Finite-Element Methods and Numerical Linear Algebra

Knut–Andreas Lie

Dept. of Informatics, University of Oslo

Weighted Residual Methods

Idea:

- Assume that the solution can be represented in terms of analytic functions
- Express the approximate solution as a sum of such functions (rather than point-values)

Many subclasses of methods:

- finite-element methods (today)
- finite-volume methods (previous lecture)
- spectral methods (not covered here)
- boundary element methods (not covered here)

• . . .

Weighted Residual Methods, cont'd

So far: finite-differences

- unknown function computed as a set of discrete nodal values
- differential formulation for each node
- Taylor series expansions on (structured) grids
- Increase accuracy by reducing local truncation error

Today: weighted-residual methods

- unknown function computed as a sum of continuous shape functions
- integral formulation of the equations
- minimize weighted residual for arbitrary control volume
- interpolation errors
- Increase accuracy by higherorder interpolation and optimized coefficients for minimum residuals

General Class of Problems

Assume the PDE: $\mathcal{L}(u(\mathbf{x})) = 0, \quad \mathbf{x} \in \Omega$

Example: Let us revisit the steady heat equation

$$-\nabla [K(x)\nabla u] = f(x), \qquad x \in \Omega$$
$$u(x) = g(x), \qquad x \in \partial \Omega$$

$$\longrightarrow \mathcal{L}(u(x)) = f(x) + \nabla [K(x)\nabla u]$$

Here

- K(x), f(x), and g(x) are known functions
- u(x) is the unknown function
- Ω is a domain with complete boundary $\partial \Omega$

Weighted Residual Methods, cont'd

Seek approximations of the form

$$\hat{u} = \sum_{j=1}^{M} u_j N_j(\mathbf{x})$$

where $N_j(\mathbf{x})$ are prescribed functions and u_j are unknown coefficients. The N_j 's are called *basis functions* or *trial functions*

An approximate solution \hat{u} should minimize the error $u - \hat{u}$:

- For special problems, minimize $\|u \hat{u}\|$
- Not possible in general, since *u* is unknown

How to Compute the Coefficients u_j ?

In general, to determine u_j we must minimize the residual

 $R(u_1,\ldots,u_M;\mathbf{x})=\mathcal{L}(\hat{u})$

i.e., minimize how far \hat{u} is from satisfying the equation $\mathcal{L}(u) = 0$

 Galerkin-type methods: the weighted residual should disappear over Ω for linearly independent weights W_i or weighting functions W_i(x)

$$\int_{\Omega} RW_i \, d\Omega = 0, \quad i = 1, \dots, M$$

Notice that $R(\hat{u}) = 0$ in the *weak sense* and that $R(\hat{u}) \neq 0$ pointwise

How to Compute the Coefficients u_j , cont'd

• The least-squares method: minimize the average square residual $\int_{\Omega} R^2 d\Omega$

$$\int_{\Omega} R \frac{\partial R}{\partial u_i} \, d\Omega = 0, \quad i = 1, \dots, M$$

i.e., $W_i = \partial R / \partial u_i$.

• The collocation method: choose $W_i = \delta(\mathbf{x} - \mathbf{x}^{[i]})$, where δ is the Dirac delta function,

$$R(u_1, \dots, u_M; \mathbf{x}^{[i]}) = 0, \quad i = 1, \dots, M.$$

• The subdomain collocation method: decompose Ω into M subdomains, $\Omega = \bigcup_{\ell=1}^{M} \Omega_{\ell}$ (equivalent to a finite-volume method)

$$\int_{\Omega_i} L(\hat{u}) d\Omega = 0, \quad i = 1, \dots, M.$$

Example: 1D Poisson equation

$$\mathcal{L}(u) = u''(x) + f(x) = 0, \qquad x \in [0, 1]$$

Discretization:

$$u(x) \approx \hat{u}(x) = \sum_{j=1}^{M} u_j N_j(x)$$

The residual:

$$R(\hat{u}(x)) = f(x) + \sum_{j=1}^{M} u_j N_j''(x)$$

Using the least-squares approach:

$$\frac{\partial R}{\partial u_i} = \sum_{j=1}^M \frac{\partial u_j}{\partial u_i} N_j''(x) = N_i''(x)$$

Example, cont'd

The system of equations becomes

$$\int_0^1 \left(f(x) + \sum_{j=1}^M u_j N_j(x) \right) N_i''(x) \, dx = 0$$

$$-\sum_{j=1}^{M} \left(\int_{0}^{1} N_{i}''(x) N_{j}''(x) \, dx \right) u_{j} = \int_{0}^{1} f(x) N_{i}''(x) \, dx$$

 \longrightarrow linear system of equations $\mathbf{A}\mathbf{u}=\mathbf{b},$ where

- $A_{i,j} = \int_0^1 N_i''(x) N_j''(x) dx$
- $b_i = \int_0^1 f(x) N_i''(x) \, dx$

Example, cont'd

Using the Galerkin approach:

$$-\sum_{j=1}^{M} \left(\int_{0}^{1} W_{i}(x) N_{j}''(x) \, dx \right) u_{j} = \int_{0}^{1} f(x) W_{i}(x) \, dx$$

Again a system of equations Au = b.

Two type of methods:

- $W_i = N_i$, Galerkin method
- $W_i \neq N_i$, *Petrov–Galerkin* method

How to Choose Test Functions?

For simplicity, assume that u = 0 on $\partial \Omega$.

The functions $N_k(x)$ can in principle be choosen almost arbitrarily:

- power series: $N_k(x) = x^k$
- fourier series: $N_k(x) = \{\sin(kx), \cos(kx)\}$
- Lagrange, Hermite, Chebychev polynomials
- •

In general, to get a well-behaved method we require that:

- $N_k = 0$ on the boundary
- N_k almost orthogonal, to avoid numerical instabilities

The Finite-Element Method (FEM)

Finite elements is a way of fulfilling these two requirements:

- divide the domain into non-overlapping *elements*
- let N_k be a simple polynomial over each element
- the global N_k is a picewise polynomial that vanishes except on a local patch of elements

Features:

- A very flexible approach
- Straightforward handling of complicated geometries
- Easy to construct higher-order approximations
- A broad spectrum of applications
- An engineering method
- Has a strong mathematical foundation

Piecewise Polynomial Basis Functions

Define elements Ω_e and nodes $x^{[i]}$

The N_i 's have the properties:

- N_i is a polynomial over each element, determined uniquely by the *nodal values*
- $N_i(x^{[j]}) = \delta_{i,j}$, i.e., 1 if i = j and zero otherwise
- Hence, $\hat{u}(x^{[i]}) = \sum_{j} u_{j} N_{j}(x^{[i]}) = u_{i}$

Examples of Basis Functions

Linear basis functions

Each element has two nodes

Quadratic basis functions

Each element has three nodes

Essential Boundary Conditions

Boundary-value problem

 $-u'' = f, x \in (0,1), \quad u(0) = u_L, u(1) = u_R$

Expansion with $u_i = \hat{u}(x^{[i]})$:

$$\hat{u}(x) = \psi(x) + \sum_{j=2}^{n-1} \hat{u}_j N_j(x), \quad \psi(x) = u_L N_1(x) + u_R N_n(x)$$

Alternative: skip ψ and enforce $a_1 = u_L$ and $a_n = u_R$ directly in the linear system

This is a general procedure

A Worked Example with Linear Elements

Boundary-value problem

$$-u'' = f, x \in (0,1), \quad u(0) = u_L, u(1) = u_R$$

Galerkin's method (using integration by parts):

$$\sum_{j=1}^{n} A_{i,j} u_j = b_i, \quad i = 1, \dots n$$

where

$$A_{i,j} = \int_{0}^{1} N'_{i}(x)N'_{j}(x)dx, \quad b_{i} = \int_{0}^{1} f(x)N_{i}(x)dx$$

Worked Example, cont'd

Observation: $N_i(x)$ and $N'_i(x)$ vanish over large parts of the domain ("nearly" orthogonal functions)

Example: Evaluation of the Coefficients

Direct computations:

$$A_{i,i-1} = \int_0^1 N'_{i-1} N'_i dx = -\frac{1}{h} \qquad A_{1,1} = A_{n,n} = \frac{1}{h}$$
$$A_{i,i} = \int_0^1 N'_i N'_i dx = \frac{2}{h}, \qquad A_{1,2} = A_{n,n-1} = -\frac{1}{h}$$
$$A_{i,i+1} = \int_0^1 N'_i N'_{i+1} dx = -\frac{1}{h} \qquad b_i = \int_0^1 f(x) N_i(x) dx$$

Numerical integration by trapezoidal rule:

$$\int_0^1 f(x)N_i(x) \, dx \approx \frac{1}{2} f(x^{[1]})N_i(x^{[1]})h + \sum_{j=1}^n f(x^{[j]})N_i(x^{[j]})h + \frac{1}{2} f(x^{[n]})N_i(x^{[n]})h$$
$$= 0 + \dots + 0 + f(x^{[i]})h + 0 + \dots + 0$$

Example: The Linear Equations

Replace eq. no. 1 and *n* by boundary conditions The linear system:

$$u_{1} = u_{L},$$

$$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_{i} - \frac{1}{h}u_{i+1} = f(x^{[i]})h, \quad i = 2, \dots, n-1,$$

$$u_{n} = u_{R}$$

Same result as from the finite difference method!

Exact or more accurate numerical integration: different right-hand side term

Element by Element Computations

Split integral into a sum over each element:

$$A_{i,j} = \int_{0}^{1} N'_{i} N'_{j} dx = \sum_{e=1}^{m} A^{(e)}_{i,j}, \qquad A^{(e)}_{i,j} = \int_{\Omega_{e}} N'_{i} N'_{j} dx$$
$$b_{i} = \int_{0}^{1} f N_{i} dx = \sum_{e=1}^{m} b^{(e)}_{i}, \qquad b^{(e)}_{i} = \int_{\Omega_{e}} f N_{i} dx$$

 $A_{i,j}^{(e)} \neq 0$ iff *i* and *j* are nodes in element *e* $b_i^{(e)} \neq 0$ iff *i* is node in element *e*

Element by Element Computations, cont'd

Collect nonzero $A_{i,j}^{(e)}$ in a 2×2 <u>elemental matrix</u> (for piecewise linear elements):

$$\tilde{A}_{r,s}^{(e)}, \quad r,s=1,2$$

r,s: local node numbers

Similar strategy for $b_i^{(e)}$ give the elemental vector $\tilde{b}_r^{(e)}$

Algorithm:

- compute all $\tilde{A}_{r,s}^{(e)}$ and $\tilde{b}_{r}^{(e)}$,
- combine them to a linear system

Local Coordinates

- Map element $\Omega_e = [x^{[e]}, x^{[e+1]}]$ to [-1,1]
- Define N_i in local ξ coordinates
- Perform all computations in local coordinates

- Local node r (=1,2) in element e corresponds to global node i = q(e, r)
- Local linear basis functions:

$$\tilde{N}_1(\xi) = \frac{1}{2}(1-\xi), \quad \tilde{N}_2(\xi) = \frac{1}{2}(1+\xi)$$

Local Coordinates, cont'd

- Jacobian matrix of mapping: J
- Change integration variable from x to ξ :

$$\int_{x^{[e]}}^{x^{[e+1]}} N'_i(x) N'_j(x) \, dx = \int_{-1}^{1} J^{-1} \frac{d\tilde{N}_r(\xi)}{d\xi} J^{-1} \frac{d\tilde{N}_s(\xi)}{d\xi} \det J \, d\xi$$

- Uniform partition in 1D: $J = \{h/2\}$
- We often write

$$\int_{\Omega_e} \frac{d\tilde{N}_r}{dx} \frac{d\tilde{N}_s}{dx} \det J \, d\xi$$

as the expression in local coordinates, knowing that

$$\frac{d\tilde{N}_r}{dx} = J^{-1}\frac{d\tilde{N}}{d\xi} = \frac{2}{h}\frac{d\tilde{N}}{d\xi}$$

1D Poisson Equation, revisited

•
$$-u''(x) = f(x)$$

• Elemental matrix and vector:

$$\tilde{A}_{r,s}^{(e)} = \int_{-1}^{1} \frac{2}{h} N_r'(\xi) \frac{2}{h} N_s'(\xi) \frac{h}{2} d\xi$$
$$\tilde{b}_r^{(e)} = \int_{-1}^{1} f(x^{(e)}(\xi)) \tilde{N}_r(\xi) \frac{h}{2} d\xi$$

• Example:
$$r = s = 1$$
,

$$\tilde{A}_{1,1}^{(e)} = \frac{2}{h} \int_{-1}^{1} (-\frac{1}{2})(-\frac{1}{2}) \, d\xi = \frac{1}{h}$$

1D Poisson Equation, cont'd

• Elemental matrix and vector:

$$\left\{ \tilde{A}_{r,s}^{(e)} \right\} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
$$\left\{ \tilde{b}_{r}^{(e)} \right\} = \frac{h}{2} \begin{pmatrix} f(x^{(e)}(-1)) \\ f(x^{(e)}(1)) \end{pmatrix}$$

where numerical integration is used:

$$\int_{-1}^{1} g(\xi) \, d\xi \approx g(-1) + g(1)$$

Numerical Integration

Integration rules are normally tabulated for integrals on [-1, 1]:

$$\int_{-1}^{1} g(\xi) d\xi \approx \sum_{k=1}^{n_I} g(\xi_k) w_k$$

 ξ_k : integration points, w_k : integration weights

Some rules:

name	n_I	p	weights	points
Gauss-Legendre	1	1	(1)	(0)
Gauss-Legendre	2	3	(1,1)	$(-1/\sqrt{3}, 1/\sqrt{3})$
Gauss-Legendre	3	5	(5/9, 8/9, 5/9)	$(-\sqrt{3/5}, 0, \sqrt{3/5})$
Gauss-Lobatto	2	2	(1,1)	(-1, 1)
Gauss-Lobatto	3	3	(1/3, 4/3, 1/3)	(-1,0,1)

The rules integrate polynomials of degree p exactly

Elemental matrices and vectors must be assembled in the global system. Essential: local \rightarrow global mapping, q(e, r) Algorithm:

$$A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde{A}_{r,s}^{(e)}, \quad r,s = 1,2$$

$$b_{q(e,r)} := b_{q(e,r)} + \tilde{b}_r^{(e)}, \quad r = 1, 2$$

Summing up the Procedures

- Weighted residual formulation, often Galerkin's choice with $W_i = N_i$
- Integration by parts
- Derivative boundary conditions in boundary terms
- Compute <u>elemental</u> matrices and vectors
 - Local coordinates with local numbering
 - Numerical integration
 - Enforce essential boundary conditions
 - Assemble local contributions
- Solve linear system

The Elementwise Algorithm:

initialize global linear system: set $A_{i,j} = 0$ for i, j = 1, ..., n, $b_i = 0$ for i = 1, ..., nloop over all elements: for $e = 1, \ldots, m$ set $\tilde{A}_{r,s}^{(e)} = 0, r, s = 1, \dots, n_e$, set $\tilde{b}_r^{(e)} = 0, r = 1, \dots, n_e$ loop over numerical integration points: for $k = 1, ..., n_I$ evaluate $\tilde{N}_r(\xi_k)$, derivatives of \tilde{N}_r wrt. ξ and x, Jcontribution to elemental matrix and vector from the current integration point for $r = 1, \ldots, n_e$ for $s = 1, \ldots, n_e$ $\tilde{A}_{r,s}^{(e)} := \tilde{A}_{r,s}^{(e)} + \frac{d\tilde{N}_r}{dr} \frac{\tilde{N}_s}{dr} \det J w_k$ $\tilde{b}_{r}^{(e)} := \tilde{b}^{(e)} + f(x^{(e)}(\xi_{k}))N_{r} \det Jw_{k}$ incorporate essential boundary conditions: for $r = 1, ..., n_e$ if node r has an essential boundary condition then modify $\tilde{A}_{r,s}^{(e)}$ and $\tilde{b}_{r}^{(e)}$ due to this condition assemble: for $r = 1, ..., n_e$ for $s = 1, ..., n_{e}$ $A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde{A}_{r,s}^{(e)}$ $b_{q(e,r)} := b_{q(e,r)} + \tilde{b}_{r}^{(e)}$

2D Domains

Strength of the finite element method: easy to work with geometrically complicated domains

Lake Superior with 6 islands, 2330 triangles