
Thursday, October 3, 2013

INF1060:
Introduction to Operating Systems and Data Communication

INF1060, Pål Halvorsen University of Oslo

Challenge – managing memory

INF1060, Pål Halvorsen University of Oslo

Overview

  Hierarchies

  Multiprogramming and memory management

  Addressing

  A process’ memory

  Partitioning

  Paging and Segmentation

  Virtual memory

  Page replacement algorithms

INF1060, Pål Halvorsen University of Oslo

Memory Management

  Memory management is concerned with managing
the systems’ memory resources

－ allocating space to processes

－ protecting the memory regions

－ providing a virtual view of memory giving the impression
of having more than the number of available bytes

－ different levels of memory in a hierarchy

INF1060, Pål Halvorsen University of Oslo

Memory Hierarchies
  We can’t access the disk each time we need data

  Typical computer systems therefore have several different
components where data may be stored

－  different capacities

－  different speeds

－  less capacity gives faster access
and higher cost per byte

  Lower levels have a copy of
data in higher levels

  A typical memory hierarchy:

cache(s)

main memory

secondary storage
(disks)

tertiary storage (tapes)

sp
ee

d

ca
pa

ci
ty

pr
ic

e

2x

100x

107x

INF1060, Pål Halvorsen University of Oslo

cache(s)

main memory

secondary storage
(disks)

tertiary storage (tapes)

Memory Hierarchies

0.3 ns

On die memory - 1 ns

50 ns

5 ms

< 1 s

2 s

1.5 minutes

3.5 months

INF1060, Pål Halvorsen University of Oslo

~0.3 ns
cache(s)

main memory

secondary storage
(disks)

tertiary storage (tapes)

Memory Hierarchies

On die memory - 1 ns

50 ns

5 ms

< 1 s

2 s

1.5 minutes

3.5 months

INF1060, Pål Halvorsen University of Oslo

Storage Costs: Access Time vs Capacity

10-9 10-6 10-3 10 103
access time (sec)

1015
1013
1011
109
107
105 cache

main
memory

magnetic
disks

online
tape

offline
tape

ty
pi

ca
l c

ap
ac

ity
 (

by
te

s)

from Gray & Reuter

INF1060, Pål Halvorsen University of Oslo

Storage Costs: Access Time vs Price

10-9 10-6 10-3 10 103
access time (sec)

from Gray & Reuter

do
lla

rs
/M

by
te

s

cache
main

memory
magnetic

disks

online
tape

offline
tape

104

102

100

10-2

INF1060, Pål Halvorsen University of Oslo

The Challenge of Multiprogramming
  Many “tasks” require memory

－ several programs concurrently
loaded into memory

－ memory is needed for
different tasks within a process

－ process memory demand may
change over time

➥  OS must arrange (dynamic) memory sharing

INF1060, Pål Halvorsen University of Oslo

Memory Management for Multiprogramming

  Use of secondary storage
－  keeping all programs and their data in memory may be impossible
－ move (parts of) a processes from memory

  Swapping: remove a process from memory
－ with all of its state and data
－  store it on a secondary medium

(disk, flash RAM, other slow RAM, historically also tape)

  Overlays: manually replace parts of code and data
－  programmer’s rather than OS’s work
－  only for very old and memory-scarce systems

  Segmentation/paging: remove part of a process from memory
－  store it on a secondary medium
－  sizes of such parts are fixed

INF1060, Pål Halvorsen University of Oslo

Absolute and Relative Addressing
  Hardware often uses absolute addressing

－  reserved memory regions
－  reading data by referencing the

byte numbers in memory
－  read absolute byte 0x000000ff
－  fast!!!

  What about software?
－  read absolute byte 0x000fffff (process A)
  result dependent of a process' physical location
－  absolute addressing not convenient
－  but, addressing within a process is determined during

programming!!??

 Relative addressing
－  independent of process position in memory
－  address is expressed relative to some base location

－  dynamic address translation – find absolute address
during run-time adding relative and base addresses

0x000…

0xfff…

process A

process A

INF1060, Pål Halvorsen University of Oslo

Processes’ Memory
  On most architectures, a task partitions its

available memory (address space), but for what?
－  a text (code) segment

•  read from program file
for example by exec

•  usually read-only
•  can be shared

－  a data segment
•  global variables
•  static variables
•  heap

  dynamic memory, e.g., allocated using malloc
  grows against higher addresses

－  a stack segment
•  variables in a function
•  stored register states (e.g., calling function’s EIP)
•  grows against lower addresses

－  system data segment (PCB)
•  segment pointers
•  pid
•  program and stack pointers
•  …

－  possibly more stacks for threads

－  command line arguments and
environment variables at highest addresses

process A

low address

high address

…

...

…

…

8048314 <add>:
8048314: push %ebp
8048315: mov %esp,%ebp
8048317: mov 0xc(%ebp),%eax
804831a: add 0x8(%ebp),%eax
804831d: pop %ebp
804831e: ret
804831f <main>:
804831f: push %ebp
8048320: mov %esp,%ebp
8048322: sub $0x18,%esp
8048325: and $0xfffffff0,%esp
8048328: mov $0x0,%eax
804832d: sub %eax,%esp
804832f: movl $0x0,0xfffffffc(%ebp)
8048336: movl $0x2,0x4(%esp,1)
804833e: movl $0x4,(%esp,1)
8048345: call 8048314 <add>
804834a: mov %eax,0xfffffffc(%ebp)
804834d: leave
804834e: ret
804834f: nop

code segment

system data segment (PCB)

data segment

global variables

static variables

da
ta

 s
eg

m
en

t

heap

stack possible thread
stacks, arguments

INF1060, Pål Halvorsen University of Oslo

Processes’ Memory
  On most architectures, a task partitions its

available memory (address space), but for what?
－  a text (code) segment

•  read from program file
for example by exec

•  usually read-only
•  can be shared

－  a data segment
•  global variables
•  static variables
•  heap

  dynamic memory, e.g., allocated using malloc
  grows against higher addresses

－  a stack segment
•  variables in a function
•  stored register states (e.g., calling function’s EIP)
•  grows against lower addresses

－  system data segment (PCB)
•  segment pointers
•  pid
•  program and stack pointers
•  …

－  possibly more stacks for threads

－  command line arguments and
environment variables at highest addresses

process A

low address

high address

code segment

system data segment (PCB)

data segment

global variables

static variables

da
ta

 s
eg

m
en

t

heap

stack possible thread
stacks, arguments

INF1060, Pål Halvorsen University of Oslo

Memory Layout

  Memory is usually divided into regions
－  operating system occupies low memory

•  system control
•  resident routines

－  the remaining area is used for transient operating
system routines and application programs

  How to assign memory to concurrent processes?
 Memory partitioning
－  Fixed partitioning
－  Dynamic partitioning
－  Simple segmentation
－  Simple paging
－  Virtual memory with segmentation
－  Virtual memory with paging

0x000…

0xfff…

system control information

resident operating system
(kernel)

transient area
(application programs – and

transient operating system routines)

INF1060, Pål Halvorsen University of Oslo

Fixed Partitioning
  Divide memory into static partitions

at system initialization time
(boot or earlier)

  Advantages
－  very easy to implement
－  can support swapping process

  Two fixed partitioning schemes
－  equal-size partitions

•  large programs cannot be executed
(unless parts of a program are loaded from disk)

•  small programs don't use entire partition
(problem called “internal fragmentation”)

－  unequal-size partitions
•  large programs can be loaded at once

•  less internal fragmentation

•  require assignment of jobs to partitions

•  one queue or one queue per partition

•  …but, what if only small or large processes?

Operating system"
8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

Operating system"
8MB"

8MB"

8MB"

2MB"
4MB"

6MB"

12MB"

16MB"

Equal sized: Unequal sized:

INF1060, Pål Halvorsen University of Oslo

Dynamic Partitioning

  Divide memory at run-time
－  partitions are created dynamically
－  removed after jobs are finished

  External fragmentation increases
with system running time

Operating system"
8MB"

56MB free"

Process 1"
20MB"

36MB free"

22MB free"

Process 2"
14MB"

4MB free"

Process 3"
18MB"

14MB free"
Process 4"

8MB"
6MB free"

20MB free"
Process 5"

14MB"

6MB"

External"
fragmentation"

INF1060, Pål Halvorsen University of Oslo

Operating system"
8MB"

Dynamic Partitioning

  Compaction removes fragments by moving
data in memory
－  takes time
－  consumes processing resources

  Proper placement algorithm might reduce
need for compaction
－  first fit – simplest, fastest, typically the best
－  next fit – problems with large segments
－  best fit – slowest, lots of small fragments,

 therefore worst
4MB free"

Process 3"
18MB"

Process 4"
8MB"

6MB free"

Process 5"
14MB"

6MB"Process 4"
8MB"

6MB free"
Process 3"

18MB"

6MB free"

6MB free"
16MB free"

  Divide memory in run-time
－  partitions are created dynamically
－  removed after jobs are finished

  External fragmentation increases
with system running time

INF1060, Pål Halvorsen University of Oslo

The Buddy System

  Mix of fixed and dynamic partitioning
－  partitions have sizes 2k, L ≤ k ≤ U

  Maintain a list of holes with sizes

  Assigning memory to a process:

－  find smallest k so that process fits into 2k

－  find a hole of size 2k

－  if not available, split smallest hole larger than 2k
recursively into halves

  Merge partitions if possible when released

  … but what if I now got a 513kB process?
… do we really need the process in continuous memory?

Process"
128kB"

1MB"

512kB"

512kB"

256kB"

256kB"

128kB"

128kB"

Process"
128kB"

Process"
256kB"

256kB"

Process"
256kB"

256kB"Process"
256kB"

Process 32kB"

64kB"
64kB"

32kB"
32kB"Process 32kB"

INF1060, Pål Halvorsen University of Oslo

Segmentation
  Requiring that a process is placed in contiguous memory gives much

fragmentation (and memory compaction is expensive)

  Segmentation
－  different lengths
－  determined by programmer
－  memory frames

  Programmer (or compiler tool-chain) organizes program in parts
－  move control
－  needs awareness of possible segment size limits

  Pros and Cons
  principle as in dynamic partitioning – can have different sizes
  no internal fragmentation
  less external fragmentation because on average smaller segments

  adds a step to address translation

INF1060, Pål Halvorsen University of Oslo

Segmentation

process A, segment 0

process A, segment 1

process A, segment 2

operating system

other regions/programs

other regions/programs

other regions/programs

other regions/programs

address

segment number | offset

segment start address

0x…a…

0x…b…

0x…c…

…

segment table

1.  find segment table in
register

2.  extract segment
number from address

3.  find segment address
using segment number
as index to segment
table

4.  find absolute address
within segment using
relative address

+

INF1060, Pål Halvorsen University of Oslo

Process 6"Process 7"

Paging
  Paging
－  equal lengths determined

by processor
－  one page moved into

one page (memory) frame

  Process is loaded into several frames
(not necessarily consecutive)

  Fragmentation
－  no external fragmentation
－  little internal fragmentation (depends on frame size)

  Addresses are dynamically translated during run-time
(similar to segmentation)

  Can combine segmentation and paging

Process 1"Process 2"Process 3"Process 4"Process 5"Process 1"

?

INF1060, Pål Halvorsen University of Oslo

Virtual Memory
  The described partitioning schemes may be used in applications, but the modern OS

also uses virtual memory:

－  early attempt to give a programmer more memory than physically available
•  older computers had relatively little main memory

•  but still today, all instructions do not have to be in memory before execution starts
  break program into smaller independent parts

  load currently active parts

  when a program is finished with one part a new can be loaded

－  memory is divided into equal-sized frames often called pages

－  some pages reside in physical memory, others are stored on disk and retrieved if needed

－  virtual addresses are translated to physical (in MMU) using a page table

－  both Linux and Windows implements a flat linear 32-bit (4 GB) memory model on IA-32
•  Windows: 2 GB (high addresses) kernel, 2 GB (low addresses) user mode threads

•  Linux: 1 GB (high addresses) kernel, 3 GB (low addresses) user mode threads

INF1060, Pål Halvorsen University of Oslo

Virtual Memory

1
virtual address space

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

7 1 5 4 13 2 18
physical memory

3

3

INF1060, Pål Halvorsen University of Oslo

0" 0" 1" 0"0" 0" 1" 0"

Memory Lookup

0" 0" 1" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

12-bit offset"

Outgoing physical address"

4-bit index"
into page table"
virtual page = 0010 = 2"

Incoming virtual address"
(0x2004, 8196)"

0" 010" 1"
1" 001" 1"
2" 110" 1"
3" 000" 1"
4" 100" 1"
5" 011" 1"
6" 000" 0"
7" 000" 0"
8" 000" 0"
9" 101" 1"

10" 000" 0"
11" 111" 1"
12" 000" 0"
13" 000" 0"
14" 000" 0"
15" 000" 0"Page table"

0" 0" 1" 0"

present "
bit"

0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

(0x6004, 24580)"
1" 1" 0"

0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

Example:
•  4 KB pages (12-bit offsets within page)
•  16 bit virtual address space  16 pages (4-bit index)
•  8 physical pages (3-bit index)

INF1060, Pål Halvorsen University of Oslo

0" 0" 1" 0"0" 0" 1" 0"

Memory Lookup

0" 0" 1" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

12-bit offset"

Outgoing physical address"

4-bit index"
into page table"
virtual page = 0010 = 2"

Incoming virtual address"
(0x2004, 8196)"

0" 010" 1"
1" 001" 1"
2" 110" 0"
3" 000" 1"
4" 100" 1"
5" 011" 1"
6" 000" 0"
7" 000" 0"
8" 000" 0"
9" 101" 1"

10" 000" 0"
11" 111" 1"
12" 000" 0"
13" 000" 0"
14" 000" 0"
15" 000" 0"Page table"

0" 0" 1" 0"

present "
bit"

0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

INF1060, Pål Halvorsen University of Oslo

Page Fault Handling
1.  Hardware traps to the kernel saving program counter and process state information

2.  Save general registers and other volatile information

3.  OS discovers the page fault and determines which virtual page is requested

4.  OS checks if the virtual page is valid and if protection is consistent with access

5.  Select a page to be replaced

6.  Check if selected page frame is ”dirty”, i.e., updated. If so, write back to disk,
otherwise, just overwrite

7.  When selected page frame is ready, the OS finds the disk address where the needed
data is located and schedules a disk operation to bring in into memory

8.  A disk interrupt is executed indicating that the disk I/O operation is finished, the page
tables are updated, and the page frame is marked ”normal state”

9.  Faulting instruction is backed up and the program counter is reset

10.  Faulting process is scheduled, and OS returns to the routine that made the trap to the
kernel

11.  The registers and other volatile information are restored, and control is returned to user
space to continue execution as no page fault had occured

INF1060, Pål Halvorsen University of Oslo

Page Replacement Algorithms
  Page fault → OS has to select a page for replacement

  How do we decide which page to replace?

 → determined by the page replacement algorithm
→ several algorithms exist:

•  Random

•  Other algorithms take into account usage, age, etc.
(e.g., FIFO, not recently used, least recently used, second chance, clock, …)

•  which is best???

INF1060, Pål Halvorsen University of Oslo

First In First Out (FIFO)
  All pages in memory are maintained in a list sorted by age
  FIFO replaces the oldest page, i.e., the first in the list

•  Low overhead
•  Non-optimal replacement (and disc accesses are EXPENSIVE)
➥  FIFO is rarely used in its pure form

Page most
recently loaded

Page first loaded, i.e.,
FIRST REPLACED

Reference string: A B C D A E F G H I A J"

AC B AB AE D C B AF E D C B AG F E D C B AI H G F E D C BA I H G F E D CJ A I H G F E DD C B AD C B A

No change in the FIFO chain

H G F E D C B A

Now the buffer is full, next page fault results in a replacement

INF1060, Pål Halvorsen University of Oslo

Page most
recently loaded

Page first
loaded

R-bit

Second Chance

  Modification of FIFO

  R bit: when a page is referenced again, the R bit is set,
 and the page will be treated as a newly loaded page

Reference string: A B C D A E F G H I "

E

0

D

0

C

0

B

0

A

1

F

0

E

0

D

0

C

0

B

0

A

1

G

0

F

0

E

0

D

0

C

0

B

0

A

1

D

0

C

0

B

0

A

0

D

0

C

0

B

0

A

1

The R-bit for page A is set

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Now the buffer is full, next page fault results in a
replacement

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Page I will be inserted, find a page to page out by looking at the first page loaded:

 -if R-bit = 0 → replace
 -if R-bit = 1 → clear R-bit, move page last, and finally look at the new first page

A

0

H

0

G

0

F

0

E

0

D

0

C

0

B

0

Page A’s R-bit = 1 → move last in chain and clear R-bit, look at new first page (B)

I

0

A

0

H

0

G

0

F

0

E

0

D

0

C

0

Page B’s R-bit = 0 → page out, shift chain left, and insert I last in the chain

•  Second chance is a reasonable algorithm,
but inefficient because it is moving pages around the list

INF1060, Pål Halvorsen University of Oslo

Reference string: A B C D A E F G H I "

Clock
  More efficient implemention Second Chance
  Circular list in form of a clock
  Pointer to the oldest page:
－  R-bit = 0 → replace and advance pointer
－  R-bit = 1 → set R-bit to 0, advance pointer until R-bit = 0, replace

 and advance pointer

A
0

D
0

B
0

C
0

A
1

E
0

F
0

G
0

H
0

I
0

INF1060, Pål Halvorsen University of Oslo

Least Recently Used (LRU)

  Replace the page that has the longest time since last reference

  Based on the observation that

 pages that was heavily used in the last few
 instructions will probably be used again in
 the next few instructions

  Several ways to implement this algorithm

INF1060, Pål Halvorsen University of Oslo

Least Recently Used (LRU)

  LRU as a linked list:

Page most
recently used

Page least
recently used

Reference string: A B C D A E F G H A C I"

E A D C BF E A D C BG F E A D C BD C B AA D B C

Move A last in the chain (most
recently used)

H G F E A D C B

Now the buffer is full, next page fault results in a replacement

I C A H G F E D

Page fault, replace LRU (B) with I

A H G F E D C B

Move A last in the chain
(most recently used)

C A H G F E D B

Move C last in the chain
(most recently used)

•  Saves (usually) a lot of disk accesses
•  Expensive - maintaining an ordered list of all pages in memory:

•  most recently used at front, least at rear
•  update this list every memory reference !!

•  Many other approaches: using aging and counters

INF1060, Pål Halvorsen University of Oslo

"Optimizing" paging…
  Every memory reference needs a virtual-to-physical mapping
  Each process has its own virtual address space (an own page table)
  Large tables:

－  32-bit addresses, 4 KB pages  1.048.576 entries
－  64-bit addresses, 4 KB pages  4.503.599.627.370.496 entries

➥  Translation lookaside buffers (aka associative memory)
－  hardware "cache" for the page table
－  a fixed number of slots containing

the last page table entries

➥  Page size:
larger page sizes reduce number of pages

➥ Multi-level page tables

INF1060, Pål Halvorsen University of Oslo

Speeding up paging…
  Every memory reference needs a virtual-to-physical mapping
  Each process has its own virtual address space (an own table)
  Large tables:

－  32-bit addresses, 4 KB pages  1.048.576 entries
－  64-bit addresses, 4 KB pages  4.503.599.627.370.496 entries

➥  Translation lookaside buffers (aka associative memory)
－  hardware "cache" for the page table
－  a fixed number of slots containing the last page table entries

➥  Page size:
larger page sizes reduce number of pages

➥ Multi-level page tables

INF1060, Pål Halvorsen University of Oslo

Many Other Design Issues

  Page size

  Reference locality in time and space

  Demand paging vs. pre-paging

  Allocation policies: equal share vs. proportional share

  Replacement policies: local vs. global

  …

INF1060, Pål Halvorsen University of Oslo

Allocation Policies

  Page fault frequency (PFF):
Usually, more page frames → fewer page faults

P
FF

:
pa

ge
 f

au
lt

s/
se

c

page frames assigned

PFF is unacceptable high
→ process needs more memory

PFF might be too low
→ process may have too
 much memory!!!??????

If the system experience too many page faults, what should we do?
Reduce number of processes competing for memory

•  reassign a page frame
•  swap one or more to disk, divide up pages they held
•  reconsider degree of multiprogramming

Multi-level paging example:

Pentium

INF1060, Pål Halvorsen University of Oslo

Paging on Pentium
  The executing process has a 4 GB address space (232) – viewed

as 1M (220) 4 KB (212) pages

－  The 4 GB address space is divided into 1 K page groups
(pointed to by the 1 level table – page directory)

－  Each page group has 1 K 4 KB pages
(pointed to by the 2 level tables – page tables)

  Mass storage space is also divided into 4 KB blocks of
information

  Uses control registers for paging information

INF1060, Pål Halvorsen University of Oslo

Control Registers used for Paging on Pentium

  Control register 0 (CR0):

  Control register 1 (CR1) – does not exist, returns only zero

  Control register 2 (CR2)
－  only used if CR0[PG]=1 & CR0[PE]=1

31 30 29 16 0

PG CD NW WP PE

Not-Write-Through and Cache Disable:
used to control internal cache

Paging Enable:
OS enables paging by setting CR0[PG] = 1

Write-Protect: If CR0[WP] = 1,
only OS may write to read-only pages

31 0

Page Fault Linear Address

Protected Mode Enable: If CR0[PE] = 1,
the processor is in protected mode

INF1060, Pål Halvorsen University of Oslo

Control Registers used for Paging on Pentium

  Control register 3 (CR3) – page directory base address:
－  only used if CR0[PG]=1 & CR0[PE]=1

  Control register 4 (CR4):

31 11 4 3 0

Page Directory Base Address PCD PWT

A 4KB-aligned physical base
address of the page directory

Page Cache Disable:
If CR3[PCD] = 1, caching is turned off

Page Write-Through:
If CR3[PWT] = 1, use write-through updates

31 4 0

PSE

Page Size Extension: If CR4[PSE] = 1,
the OS designer may designate some pages as 4 MB

INF1060, Pål Halvorsen University of Oslo

Pentium Memory Lookup

31 22 21 12 11 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

Page directory:
31 12 7 6 5 4 3 2 1 0

PT base address ... PS A U W P

physical base
address of the
page table

page
size

accessed present

allowed to write

user access allowed

INF1060, Pål Halvorsen University of Oslo

Pentium Memory Lookup

31 22 21 12 11 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0

0...01010101111 ... 1

0...01111111000 ... 0

0...01110000111 ... 0

0...00001010101 ... 1

0...01111000101 ... 0

0...00000000100 ... 0

......

Index to page directory"
(0x6, 6)"

Page Directory Base Address

CR3:

Page table PF:
1.  Save pointer to instruction
2.  Move linear address to CR2
3.  Generate a PF exception – jump to handler
4.  Programmer reads CR2 address
5.  Upper 10 CR2 bits identify needed PT
6.  Page directory entry is really a mass

storage address
7.  Allocate a new page – write back if dirty
8.  Read page from storage device
9.  Insert new PT base address into

page directory entry
10.  Return and restore faulting instruction
11.  Resume operation reading the same

page directory entry again – now P = 1

INF1060, Pål Halvorsen University of Oslo

Pentium Memory Lookup

31 22 21 12 11 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0

0...01010101111 ... 1

0...01111111000 ... 0

0...01110000111 ... 0

0...00001010101 ... 1

0...01111000101 ... 0

0...00000000100 ... 1

......

Index to page directory"
(0x6, 6)"

Page Directory Base Address

CR3: 31 12 7 6 5 4 3 2 1 0

0...01010101111 ... 1

0...01010100000 0

0...01100110011 1

0...00010000100 1

......

Page table:

Index to page table"
(0x2, 2)"

Page frame PF:
1.  Save pointer to instruction
2.  Move linear address to CR2
3.  Generate a PF exception – jump to handler
4.  Programmer reads CR2 address
5.  Upper 10 CR2 bits identify needed PT
6.  Use middle 10 CR2 bit to determine entry

in PT – holds a mass storage address
7.  Allocate a new page – write back if dirty
8.  Read page from storage device
9.  Insert new page frame base address into

page table entry
10.  Return and restore faulting instruction
11.  Resume operation reading the same

page directory entry and page table entry
again – both now P = 1

INF1060, Pål Halvorsen University of Oslo

Pentium Memory Lookup

31 22 21 12 11 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0

0...01010101111 ... 1

0...01111111000 ... 0

0...01110000111 ... 0

0...00001010101 ... 1

0...01111000101 ... 0

0...00000000100 ... 1

......

Index to page directory"
(0x6, 6)"

Page Directory Base Address

CR3: 31 12 7 6 5 4 3 2 1 0

0...01010101111 ... 1

0...01010100000 1

0...01100110011 1

0...00010000100 1

......

Index to page table"
(0x2, 2)"

Page offset"
(0x38, 56)"

Page:

requested data

INF1060, Pål Halvorsen University of Oslo

Pentium Page Fault Causes
  Page directory entry’s P-bit = 0:

page group’s directory (page table) not in memory

  Page table entry’s P-bit = 0:
requested page not in memory

  Attempt to write to a read-only page

  Insufficient page-level privilege to access page table or frame

  One of the reserved bits are set in the page directory or
table entry

INF1060, Pål Halvorsen University of Oslo

Summary
  Memory management is concerned with managing the systems’ memory

resources

－  allocating space to processes

－  protecting the memory regions

－  in the real world

•  programs are loaded dynamically

•  physical addresses it will get are not known to program – dynamic address translation

•  program size at run-time is not known to kernel

  Each process usually has text, data and stack segments

  Systems like Windows and Unix use virtual memory with paging

  Many issues when designing a memory component

