

－  possible solution:
mix of CPU-bound and I/O-bound: overlap slow I/O devices with fast CPU

CPU DISK

Why Spend Time on Scheduling?

INF1060, Pål Halvorsen University of Oslo

FIFO and Round Robin
FIFO:

  Run to
－  to completion (old days)
－  until blocked, yield or exit

  Advantages
－  simple

  Disadvantage
－ when short jobs get behind long

Round-Robin (RR):

  FIFO queue

  Each process runs a time slice
－  each process gets 1/n of the CPU

in max t time units at a time
－  the preempted process is put

back in the queue

INF1060, Pål Halvorsen University of Oslo

FIFO and Round Robin
  Example: 10 jobs and each takes 100 seconds

  FIFO – the process runs until finished and no overhead (!!??)
－  start: job1: 0s, job2: 100s, ... , job10: 900s average 450s
－  finished: job1: 100s, job2: 200s, ... , job10: 1000s average 550s
－  unfair, but some are lucky

  RR - time slice of 1s and no overhead (!!??)
－  start: job1: 0s, job2: 1s, ... , job10: 9s average 4.5s
－  finished: job1: 991s, job2: 992s, ... , job10: 1000s average 995.5s
－  fair, but no one are lucky

  Comparisons
－  FIFO better for long CPU-intensive jobs (there is overhead in switching!!)
－  but RR much better for interactivity!

  But, how to choose the right time slice??

INF1060, Pål Halvorsen University of Oslo

Case: Time Slice Size
  Resource utilization example
－ A and B run forever, and each uses 100% CPU
－ C loops forever (1 ms CPU and 10 ms disk)
－  assume no switching overhead

  Large or small time slices?
－  nearly 100% of CPU utilization regardless of size
－  Time slice 100 ms: nearly 5% of disk utilization with RR

[A:100 + B:100 + C:1 201 ms CPU vs. 10 ms disk]

－  Time slice 1 ms: nearly 91% of disk utilization with RR
[5x (A:1 + B:1) + C:1 11 ms CPU vs. 10 ms disk]

  What do we learn from this example?
－  The right time slice (in this case shorter) can improve overall utilization
－  CPU bound: benefits from having longer time slices (>100 ms)
－  I/O bound: benefits from having shorter time slices (≤10 ms)

INF1060, Pål Halvorsen University of Oslo

Many Algorithms Exist
  First In First Out (FIFO)
  Round-Robin (RR)
  Shortest Job First
  Shortest Time to Completion First
  Shortest Remaining Time to Completion First

(a.k.a. Shortest Remaining Time First)
  Lottery
  Fair Queuing
  …

  Earliest Deadline First (EDF)
  Rate Monotonic (RM)
  …

  Most systems use some kind of priority scheduling

INF1060, Pål Halvorsen University of Oslo

  Assign each process a priority
  Run the process with highest priority in the ready queue first

  Multiple queues

  Advantage
－  (Fairness)
－  Different priorities according

to importance

  Disadvantage
－  Users can hit keyboard frequently
－  Starvation: so should use dynamic priorities

Priority Scheduling

INF1060, Pål Halvorsen University of Oslo

Traditional scheduling in UNIX
  Many versions

  User processes have positive
priorities, kernel negative

  Schedule lowest priority first
  If a process uses the whole time

slice, it is put back at the end of
the queue (RR)

  Each second the priorities are
recalculated:
priority =

 CPU_usage (average #ticks)
+  nice (± 20)
+  base (priority of last corresponding kernel process)

INF1060, Pål Halvorsen University of Oslo

Scheduling in Windows 2000, XP, …
  Preemptive kernel
  Schedules threads individually

  Time slices given in quantums
－  3 quantums = 1 clock interval (length of interval may vary)

－  defaults:
•  Win2000 server: 36 quantums

•  Win2000 workstation: 6 quantums (professional)

－ may manually be increased between threads (1x, 2x, 4x, 6x)

－  foreground quantum boost (add 0x, 1x, 2x):
an active window can get longer time slices (assumed need of fast
response)

INF1060, Pål Halvorsen University of Oslo

Scheduling in Windows 2000, XP, …

  32 priority levels:
Round Robin (RR) within each level

  Interactive and throughput-oriented:
－  “Real time” – 16 system levels

•  fixed priority
•  may run forever

－  Variable – 15 user levels
•  priority may change:

thread priority = process priority ± 2
•  uses much drops
•  user interactions, I/O completions increase

－  Idle/zero-page thread – 1 system level
•  runs whenever there are no other processes to run
•  clears memory pages for memory manager

31

30

...

17

16

15

14

...

2

1

0

Real Time (system thread)

Variable (user thread)

Idle (system thread)

INF1060, Pål Halvorsen University of Oslo

Scheduling in Windows 8 (…server 2008, 7)
  Still 32 priority levels, with 6 classes - RR within each:

－  REALTIME_PRIORITY_CLASS
－  HIGH_PRIORITY_CLASS
－  ABOVE_NORMAL_PRIORITY_CLASS
－  NORMAL_PRIORITY_CLASS (default)
－  BELOW_NORMAL_PRIORITY_CLASS
－  IDLE_PRIORITY_CLASS

➥  each class has 7 priorities levels with different base priorities

  Dynamic priority (can be disabled):
+  foreground
+  window receives input (mouse, keyboard, timers, …)
+  unblocks
－  if increased, drop by one level every timeslice until back to default

  Support for user mode scheduling (UMS)
－  each application schedule own threads
－  application must implement a scheduler component

31

30

...

17

16

15

14

...

2

1

0

Real Time (system thread)

Variable (user thread)

Idle (system thread)

http://msdn.microsoft.com/en-us/

library/windows/desktop/

ms681917(v=vs.85).aspx

INF1060, Pål Halvorsen University of Oslo

Scheduling in Linux
  Preemptive kernel
  Threads and processes used to be equal,

but Linux uses (from 2.6) thread scheduling

  SCHED_FIFO
－  may run forever, no timeslices
－  may use it’s own scheduling algorithm

  SCHED_RR
－  each priority in RR
－  timeslices of 10 ms (quantums)

  SCHED_OTHER
－  ordinary user processes
－  uses “nice”-values: 1≤ priority≤40
－  timeslices of 10 ms (quantums)

  Threads with highest goodness are selected first:
－  realtime (FIFO and RR):

goodness = 1000 + priority
－  timesharing (OTHER):

goodness = (quantum > 0 ? quantum + priority : 0)

  Quantums are reset when no ready
process has quantums left (end of epoch):
quantum = (quantum/2) + priority

1

2

...

99

100

1

2

...

99

100

default (20)

-20

-19

...

18

19

SCHED_FIFO

SCHED_RR

SCHED_OTHER

nice

INF1060, Pål Halvorsen University of Oslo

Scheduling in Linux
  The current kernels use the Completely Fair Scheduler (CFS)
－  addresses unfairness in desktop and server workloads

－  uses ns granularity, does not rely on jiffies or HZ details

－  uses an extensible hierarchical scheduling classes

•  SCHED_NORMAL – the CFS desktop scheduler – replace SCHED_OTHER

•  SCHED_BATCH – similar to SCHED_OTHER, but assumes CPU intensive workloads

•  SCHED_RR and SCHED_FIFO (SCHED_RT)
  uses 100 priorities

－  no run-queues, a red-black tree-based timeline
of future tasks based on virtual time

－  does not directly use priorities, but instead uses them as a decay factor for the
time a task is permitted to execute

http://kerneltrap.org/node/8059

INF1060, Pål Halvorsen University of Oslo

When to Invoke the Scheduler?

  Process creation

  Process termination

  Process blocks

  Interrupts occur

  Clock interrupts in the case of preemptive systems

INF1060, Pål Halvorsen University of Oslo

Future Chips: Something to think about!?
  Future Chips:

Intel’s Single-chip
Cloud Computer
(SCC)

http://techresearch.intel.com/ProjectDetails.aspx?Id=1

  What does
introduction of such
processors mean in
terms of scheduling?
－  many cores
－  different memory

access latencies
－  different connectivity
－  …

P54C core

L1 cache

P54C core

L1 cache message
passing buffer

L2 cache

L2 cache

mesh
interface

unit

router

memory
controller

memory
controller

memory
controller

memory
controller

INF1060, Pål Halvorsen University of Oslo

Summary
  Processes are programs under execution

  Scheduling performance criteria and goals are
dependent on environment

  The right timeslice can improve overall utilization

  There exists several different algorithms targeted for various
systems

  Traditional OSes like Windows, UniX, Linux, ... usually uses a
priority-based algorithm

