
Finite-Element Methods and Numerical Linear Algebra

Knut–Andreas Lie

Dept. of Informatics, University of Oslo

INF2340 / Spring 2005 – p. 1

Weighted Residual Methods

Idea:
• Assume that the solution can be represented in terms of

analytic functions
• Express the approximate solution as a sum of such

functions (rather than point-values)

Many subclasses of methods:
• finite-element methods (today)
• finite-volume methods (previous lecture)
• spectral methods (not covered here)
• boundary element methods (not covered here)
• . . .

INF2340 / Spring 2005 – p. 2

Weighted Residual Methods, cont’d

So far: finite-differences

• unknown function computed
as a set of discrete nodal
values

• differential formulation for
each node

• Taylor series expansions on
(structured) grids

• Increase accuracy by reduc-
ing local truncation error

Today: weighted-residual methods

• unknown function computed
as a sum of continuous
shape functions

• integral formulation of the
equations

• minimize weighted residual
for arbitrary control volume

• interpolation errors

• Increase accuracy by higher-
order interpolation and opti-
mized coefficients for mini-
mum residuals

INF2340 / Spring 2005 – p. 3

General Class of Problems

Assume the PDE: L(u(x)) = 0, x ∈ Ω

Example: Let us revisit the steady heat equation

−∇
[

K(x)∇u
]

= f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

−→ L(u(x)) = f(x) + ∇
[

K(x)∇u
]

Here
• K(x), f(x), and g(x) are known functions
• u(x) is the unknown function
• Ω is a domain with complete boundary ∂Ω

INF2340 / Spring 2005 – p. 4

Weighted Residual Methods, cont’d

Seek approximations of the form

û =

M
∑

j=1

ujNj(x)

where Nj(x) are prescribed functions and uj are unknown
coefficients. The Nj ’s are called basis functions or trial functions

An approximate solution û should minimize the error u− û:
• For special problems, minimize ‖u− û‖

• Not possible in general, since u is unknown

INF2340 / Spring 2005 – p. 5

How to Compute the Coefficients uj?

In general, to determine uj we must minimize the residual

R(u1, . . . , uM ;x) = L(û)

i.e., minimize how far û is from satisfying the equation L(u) = 0

• Galerkin-type methods: the weighted residual should
disappear over Ω for linearly independent weights Wi or
weighting functions Wi(x)

∫

Ω
RWi dΩ = 0, i = 1, . . . ,M.

Notice that R(û) = 0 in the weak sense and that R(û) 6= 0
pointwise

INF2340 / Spring 2005 – p. 6

How to Compute the Coefficients uj, cont’d

• The least-squares method : minimize the average square
residual

∫

Ω
R2 dΩ

∫

Ω

R
∂R

∂ui

dΩ = 0, i = 1, . . . ,M

i.e., Wi = ∂R/∂ui.

• The collocation method : choose Wi = δ(x− x
[i]), where δ is the

Dirac delta function,

R(u1, . . . , uM ;x[i]) = 0, i = 1, . . . ,M.

• The subdomain collocation method : decompose Ω into M
subdomains, Ω = ∪M

`=1Ω` (equivalent to a finite-volume method)

∫

Ωi

L(û)dΩ = 0, i = 1, . . . ,M.

INF2340 / Spring 2005 – p. 7

Example: 1D Poisson equation

L(u) = u′′(x) + f(x) = 0, x ∈ [0, 1]

Discretization:

u(x) ≈ û(x) =

M
∑

j=1

ujNj(x)

The residual:

R
(

û(x)
)

= f(x) +

M
∑

j=1

ujN
′′

j (x)

Using the least-squares approach:

∂R

∂ui

=
M
∑

j=1

∂uj

∂ui

N ′′

j (x) = N ′′

i (x)

INF2340 / Spring 2005 – p. 8

Example, cont’d

The system of equations becomes

∫ 1

0

(

f(x) +

M
∑

j=1

ujNj(x)
)

N ′′
i (x) dx = 0

−
M
∑

j=1

(

∫ 1

0
N ′′

i (x)N ′′
j (x) dx

)

uj =

∫ 1

0
f(x)N ′′

i (x) dx

−→ linear system of equations Au = b, where

• Ai,j =
∫ 1
0 N

′′
i (x)N ′′

j (x) dx

• bi =
∫ 1
0 f(x)N ′′

i (x) dx

INF2340 / Spring 2005 – p. 9

Example, cont’d

Using the Galerkin approach:

−

M
∑

j=1

(

∫ 1

0
Wi(x)N

′′
j (x) dx

)

uj =

∫ 1

0
f(x)Wi(x) dx

Again a system of equations Au = b.

Two type of methods:
• Wi = Ni, Galerkin method
• Wi 6= Ni, Petrov–Galerkin method

INF2340 / Spring 2005 – p. 10

How to Choose Test Functions?

For simplicity, assume that u = 0 on ∂Ω.

The functions Nk(x) can in principle be choosen almost
arbitrarily:

• power series: Nk(x) = xk

• fourier series: Nk(x) = {sin(kx), cos(kx)}

• Lagrange, Hermite, Chebychev polynomials
• . . .

In general, to get a well-behaved method we require that:
• Nk = 0 on the boundary
• Nk almost orthogonal, to avoid numerical instabilities

INF2340 / Spring 2005 – p. 11

The Finite-Element Method (FEM)

Finite elements is a way of fulfilling these two requirements:
• divide the domain into non-overlapping elements
• let Nk be a simple polynomial over each element
• the global Nk is a picewise polynomial that vanishes

except on a local patch of elements

Features:
• A very flexible approach
• Straightforward handling of complicated geometries
• Easy to construct higher-order approximations
• A broad spectrum of applications
• An engineering method
• Has a strong mathematical foundation

INF2340 / Spring 2005 – p. 12

Piecewise Polynomial Basis Functions

Define elements Ωe and nodes x[i]

The Ni’s have the properties:
• Ni is a polynomial over each element, determined uniquely

by the nodal values
• Ni(x

[j]) = δi,j , i.e., 1 if i = j and zero otherwise

• Hence, û(x[i]) =
∑

j ujNj(x
[i]) = ui

INF2340 / Spring 2005 – p. 13

Examples of Basis Functions

Linear basis functions Quadratic basis functions

21 3 4 5 6 7 x

Each element has two nodes Each element has three nodes

INF2340 / Spring 2005 – p. 14

Essential Boundary Conditions

Boundary-value problem

−u′′ = f, x ∈ (0, 1), u(0) = uL, u(1) = uR

Expansion with ui = û(x[i]):

û(x) = ψ(x) +

n−1
∑

j=2

ûjNj(x), ψ(x) = uLN1(x) + uRNn(x)

Alternative: skip ψ and enforce a1 = uL and an = uR directly in
the linear system

This is a general procedure

INF2340 / Spring 2005 – p. 15

A Worked Example with Linear Elements

Boundary-value problem

−u′′ = f, x ∈ (0, 1), u(0) = uL, u(1) = uR

Galerkin’s method (using integration by parts):

n
∑

j=1

Ai,juj = bi, i = 1, . . . n

where

Ai,j =

1
∫

0

N ′
i(x)N

′
j(x)dx, bi =

1
∫

0

f(x)Ni(x)dx

INF2340 / Spring 2005 – p. 16

Worked Example, cont’d

Observation: Ni(x) and N ′
i(x) vanish over large parts of the

domain ("nearly" orthogonal functions)

21 3 4 5 6 7 x 21 3 4 5 6 7 x

Ai,j =
∫ 1
0 N

′
i(x)N

′
j(x)dx 6= 0 only for j = i− 1, i, i+ 1

INF2340 / Spring 2005 – p. 17

Example: Evaluation of the Coefficients

Direct computations:

Ai,i−1 =

∫ 1

0

N ′

i−1N
′

idx = −
1

h
A1,1 = An,n =

1

h

Ai,i =

∫ 1

0

N ′

iN
′

idx =
2

h
, A1,2 = An,n−1 = −

1

h

Ai,i+1 =

∫ 1

0

N ′

iN
′

i+1dx = −
1

h
bi =

∫ 1

0

f(x)Ni(x) dx

Numerical integration by trapezoidal rule:

∫ 1

0

f(x)Ni(x) dx ≈
1

2
f(x[1])Ni(x

[1])h+
n

∑

j=1

f(x[j])Ni(x
[j])h+

1

2
f(x[n])Ni(x

[n])h

= 0 + · · · + 0 + f(x[i])h+ 0 + · · · + 0

INF2340 / Spring 2005 – p. 18

Example: The Linear Equations

Replace eq. no. 1 and n by boundary conditions

The linear system:

u1 = uL,

−
1

h
ui−1 +

2

h
ui −

1

h
ui+1 = f(x[i])h, i = 2, . . . , n− 1,

un = uR

Same result as from the finite difference method!

Exact or more accurate numerical integration: different
right-hand side term

INF2340 / Spring 2005 – p. 19

Element by Element Computations

Split integral into a sum over each element:

Ai,j =

1
∫

0

N ′
iN

′
j dx =

m
∑

e=1

A
(e)
i,j , A

(e)
i,j =

∫

Ωe

N ′
iN

′
j dx

bi =

1
∫

0

fNi dx =

m
∑

e=1

b
(e)
i , b

(e)
i =

∫

Ωe

fNi dx

A
(e)
i,j 6= 0 iff i and j are nodes in element e

b
(e)
i 6= 0 iff i is node in element e

INF2340 / Spring 2005 – p. 20

Element by Element Computations, cont’d

Collect nonzero A(e)
i,j in a 2 × 2 elemental matrix (for piecewise

linear elements):
Ã(e)

r,s , r, s = 1, 2

r, s: local node numbers

Similar strategy for b(e)i give the elemental vector b̃(e)r

Algorithm:

• compute all Ã(e)
r,s and b̃(e)r ,

• combine them to a linear system

INF2340 / Spring 2005 – p. 21

Local Coordinates

• Map element Ωe = [x[e], x[e+1]] to
[−1, 1]

• Define Ni in local ξ coordinates

• Perform all computations in local
coordinates

6

-
-1 0 1

ξ

1 HHHHHHHHHH����������
Ñ1(ξ) Ñ2(ξ)

• Local node r (=1,2) in element e corresponds to global node
i = q(e, r)

• Local linear basis functions:

Ñ1(ξ) =
1

2
(1 − ξ), Ñ2(ξ) =

1

2
(1 + ξ)

INF2340 / Spring 2005 – p. 22

Local Coordinates, cont’d

• Jacobian matrix of mapping: J

• Change integration variable from x to ξ:

x[e+1]
∫

x[e]

N ′

i(x)N
′

j(x) dx =

1
∫

−1

J−1 dÑr(ξ)

dξ
J−1 dÑs(ξ)

dξ
detJ dξ

• Uniform partition in 1D: J = {h/2}

• We often write
∫

Ωe

dÑr

dx

dÑs

dx
detJ dξ

as the expression in local coordinates, knowing that

dÑr

dx
= J−1 dÑ

dξ
=

2

h

dÑ

dξ

INF2340 / Spring 2005 – p. 23

1D Poisson Equation, revisited

• −u′′(x) = f(x)

• Elemental matrix and vector:

Ã(e)
r,s =

∫ 1

−1

2

h
N ′

r(ξ)
2

h
N ′

s(ξ)
h

2
dξ

b̃(e)r =

∫ 1

−1

f(x(e)(ξ))Ñr(ξ)
h

2
dξ

• Example: r = s = 1,

Ã
(e)
1,1 =

2

h

∫ 1

−1

(−
1

2
)(−

1

2
) dξ =

1

h

INF2340 / Spring 2005 – p. 24

1D Poisson Equation, cont’d

• Elemental matrix and vector:

{

Ã(e)
r,s

}

=
1

h

1 −1

−1 1

{

b̃(e)r

}

=
h

2

f(x(e)(−1))

f(x(e)(1))

where numerical integration is used:

∫ 1

−1

g(ξ) dξ ≈ g(−1) + g(1)

INF2340 / Spring 2005 – p. 25

Numerical Integration

Integration rules are normally tabulated for integrals on [−1, 1]:

1
∫

−1

g(ξ)dξ ≈

nI
∑

k=1

g(ξk)wk

ξk: integration points, wk: integration weights

Some rules:

name nI p weights points

Gauss-Legendre 1 1 (1) (0)

Gauss-Legendre 2 3 (1, 1) (−1/
√

3, 1/
√

3)

Gauss-Legendre 3 5 (5/9, 8/9, 5/9) (−
p

3/5, 0,
p

3/5)

Gauss-Lobatto 2 2 (1, 1) (−1, 1)

Gauss-Lobatto 3 3 (1/3, 4/3, 1/3) (−1, 0, 1)

The rules integrate polynomials of degree p exactly
INF2340 / Spring 2005 – p. 26

Assembly
element matrices global matrix

3

4

q(e,r)

Elemental matrices and vectors must be assembled in the global
system. Essential: local → global mapping, q(e, r)
Algorithm:

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s = 1, 2

bq(e,r) := bq(e,r) + b̃(e)r , r = 1, 2

INF2340 / Spring 2005 – p. 27

Summing up the Procedures
• Weighted residual formulation, often Galerkin’s choice with
Wi = Ni

• Integration by parts
• Derivative boundary conditions in boundary terms
• Compute elemental matrices and vectors

− Local coordinates with local numbering
− Numerical integration
− Enforce essential boundary conditions
− Assemble local contributions

• Solve linear system

INF2340 / Spring 2005 – p. 28

The Elementwise Algorithm:

initialize global linear system:
set Ai,j = 0 for i, j = 1, . . . , n, bi = 0 for i = 1, . . . , n

loop over all elements:
for e = 1, . . . , m

set Ã
(e)
r,s = 0, r, s = 1, . . . , ne, set b̃

(e)
r = 0, r = 1, . . . , ne

loop over numerical integration points:
for k = 1, . . . , nI

evaluate Ñr(ξk), derivatives of Ñr wrt. ξ and x, J

contribution to elemental matrix and vector from the current integration point
for r = 1, . . . , ne

for s = 1, . . . , ne

Ã
(e)
r,s := Ã

(e)
r,s + dÑr

dx
Ñs

dx
det Jwk

b̃
(e)
r := b̃(e) + f(x(e)(ξk))Nr det Jwk

incorporate essential boundary conditions:
for r = 1, . . . , ne

if node r has an essential boundary condition then
modify Ã

(e)
r,s and b̃

(e)
r due to this condition

assemble:
for r = 1, . . . , ne

for s = 1, . . . , ne

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã
(e)
r,s

bq(e,r) := bq(e,r) + b̃
(e)
r INF2340 / Spring 2005 – p. 29

2D Domains

Strength of the finite element method:
easy to work with geometrically complicated domains

0−8.92 7.92

1
2

3

4

5

6

7

8

Lake Superior with 6 islands, 2330 triangles

0−8.92 7.92

1
2

3

4

5

6

7

8

INF2340 / Spring 2005 – p. 30

	Weighted Residual Methods
	Weighted Residual Methods, small cont'd
	General Class of Problems
	Weighted Residual Methods, small cont'd
	How to Compute the Coefficients u_j?
	How to Compute the Coefficients u_j, small cont'd
	Example: 1D Poisson equation
	Example, small cont'd
	Example, small cont'd
	How to Choose Test Functions?
	The Finite-Element Method (FEM)
	Piecewise Polynomial Basis Functions
	Examples of Basis Functions
	Essential Boundary Conditions
	A Worked Example with Linear Elements
	Worked Example, small cont'd
	Example: Evaluation of the Coefficients
	Example: The Linear Equations
	Element by Element Computations
	Element by Element Computations, small cont'd
	Local Coordinates
	Local Coordinates, small cont'd
	1D Poisson Equation, small revisited
	1D Poisson Equation, small cont'd
	Numerical Integration
	Assembly
	Summing up the Procedures
	2D Domains

