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Median filters and rank-order filters are generally considered to be more time consuming 
than, e.g., averaging filters. With the new algorithm presented in this report the opposite turns 
out to be true. The median (or any other rank-order value) is obtained by examining the bits of 
the arguments columnwise starting with the most significant bits. Hardware implementations 
suitable for parallel processing are presented. 

1. INTRODUCTION 

Median filters (or the more general rank-order filters) have been proved to be very 
powerful in image processing [1]. However, established computational algorithms of 
type sorting are rather time consuming. Furthermore, most time-efficient sorting 
mechanisms require intermediate data structures in the form of pointers and the like 
which are not very suitable for hardware implementations. 

Nevertheless, one straightforward hardware device implemented in CCD has been 
suggested by Nudd et  al. [2]. It utilizes n ( n  - 1)/2 comparators and multiplexors to 
deliver a completely sorted array of n output values. For  image processing this is not 
as bad as it might seem since it has been shown by Narendra [3] that median filters 
behave reasonably well even if they are separated into a succession of two one- 
dimensional median filters orthogonally oriented. 

To perform sorting of a set of arguments is actually a large overkill if the goal is to 
find the median (or a percentile) value. Huang [4] has suggested a running median 
filter algorithm that utilizes a continuously updated histogram as the main instru- 
ment. The histogram needs only to be partially updated when we move from one 
neighborhood to the next. Hence, by observing how many pixels fall above and 
below the previous median value we can rather simply adjust this value to the 
presently correct median value by stepping upward or downward in the histogram. 
This algorithm requires a fast RAM for the histogram. The time for the stepping 
procedure is data dependent. Thus in a parallel processing scheme one has to allow 
for a worst case number of steps equal to the number of buckets in the histogram. 
Huang's algorithm belongs to the large group of algorithms called bucket sort. In the 
next section we will study another form of bucket sorting mechanism called 
lexicographic sort. 

2. LEXICOGRAPHIC SORT METHODS 

The well-known lexicographic sorting methods have been used ever since the time 
of punched card machines. An overview can be found, for instance, in Aho et al. [5]. 
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i B l B 2 B 3 B 4 

l 0 0 l l A l 

2 1 l 0 l A 2 

3 l l 0 0 A 3 

4 0 l l 0 A 4 

5 l 0 0 0 A 5 

6 0 l l 0 A 6 

7 l l l 0 A 7 

FIGURE 1 

The arguments A~, A 2 . . . . .  A ,  to be sorted are considered as an n X k array, each A i 
being a k-tuple 

A i -~- ( a i l  , a i2  . . . . .  aik) 

of integers. In our case A~ are the pixel values and a u are binary integers. As our 
running example, let us take the seven four-bit vectors of Fig. 1. 

Lexicographic sort means that we arrange for two buckets Q[0] and Q[1]. These 
are stored with a sorted sequence of the/-numbers 1 to n as shown in Fig. 2. 

In the first step the sequences are ordered according to the bit vector B 4 in Fig. 1, 
in the next according to B 3 and the existing sequence from step 1, etc. 

The algorithm has the advantage of terminating in a fixed number of steps -- k. 
However, the implementation in fast hardware for picture processing applications is 
far from obvious. One attempt is shown in Fig. 3. The two FIFOs hold the two 
buckets shown with contents after step 1. The bit-vector B 3 is used to steer the 
numbers 3,4, 5,6,7, 1,2 to the next bucket configuration. Varying length of the 
FIFOs can be avoided if we allow for 2n cycles at each step. 

After completion of the sorting procedure one has to circulate the buffers one 
extra step to bring out the number n of the median or any other rank-order. Finally 
this number has to be used as an address to the arguments to get the final result. In 
parallel image processing we would prefer this addressing to be independent of the 
original access mechanisms of the pixel arguments (all data-dependent addressing 
should be avoided) which means that we have to store the pixel values in an extra 
buffer in a predetermined order. 

3. SUCCESSIVE APPROXIMATION IDEAS 

Danielsson [6] suggested that the median or any other rank-order value could be 
found by collecting a set of histograms for the arguments: 

hist 1, hist 2 . . . . .  hist k, 

Q[O] 3,4,5,6,7 

Q[I] 1,2 

step 1 

3,5,2 5,1 1,4,6 

4,6,7,1 3,2,4,6,7 5,3,2,7 

step 2 step 3 step 4 

Answer: 1,4,6,5,3,2,7 

FIGURE 2 
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where hist 1 contains only 2 bins according to the most significant bit of the 
argument, hist 2 contains 4 bins due to the two most significant bits, etc. After 
histogram collection, this information could be addressed from hist 1 to hist k with 
successively better approximation to find the bin with the median value. Only one 
bin of hist 1 has to be visited and after checking this value we known which bin in 
hist 2 to visit for further refinement, etc. The drawback of this method is the rather 
cumbersome histogram collection process. 

Kruse [7] suggested that instead of arranging for histograms one should use the 
arguments repeatedly k times, comparing them to a successively refined median. 
After each such read-out we know whether the assigned median is too high or too 
low and can adjust it appropriately. Unfortunately each argument has to be fetched 
k times. 

4. THE NEW A L G O R I T H M  

Consider again the seven arguments of Fig. 1 and assume that we want to find the 
fifth A i in size. By inspecting the vector Bt of most significant bits we can see that 
no, the number of arguments with leading zeros, is 3, which is less than 5, meaning 
that the set d o = {A~, A4, A6) can be discarded from further discussion. This is the 
general idea behind the new algorithm. The following parameters and input argu- 
ments are involved: 

T = rank-order number of the wanted pixel value, 
{Al, d 2 . . . . .  An) = set of input arguments, 
(B I, B 2 . . . . .  B,} = column bit vectors of the Ai's, 

B 0 = initial column vector, 
N = accumulated sum of arguments considered to be converging 

toward T, 
S 0, S~, i . . ,  S k = bit vectors indicating the set of discarded arguments in different 

steps of the algorithm. 
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Flo. 4. Note that for the sake of readability, the l's of S I to S 4 were omitted as well as discarded parts 

of B l to B 4. 

See Fig. 4. The counter N is initially set to 0 while B 0 and S O are filled with l's. 
In the first step, already described, three O's are found in the first vector B t. The 

set d o of discarded arguments are marked by O's in the vector S t . 
The next step in the algorithm is to increase the count N from n o to n o + nl0 by 

accumulating all O's in B 2, not considering those arguments with a 0 in the S 1 -vector. 
This accumulates to 4 which tells us that our wanted number has 11 as leading bits. 
All other arguments receive O's in the S-vector as can be seen from S 2 in Fig. 4. 

In the third step, N = n o + nto + n~t 0 --- 6 >-- 5, which means that the leading bits 
are 110 and all other arguments can be zeroed in the S-vector. 

Finally, in the fourth step N = n o + nlo + nml 0 - nttot -- 5 --> T which gives us the 
final result 1100. 

For those from Missouri who still have some doubts about the algorithm we will 
give an explanation in the form of a binary decision tree. See Fig. 5. The algorithm is 
"zooming in" in a binary search which can be illustrated as in Fig. 6a for the 
example above. 

As another example, let the set of arguments consist of one argument 1111 and all 
the other six = 0000. As can be seen from Fig. 6b the final result will be correct. 

n o ~,T ) 

6-%,+%,~ 
010, I 011 .. I00.. I01 .. II01. 111 .. 

oo/ 

000.. O O 1  . .  

FIGURE 5 
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b) 

r 
O u t p u t  I I I I I I I ~ N = 0 

$ 
1 . . .  t . - _ - ! . _ . . a . _ - _ n  I I I �9 N = n o = 3 

11 . .  LAAAA A ~ A A A h ~  J I �9 N = n 0 + n l 0 = 4  
r 

1 1 0 ,  t ^ ^ a ^ ^ ^ , ^ ^ ^ ~ . ^ ~ j  I t ^ ^ ~  N = n 0 + n 1 0 + n 1 1 0  = 6  

~ 0 0  k ^ ^ A ^ ^ d ^ ^ ^ h A A J  K ^ ^ I ~ A A  
N = n 0 + n l 0  + n l l 0 - n l l 0 1  = 5 

~, 5 
O u t p u t  I I L t t I ~ J N = 0 

0 . . .  I I I I I t ~ N = n 0 =  6 

$ 
0 0 . .  I I I t I I I,^,.,.A N = n o - n01 = 6 

0 0 0 .  I I I 1 l I ; v ~  N = n o - n o 1  - n 0 0 1  - n0001  = 6 
4, 

0 0 0 0  I I I I I I k , v ~ A  N = n o - n01 - n001  - n 0 0 0 1  = 6 

FIGURE 6 

5. HARDWARE IMPLEMENTATIONS 

The novel algorithm can very easily be implemented in hardware as shown by Fig. 
7. The input data is stored in shift register B, bit-serial columnwise, so that the 
incoming bit can be compared to the previous bit of the same argument (Exclusive 
OR-gate). Only if the present bit and the previous one are different should the 
N-counter be incremented or decremented as shown by the decision tree, Fig. 6, 
where all the n-entities have index numbers n A 0 or n..0~. The S-vector is gradually 
filled with more and more O's, the conditions for a new 0-bit being that (N < T) = 1 
and the B-bit = 0 or that (N < T) = 0 and the B-bit = 1. This logic is implemented 
by the leftmost Exclusive OR-gate in Fig. 7. 

With the implementation of Fig. 7, one median is computed in O(k-n) time. This 
is the same time complexity as in the scheme suggested by Kruse [7]. However, in 
Fig. 7 we are only using bit-serial input and output. 

In Fig. 8 is shown a hardware solution for computing the median in O(k) time. As 
before we assume that there are n input arguments A~, A 2 . . . . .  A, constituting the 
input data. To make things easy we have assumed that the input data is a digitized 
one-dimensional signal. In this case we can feed the input data bit serially into a set 
of n shift registers having n outputs. In sequence, the k column vectors of the 
arguments will appear at these outputs. Conversion from a possible parallel access of 
input data to the serial input of this device is trivial. Also, if data is two-dimensional 
this scheme is easily extended to a multitude of separate chains of shift registers. For 
an n X m window we then need rn chains of n shift registers. In this case all the 
m • n binary outputs of the shift register package are of course channelled to a 
single B-register as in Fig. 8. 

The logic of Fig. 7 is duplicated n times in Fig. 8. The "count" outputs are 
summed up in a Count network and accumulated in an accumulator. Note that the 
width of the data paths in this part is only O(log n) bits. 

It is possible to fold out the algorithm even more as shown by Fig. 9. With this 
hardware the median is computed in O(1) time. The k-bit argument enters at the 
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Shift Reg Data in Data Out Serial - . ~ ~  B 
i U p / D o w n  ~ Serial 

s :X: 
T 

FIGURE 7 

data input and is pushed down step by step in the k shift registers B], B 2 . . . . .  Bk. At  
each step one new median value is computed with the logic networks which are 
nothing but the iterative version of Fig. 8. Initial values are supplied from the top. 
The comparison curcuit of Fig. 8 is replaced by simply detecting the sign after the 
subtraction/addition operations. 

To be really implementable, the scheme of Fig. 9 should be properly pipe-lined 
with delay elements and intermediate registers that intersect the vertical data flow. 
However, this is a trivial matter that has been left out for the sake of brevity. 

Finally, it is interesting to discuss the space complexity of the hardware in Fig. 9 as 
a function of the size parameters n and k. The B-registers and the "logic" units all 
have the obvious space complexity O(n) equal to the width of the data paths. The 
count network has an input width of n and an output width of log n which could 
possibly imply a space complexity of O(n.log n). However, it can easily be shown 
that a combinatorial count of n binary input values always can be computed by 
n - 1 full adders. Therefore, the count network also has the space complexity O(n). 
The adder units are obviously O(log n). Since there are k units of this kind we 

Data Out 

N<T 

F 

N<T I I I 

~176 " Y ;'~ 
/ To Count 

FIGURE 8 
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conclude that the total space complexity of Fig. 9 is O(n.k). Compared to the 
strictly serial implementation of Fig. 7, space and time complexity are completely 
reversed. 

The previously mentioned hardware implementation [2] employs n(n-  1)/2 
comparators. Since each comparator has width k bits, this device has space complex- 
ity O(n2k). 

We feel that the lower complexity of the algorithm presented in this paper is a 
good indicator of the possibility of implementing it effectively in both serial and 
parallel hardware. 

6. CONCLUSIONS 

Like so many other algorithms in the present era of growing interest in fast 
processing and VLSI design, the new algorithm in this paper is based on the 
possibility of manipulating not only words of data but individual bits. In its strictly 
bit-serial implementation (Fig. 7) its time complexity is O(k.n), where k is the 
number of bits in the argument and n is the number of arguments. Thus, its time 
complexity is directly proportional to the total number of input bits. Also, since the 
algorithm produces the output pixels with most significant bit first, the user may 
discontinue the computation at the level of precision he finds appropriate. The 
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algorithm is open for a more parallel computation as shown by Fig. 8 in which case 
the time complexity drops to O(k) or as shown by Fig. 9 that computes the result in 
O(1) time. 

Median filtering belong to the broad class of local neighborhood operations. As 
such, the new algorithm can be implemented as a program for SIMD-Machines 
(Single Instruction Multiple Data Stream) that utilize several processors to operate 
on different neighborhoods of data computing several output results simultaneously. 
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