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Husk...

Vi diskuterte: GRAFER

« Minimale spenntraer
— Prim (Kapittel 9.5.1)
— Kruskal (Kapittel 9.5.2)
+ Korteste vei alle-til-alle
— Floyd (kapittel 10.3.4)

* Huffman koder (kapittel 10.1.2)
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TEMA: Algorithm Complexity
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Problems - interesting, - formal
natural languages
problems (EL.s)

(Ex. MATCHING, SORTING, T.S.P.)

Solutions - algorithms - Turing
machines

Efficiency —~+ complexity —~— complexity
classes

Unsolvable (impossible)

Problems, .
FL.s Intractable (horrible)

Nice
Note: This is from in210, first 2 lectures
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Historical introduction

In mathematics (cooking, engineering, life)
solution = algorithm

Examples:
e \/2H3 =
eazr’+br+c=0

¢ Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?
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Algorithm Complexity — Forelesning 2 (W10.1.2)

d algorithm? — metamathematics

e K. Godel (1931): nonexistent theories

e A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers. .. ”)

Unsolvable
Turing’s results &
techniques

Solvable

&7 ) N " 5
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Algorithm Complexity — Forelesning 2 (W10.1.2)

e Von Neumann (ca. 1948): first computer

e Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann ;{ Billy
Mary Joe
Moe *—e Bob

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!
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Algorithm Complexity — Forelesning 2 (W10.1.2)

(using approximation)
e n = 100 boys
en!=100x 99 x --- x 1 > 10" possibilities

e assume < 10'? possibilites tested per
second

o < 1012HIH2E342 < ()% tested per century

e running time of trivial algorithm for
n = 100 is > 10723 = 10%" centuries!

Compare: “only” ca. 10'? years since Big Bang!
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Edmonds: Mine algorithm is a
polynomial-time algorithm, the trivial
algorithm is exponential-time!

e 1 polynomial-time algorithm for a given
problem?

e Cook / Levin (1972): AN"P-completeness

Intractable

Cook/Levin results &
techniques

P
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Algorithm Complexity — Forelesning 2 (W10.1.2)

How to solve the information-processing
problems efficiently.

~_- : abstraction, formalisation

Problems —~ I/0 pairs, ~—+ formal
functions, languages
“interesting
problems”

solutions —+ algorithms - Turing

machines

efficiency —~+ resources, ~— complexity
upper/lower classes
bounds
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Algorithm Complexity — Forelesning 2 (W10.1.2)

e All algorithms in the world live in the
basket

e Infinitely many of them - most of them are
unknown to us

e Meaning of unsolvability: no algorithm in
the basket solves the problem

e Meaning of solvability: there is an
algorithm in the basket that solves the
problem (but we do not necessarily know
what the algorithm looks like)
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Monkey puzzle is an example of a problem
that does not have a reasonable solution (or
polynomial time). Such problems are called
intractable
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Algorithm

Unsolvable
11
397
397 + 46 = 46 443 Intractable
input 443 output
computation €= rules
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Tul‘ing machine - intuitive description

b
s |olelt

I 0 I b I b | g «— (Input/output)

tape

*~ read/write head

9,
SEPY /‘ "loaded

states

"processor" or
¢ finite state control

N

8(s,0) =(q,. 5. R)
— —
program" 5(q1 -1 ] (d, (e
or rules :

steps of
computation
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Turing machine - forma description
A Turing machine (TM) is M = (3,1, Q, d)

where

Y., the input alphabet is a finitive set of input

symbols

I', the tape alphabet is a finite set of tape
symbols which includes 3, a special blank
symbol b € ['\ ¥, and possibly other

symbols

Q is a finite set of states which includes a
start state s and a halt stateh

0 , the transition function is

0:(Q\{h}) xT = QxT x{L,R}

Almira Karabeg, W10.L2
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Computation - formal definition

A configuration of a Turing machine M isa
triple C' = (¢, w;, w,) where g € @ is a state and
w; and w, are strings over the tape alphabet.

We say that a configuration (g, w;, w, ) yields in
one step configuration (¢, wj, w.) and write
(q, w, wr)j}\—[(q’, wj, w)) if (and only if) for some
a,b,c € I'and z,y € I'* either

w=za w=by and

wj=1x w,=acy 8(q,b)=(q,c, L)

W Wr
§olb] x Jafpd] y [o]6f -3
wi w,

or

W Wy
§—1olpl x fab[c] y [o[n[-3
w W,
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Church’s thesis

Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

Turing complete programming languages.

Neural networks are Turing complete (Mc
Cullok, Pitts).

If a Turing machine cannot compute f, no
computer can!
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Algorithm Complexity — Forelesning 2 (W10.1.2)

A Turing machine M which decides
L = {010}.

§-Iofolifoln]o] %

s

a4
Cay G
M=(3,T,Q,0) = {0,1}
IF={0,LbY,N}  Q={shaq,q,q,4q

5

0 1 b
s | (q1,0,R) | (ge; b, R) | (R, N, —)
q1| (g, b, R)| (¢2,b,R) | (B, N, —)
@ | (93,0, R)| (ge, b, R) | (R, N, —)
q3 )| (e b, R) | (ge, b, R) | (B, Y, —)
e || (ge, b, R) | (ge; b, R) | (R, N, —)

('—" means “don’t move the read/write head”)
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Algorithm Complexity — Forelesning 2 (W10.1.2)

NPvsP

NP stands for nondeterministic polynomial
time.

A deterministic machine, given an
instruction, executes it and goes to the next
instruction, which is unique.

A nondeterministic machine, after each
instruction, has a choice of the next

instruction and it always, magicaly, makes the IS P — NP ???

right choice.

Nondeterministic machine seems like a
funny concept and too powerfull. It is not so.
For example, undecided problems remain
undecided. A problem is in NP if, in
polynomial time, we can prove that any “yes”
instance of the problem (a certificate) is
correct. NP includes all problems that have
polynomial time solutions.
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Class NPC

Among all the problems known to be in NF,
there is a subset known as NP-complete
problems, which contains the hardest
problems in NP (intractable, with polynomial
certificates). These have also one more
property that is extreemly interesting: they all
have a common fate: i.e. there exist a
polynomial time reduction from any one
problem in NPC to any other problem in
NPC. Reduction can be quite simple, or it can
actualy involve several intermediate
reductions.
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Reducing Hamiltonian paths
to traveling salesman

Hamiltonian path is a simple path
containing all the vertices of the graph G.
Traveling salesman problem is a problem of
finding a simple cycle in the weighted graph
G of minimum weight.

573
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Algorithm Complexity — Forelesning 2 (W10.1.2)

number
G »  of nodes
N
iy

tmansformG £\ /' ____ polynomial time
inonew G ¢ T{™

doss G aied = —— polynomial time
traveling salesman tour e
of length < N + 17 A

Total
{hypothetical)
polynomiai time
Ty(N) + TN

YES, Ghasa NO. G has no
Hamiltonian path Hamiltonian path
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Algorithm Complexity — Forelesning 2 (W10.1.2)

Uncomputability

What algorithmic can and cannot do.

1. Show that HALTING (the Halting problem)
is unsolvable

Ly
Unsolvable

Solvable

2. Use reductions - to show that other
problems are unsolvable

Department of Informatics, University of Oslo, Norway Page 23
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Step 1: HALTING is unsolvable

Def. 1 (HALTING) program, or  potential
algorithm input
Ly = {(M,z)|M halts on input z}
Lemma 1 Every Turing decidable language is @ ’
Turing acceptable. :

Proof (by reduction): Given a Turing
machine M that decides L we can construct a
Turing machine M’ that accepts L as follows:

does R halt
on X7

- halt /
YES > RN

=y
L)

M’

Department of Informatics, University of Oslo, Norway page 24
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Algorithm Complexity — Forelesning 2 (W10.1.2)

program input

*@ effective reduction
{ (P specifies X as
only input. with
unimportant output)

transform X into
trivial algorithmic
problem P

is R correct with
respect to P?

_(hypothetical)

¥ oracle for venfication

(hvpothetical)
Talgonthm for the
halting problem

Figure 8.7 If venfication is decidable, halting is too.
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Algorithm Complexity — Forelesning 2 (W10.1.2)

input
program

(hvpothetical)
— program () for
halting problem

. _ new (hypothetical)
program §
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Algorithm Complexity — Forelesning 2 (W10.1.2)

does § hait
on §?

D i.e., \r'S] !
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Algorithm Complexity — Forelesning 2 (W10.1.2)

_ highly
undecidable

undecidable
(non-computable)

C,)thpglﬂ!}ilily Computability
in principle in practice
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Algorithm Complexity — Forelesning 2 (W10.1.2)

oG Preshurger arithmetic

EXPSPACE

Roadblock
(see Figure 7.14)
EXPTIME

Monkey puzzles
(see Figure 7.1)

Testing primality

Salary summation
(see Figures2.3and 2.4)
and most everyday
problems

‘Telephone book search
(see Figures 6.1 and 6.2)
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NESTE GANG — Oppsummering

ALMIRA KARABEG foreleser!
Vi introduserer sortering (kapittel 7)
« Sortering (kapittel 7.1 -7.3)
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