
Thursday, October 3, 2013 

INF1060: 
Introduction to Operating Systems and Data Communication 



INF1060,   Pål Halvorsen University of Oslo 

Challenge – managing memory   
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Overview 

  Hierarchies 

  Multiprogramming and memory management 

  Addressing 

  A process’ memory 

  Partitioning 

  Paging and Segmentation 

  Virtual memory 

  Page replacement algorithms 
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Memory Management 

  Memory management is concerned with managing  
the systems’ memory resources 

－ allocating space to processes 

－ protecting the memory regions 

－ providing a virtual view of memory giving the impression  
of having more than the number of available bytes 

－ different levels of memory in a hierarchy 
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Memory Hierarchies 
  We can’t access the disk each time we need data 

  Typical computer systems therefore have several different 
components where data may be stored 

－  different capacities 

－  different speeds 

－  less capacity gives faster access  
and higher cost per byte 

  Lower levels have a copy of  
data in higher levels 

  A typical memory hierarchy: 
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cache(s) 

main memory 
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Memory Hierarchies 
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Storage Costs: Access Time vs Capacity 
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Storage Costs: Access Time vs Price 

10-9 10-6 10-3 10 103 
access time (sec) 

from Gray & Reuter 
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The Challenge of Multiprogramming 
  Many “tasks” require memory 

－ several programs concurrently  
loaded into memory 

－ memory is needed for  
different tasks within a process 

－ process memory demand may  
change over time 

➥  OS must arrange (dynamic) memory sharing 
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Memory Management for Multiprogramming 

  Use of secondary storage 
－  keeping all programs and their data in memory may be impossible 
－ move (parts of) a processes from memory  

  Swapping: remove a process from memory 
－ with all of its state and data 
－  store it on a secondary medium  

(disk, flash RAM, other slow RAM, historically also tape) 

  Overlays: manually replace parts of code and data 
－  programmer’s rather than OS’s work 
－  only for very old and memory-scarce systems 

  Segmentation/paging: remove part of a process from memory 
－  store it on a secondary medium 
－  sizes of such parts are fixed 
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Absolute and Relative Addressing 
  Hardware often uses absolute addressing 

－  reserved memory regions 
－  reading data by referencing the  

byte numbers in memory 
－  read absolute byte 0x000000ff 
－  fast!!! 

  What about software? 
－  read absolute byte 0x000fffff (process A) 
  result dependent of a process' physical location 
－  absolute addressing not convenient 
－  but, addressing within a process is determined during 

programming!!?? 

 Relative addressing 
－  independent of process position in memory 
－  address is expressed relative to some base location 

－  dynamic address translation – find absolute address 
during run-time adding relative and base addresses 

0x000… 

0xfff… 

process A 

process A 
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Processes’ Memory 
  On most architectures, a task partitions its 

available memory (address space), but for what? 
－  a text (code) segment 

•  read from program file  
for example by exec 

•  usually read-only 
•  can be shared 

－  a data segment 
•  global variables 
•  static variables 
•  heap  

  dynamic memory, e.g., allocated using malloc 
  grows against higher addresses 

－  a stack segment 
•  variables in a function 
•  stored register states (e.g., calling function’s  EIP) 
•  grows against lower addresses 

－  system data segment (PCB) 
•  segment pointers 
•  pid 
•  program and stack pointers 
•  … 

－  possibly more stacks for threads 

－  command line arguments and  
environment variables at highest addresses 

process A 

low address 

high address 

… 

... 

… 

… 

8048314 <add>: 
8048314:  push   %ebp 
8048315:   mov    %esp,%ebp  
8048317:   mov    0xc(%ebp),%eax  
804831a:   add    0x8(%ebp),%eax  
804831d:  pop    %ebp 
804831e:  ret 
804831f <main>:  
804831f:  push   %ebp  
8048320:   mov    %esp,%ebp  
8048322:   sub    $0x18,%esp  
8048325:   and    $0xfffffff0,%esp  
8048328:   mov    $0x0,%eax  
804832d:   sub    %eax,%esp 
804832f:   movl   $0x0,0xfffffffc(%ebp)  
8048336:   movl   $0x2,0x4(%esp,1) 
804833e:   movl   $0x4,(%esp,1) 
8048345:   call   8048314 <add>  
804834a:   mov    %eax,0xfffffffc(%ebp)  
804834d:  leave  
804834e:  ret  
804834f:  nop 
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Processes’ Memory 
  On most architectures, a task partitions its 

available memory (address space), but for what? 
－  a text (code) segment 

•  read from program file  
for example by exec 

•  usually read-only 
•  can be shared 

－  a data segment 
•  global variables 
•  static variables 
•  heap  

  dynamic memory, e.g., allocated using malloc 
  grows against higher addresses 

－  a stack segment 
•  variables in a function 
•  stored register states (e.g., calling function’s  EIP) 
•  grows against lower addresses 

－  system data segment (PCB) 
•  segment pointers 
•  pid 
•  program and stack pointers 
•  … 

－  possibly more stacks for threads 

－  command line arguments and  
environment variables at highest addresses 
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Memory Layout 

  Memory is usually divided into regions 
－  operating system occupies low memory 

•  system control 
•  resident routines 

－  the remaining area is used for transient operating 
system routines and application programs 

  How to assign memory to concurrent processes? 
 Memory partitioning 
－  Fixed partitioning 
－  Dynamic partitioning 
－  Simple segmentation 
－  Simple paging 
－  Virtual memory with segmentation 
－  Virtual memory with paging 

0x000… 

0xfff… 

system control information 

resident operating system 
(kernel) 

transient area 
(application programs – and 

transient operating system routines) 
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Fixed Partitioning 
  Divide memory into static partitions  

at system initialization time  
(boot or earlier) 

  Advantages 
－  very easy to implement 
－  can support swapping process 

  Two fixed partitioning schemes 
－  equal-size partitions 

•  large programs cannot be executed 
(unless parts of a program are loaded from disk) 

•  small programs don't use entire partition 
(problem called “internal fragmentation”) 

－  unequal-size partitions 
•  large programs can be loaded at once 

•  less internal fragmentation 

•  require assignment of jobs to partitions 

•  one queue or one queue per partition 

•  …but, what if only small or large processes? 

Operating system"
8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

8MB"

Operating system"
8MB"

8MB"

8MB"

2MB"
4MB"

6MB"

12MB"

16MB"

Equal sized: Unequal sized: 
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Dynamic Partitioning 

  Divide memory at run-time 
－  partitions are created dynamically 
－  removed after jobs are finished 

  External fragmentation increases 
with system running time 

Operating system"
8MB"

56MB free"

Process 1"
20MB"

36MB free"

22MB free"

Process 2"
14MB"

4MB free"

Process 3"
18MB"

14MB free"
Process 4"

8MB"
6MB free"

20MB free"
Process 5"

14MB"

6MB"

External"
fragmentation"
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Operating system"
8MB"

Dynamic Partitioning 

  Compaction removes fragments by moving  
data in memory 
－  takes time 
－  consumes processing resources 

  Proper placement algorithm might reduce  
need for compaction 
－  first fit  –  simplest, fastest, typically the best  
－  next fit  –  problems with large segments 
－  best fit  –  slowest, lots of small fragments,  

  therefore worst 
4MB free"

Process 3"
18MB"

Process 4"
8MB"

6MB free"

Process 5"
14MB"

6MB"Process 4"
8MB"

6MB free"
Process 3"

18MB"

6MB free"

6MB free"
16MB free"

  Divide memory in run-time 
－  partitions are created dynamically 
－  removed after jobs are finished 

  External fragmentation increases 
with system running time 
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The Buddy System 

  Mix of fixed and dynamic partitioning 
－  partitions have sizes 2k, L ≤ k ≤ U 

  Maintain a list of holes with sizes 

  Assigning memory to a process: 

－  find smallest k so that process fits into 2k 

－  find a hole of size 2k 

－  if not available, split smallest hole larger than 2k 
recursively into halves 

  Merge partitions if possible when released 

  … but what if I now got a 513kB process? 
… do we really need the process in continuous memory? 

Process"
128kB"

1MB"

512kB"

512kB"

256kB"

256kB"

128kB"

128kB"

Process"
128kB"

Process"
256kB"

256kB"

Process"
256kB"

256kB"Process"
256kB"

Process 32kB"

64kB"
64kB"

32kB"
32kB"Process 32kB"
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Segmentation 
  Requiring that a process is placed in contiguous memory gives much 

fragmentation (and memory compaction is expensive) 

  Segmentation 
－  different lengths 
－  determined by programmer 
－  memory frames 

  Programmer (or compiler tool-chain) organizes program in parts 
－  move control 
－  needs awareness of possible segment size limits 

  Pros and Cons 
  principle as in dynamic partitioning – can have different sizes 
  no internal fragmentation 
  less external fragmentation because on average smaller segments 

  adds a step to address translation 
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Segmentation 

process A, segment 0 

process A, segment 1 

process A, segment 2 

operating system 

other regions/programs 

other regions/programs 

other regions/programs 

other regions/programs 

address 

segment number | offset 

segment start address 

0x…a… 

0x…b… 

0x…c… 

… 

segment table 

1.  find segment table in 
register 

2.  extract segment  
number from address  

3.  find segment address 
using segment number 
as index to segment 
table 

4.  find absolute address 
within segment using 
relative address 

+ 
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Process 6"Process 7"

Paging 
  Paging 
－  equal lengths determined  

by processor 
－  one page moved into  

one page (memory) frame 

  Process is loaded into several frames  
(not necessarily consecutive) 

  Fragmentation 
－  no external fragmentation 
－  little internal fragmentation (depends on frame size) 

  Addresses are dynamically translated during run-time 
(similar to segmentation) 

  Can combine segmentation and paging 

Process 1"Process 2"Process 3"Process 4"Process 5"Process 1"

? 
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Virtual Memory 
  The described partitioning schemes may be used in applications, but the modern OS 

also uses virtual memory: 

－  early attempt to give a programmer more memory than physically available 
•  older computers had relatively little main memory 

•  but still today, all instructions do not have to be in memory before execution starts 
  break program into smaller independent parts  

  load currently active parts 

  when a program is finished with one part a new can be loaded  

－  memory is divided into equal-sized frames often called pages 

－  some pages reside in physical memory, others are stored on disk and retrieved if needed 

－  virtual addresses are translated to physical (in MMU) using a page table 

－  both Linux and Windows implements a flat linear 32-bit (4 GB) memory model on IA-32 
•  Windows: 2 GB (high addresses) kernel, 2 GB (low addresses) user mode threads 

•  Linux:       1 GB (high addresses) kernel, 3 GB (low addresses) user mode threads 
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Virtual Memory 

1 
virtual address space 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

7 1 5 4 13 2 18 
physical memory 

3 

3 
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0" 0" 1" 0"0" 0" 1" 0"

Memory Lookup 

0" 0" 1" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

12-bit offset"

Outgoing physical address"

4-bit index"
into page table"
virtual page = 0010 = 2"

Incoming virtual address"
(0x2004, 8196)"

0" 010" 1"
1" 001" 1"
2" 110" 1"
3" 000" 1"
4" 100" 1"
5" 011" 1"
6" 000" 0"
7" 000" 0"
8" 000" 0"
9" 101" 1"

10" 000" 0"
11" 111" 1"
12" 000" 0"
13" 000" 0"
14" 000" 0"
15" 000" 0"Page table"

0" 0" 1" 0"

present "
bit"

0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

(0x6004, 24580)"
1" 1" 0"

0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0"

Example: 
•  4 KB pages (12-bit offsets within page) 
•  16 bit virtual address space  16 pages (4-bit index) 
•  8 physical pages (3-bit index) 
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Page Fault Handling 
1.  Hardware traps to the kernel saving program counter and process state information 

2.  Save general registers and other volatile information 

3.  OS discovers the page fault and determines which virtual page is requested 

4.  OS checks if the virtual page is valid and if protection is consistent with access 

5.  Select a page to be replaced 

6.  Check if selected page frame is ”dirty”, i.e., updated. If so, write back to disk, 
otherwise, just overwrite 

7.  When selected page frame is ready, the OS finds the disk address where the needed 
data is located and schedules a disk operation to bring in into memory 

8.  A disk interrupt is executed indicating that the disk I/O operation is finished, the page 
tables are updated, and the page frame is marked ”normal state” 

9.  Faulting instruction is backed up and the program counter is reset 

10.  Faulting process is scheduled, and OS returns to the routine that made the trap to the 
kernel 

11.  The registers and other volatile information are restored, and control is returned to user 
space to continue execution as no page fault had occured  
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Page Replacement Algorithms 
  Page fault  → OS has to select a page for replacement 

  How do we decide which page to replace? 

 → determined by the page replacement algorithm 
→ several algorithms exist: 

•  Random 

•  Other algorithms take into account usage, age, etc. 
(e.g., FIFO, not recently used, least recently used, second chance, clock, …) 

•  which is best??? 
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First In First Out (FIFO) 
  All pages in memory are maintained in a list sorted by age 
  FIFO replaces the oldest page, i.e., the first in the list 

•  Low overhead 
•  Non-optimal replacement (and disc accesses are EXPENSIVE) 
➥  FIFO is rarely used in its pure form 

Page most  
recently loaded 

Page first loaded, i.e., 
FIRST REPLACED 

Reference string:    A     B    C     D     A     E     F    G     H     I     A     J"

AC B AB AE D C B AF E D C B AG F E D C B AI H G F E D C BA I H G F E D CJ A I H G F E DD C B AD C B A

No change in the FIFO chain 

H G F E D C B A

Now the buffer is full, next page fault results in a replacement 
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Page most  
recently loaded 

Page first  
loaded 

R-bit 

Second Chance 

  Modification of FIFO 

  R bit: when a page is referenced again, the R bit is set,   
    and the page will be treated as a newly loaded page 

Reference string:    A     B    C     D     A     E     F    G     H     I  "

E 

0 

D 

0 

C 

0 

B 

0 

A 

1 

F 

0 

E 

0 

D 

0 

C 

0 

B 

0 

A 

1 

G 

0 

F 

0 

E 

0 

D 

0 

C 

0 

B 

0 

A 

1 

D 

0 

C 

0 

B 

0 

A 

0 

D 

0 

C 

0 

B 

0 

A 

1 

The R-bit for page A is set 

H 

0 

G 

0 

F 

0 

E 

0 

D 

0 

C 

0 

B 

0 

A 

1 

Now the buffer is full, next page fault results in a 
replacement 

H 

0 

G 

0 

F 

0 

E 

0 

D 

0 

C 

0 

B 

0 

A 

1 

Page I will be inserted, find a page to page out by looking at the first page loaded: 

    -if R-bit = 0 → replace 
    -if R-bit = 1 → clear R-bit, move page last, and finally look at the new first page  

A 

0 

H 

0 

G 

0 

F 

0 

E 

0 

D 

0 

C 

0 

B 

0 

Page A’s R-bit = 1 → move last in chain and clear R-bit, look at new first page (B) 

I 

0 

A 

0 

H 

0 

G 

0 

F 

0 

E 

0 

D 

0 

C 

0 

Page B’s R-bit = 0 → page out, shift chain left, and insert I last in the chain 

•  Second chance is a reasonable algorithm,  
but inefficient because it is moving pages around the list 
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Reference string:    A     B    C     D     A     E     F    G     H     I  "

Clock 
  More efficient implemention Second Chance 
  Circular list in form of a clock 
  Pointer to the oldest page: 
－  R-bit = 0  → replace and advance pointer 
－  R-bit = 1  → set R-bit to 0, advance pointer until R-bit = 0, replace 

       and advance pointer 

A 
0 

D 
0 

B 
0 

C 
0 

A 
1 

E 
0 

F 
0 

G 
0 

H 
0 

I 
0 
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Least Recently Used (LRU) 

  Replace the page that has the longest time since last reference 

  Based on the observation that  

 pages that was heavily used in the last few   
 instructions will probably be used again in  
 the next few instructions 

  Several ways to implement this algorithm 
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Least Recently Used (LRU) 

  LRU as a linked list: 

Page most  
recently used 

Page least  
recently used 

Reference string:    A     B    C     D     A     E     F    G     H    A     C     I"

E A D C BF E A D C BG F E A D C BD C B AA D B C

Move A last in the chain (most 
recently used) 

H G F E A D C B

Now the buffer is full, next page fault results in a replacement 

I C A H G F E D

Page fault, replace LRU (B) with I 

A H G F E D C B

Move A last in the chain  
(most recently used) 

C A H G F E D B

Move C last in the chain  
(most recently used) 

•  Saves (usually) a lot of disk accesses 
•  Expensive - maintaining an ordered list of all pages in memory: 

•  most recently used at front, least at rear 
•  update this list every memory reference !! 

•  Many other approaches: using aging and counters 
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"Optimizing" paging… 
  Every memory reference needs a virtual-to-physical mapping 
  Each process has its own virtual address space (an own page table) 
  Large tables:  

－  32-bit addresses, 4 KB pages               1.048.576 entries 
－  64-bit addresses, 4 KB pages  4.503.599.627.370.496 entries 

➥  Translation lookaside buffers (aka associative memory) 
－  hardware "cache" for the page table 
－  a fixed number of slots containing 

the last page table entries 

➥  Page size:  
larger page sizes reduce number of pages 

➥ Multi-level page tables 
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Speeding up paging… 
  Every memory reference needs a virtual-to-physical mapping 
  Each process has its own virtual address space (an own table) 
  Large tables:  

－  32-bit addresses, 4 KB pages  1.048.576 entries 
－  64-bit addresses, 4 KB pages  4.503.599.627.370.496 entries 

➥  Translation lookaside buffers (aka associative memory) 
－  hardware "cache" for the page table 
－  a fixed number of slots containing the last page table entries 

➥  Page size:  
larger page sizes reduce number of pages 

➥ Multi-level page tables 
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Many Other Design Issues 

  Page size 

  Reference locality in time and space 

  Demand paging vs. pre-paging 

  Allocation policies: equal share vs. proportional share 

  Replacement policies: local vs. global 

  … 
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Allocation Policies 

  Page fault frequency (PFF): 
Usually, more page frames → fewer page faults 

P
FF

: 
pa

ge
 f

au
lt

s/
se

c 

# page frames assigned 

PFF is unacceptable high 
→ process needs more memory 

PFF might be too low 
→ process may have too  
    much memory!!!?????? 

If the system experience too many page faults, what should we do? 
Reduce number of processes competing for memory 

•  reassign a page frame   
•  swap one or more to disk, divide up pages they held 
•  reconsider degree of multiprogramming 



Multi-level paging example: 

Pentium 
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Paging on Pentium 
  The executing process has a 4 GB address space (232) – viewed 

as 1M (220) 4 KB (212) pages 

－  The 4 GB address space is divided into 1 K page groups 
(pointed to by the 1 level table – page directory) 

－  Each page group has 1 K 4 KB pages 
(pointed to by the 2 level tables – page tables) 

  Mass storage space is also divided into 4 KB blocks of 
information 

  Uses control registers for paging information 
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Control Registers used for Paging on Pentium 

  Control register 0 (CR0): 

  Control register 1 (CR1) – does not exist, returns only zero 

  Control register 2 (CR2)   
－  only used if CR0[PG]=1 & CR0[PE]=1  

31 30 29 16 0 

PG CD NW WP PE 

Not-Write-Through and Cache Disable:  
used to control internal cache 

Paging Enable:  
OS enables paging by setting CR0[PG] = 1 

Write-Protect: If CR0[WP] = 1,  
only OS may write to read-only pages 

31 0 

Page Fault Linear Address 

Protected Mode Enable: If CR0[PE] = 1,  
the processor is in protected mode 
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Control Registers used for Paging on Pentium 

  Control register 3 (CR3) – page directory base address: 
－  only used if CR0[PG]=1 & CR0[PE]=1  

  Control register 4 (CR4): 

31 11 4 3 0 

Page Directory Base Address PCD PWT 

A 4KB-aligned physical base 
address of the page directory  

Page Cache Disable: 
If CR3[PCD] = 1, caching is turned off 

Page Write-Through: 
If CR3[PWT] = 1, use write-through updates 

31 4 0 

PSE 

Page Size Extension: If CR4[PSE] = 1, 
the OS designer may designate some pages as 4 MB 
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Pentium Memory Lookup 

31 22 21 12 11 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

Page directory: 
31 12 7 6 5 4 3 2 1 0 

PT base address ... PS A U W P 

physical base 
address of the  
page table  

page 
size  

accessed  present  

allowed to write 

user access allowed 
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Pentium Memory Lookup 

31 22 21 12 11 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0 

0...01010101111 ... 1  

0...01111111000 ... 0 

0...01110000111 ... 0 

0...00001010101 ... 1 

0...01111000101 ... 0 

0...00000000100 ... 0 

...... 

Index to page directory"
(0x6, 6)"

Page Directory Base Address 

CR3: 

Page table PF: 
1.  Save pointer to instruction 
2.  Move linear address to CR2 
3.  Generate a PF exception – jump to handler 
4.  Programmer reads CR2 address 
5.  Upper 10 CR2 bits identify needed PT 
6.  Page directory entry is really a mass  

storage address 
7.  Allocate a new page – write back if dirty 
8.  Read page from storage device 
9.  Insert new PT base address into  

page directory entry 
10.  Return and restore faulting instruction 
11.  Resume operation reading the same 

page directory entry again – now P = 1 
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Pentium Memory Lookup 

31 22 21 12 11 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0 

0...01010101111 ... 1  

0...01111111000 ... 0 

0...01110000111 ... 0 

0...00001010101 ... 1 

0...01111000101 ... 0 

0...00000000100 ... 1 

...... 

Index to page directory"
(0x6, 6)"

Page Directory Base Address 

CR3: 31 12 7 6 5 4 3 2 1 0 

0...01010101111 ... 1  

0...01010100000 0 

0...01100110011 1 

0...00010000100 1 

...... 

Page table: 

Index to page table"
(0x2, 2)"

Page frame PF: 
1.  Save pointer to instruction 
2.  Move linear address to CR2 
3.  Generate a PF exception – jump to handler 
4.  Programmer reads CR2 address 
5.  Upper 10 CR2 bits identify needed PT 
6.  Use middle 10 CR2 bit to determine entry  

in PT – holds a mass storage address 
7.  Allocate a new page – write back if dirty 
8.  Read page from storage device 
9.  Insert new page frame base address into  

page table entry 
10.  Return and restore faulting instruction 
11.  Resume operation reading the same 

page directory entry and page table entry  
again – both now P = 1 



INF1060,   Pål Halvorsen University of Oslo 

Pentium Memory Lookup 

31 22 21 12 11 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 

Incoming virtual address (CR2)"
(0x1802038, 20979768)"

31 12 7 6 5 4 3 2 1 0 

0...01010101111 ... 1  

0...01111111000 ... 0 

0...01110000111 ... 0 

0...00001010101 ... 1 

0...01111000101 ... 0 

0...00000000100 ... 1 

...... 

Index to page directory"
(0x6, 6)"

Page Directory Base Address 

CR3: 31 12 7 6 5 4 3 2 1 0 

0...01010101111 ... 1  

0...01010100000 1 

0...01100110011 1 

0...00010000100 1 

...... 

Index to page table"
(0x2, 2)"

Page offset"
(0x38, 56)"

Page: 

requested data 
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Pentium Page Fault Causes 
  Page directory entry’s P-bit = 0:  

page group’s directory (page table) not in memory 

  Page table entry’s P-bit = 0: 
requested page not in memory 

  Attempt to write to a read-only page 

  Insufficient page-level privilege to access page table or frame 

  One of the reserved bits are set in the page directory or  
table entry 
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Summary 
  Memory management is concerned with managing the systems’ memory 

resources 

－  allocating space to processes 

－  protecting the memory regions 

－  in the real world 

•  programs are loaded dynamically 

•  physical addresses it will get are not known to program – dynamic address translation 

•  program size at run-time is not known to kernel 

  Each process usually has text, data and stack segments 

  Systems like Windows and Unix use virtual memory with paging 

  Many issues when designing a memory component 


