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Weighted Residual Methods

Idea:
• Assume that the solution can be represented in terms of

analytic functions
• Express the approximate solution as a sum of such

functions (rather than point-values)

Many subclasses of methods:
• finite-element methods (today)
• finite-volume methods (previous lecture)
• spectral methods (not covered here)
• boundary element methods (not covered here)
• . . .
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Weighted Residual Methods, cont’d

So far: finite-differences

• unknown function computed
as a set of discrete nodal
values

• differential formulation for
each node

• Taylor series expansions on
(structured) grids

• Increase accuracy by reduc-
ing local truncation error

Today: weighted-residual methods

• unknown function computed
as a sum of continuous
shape functions

• integral formulation of the
equations

• minimize weighted residual
for arbitrary control volume

• interpolation errors

• Increase accuracy by higher-
order interpolation and opti-
mized coefficients for mini-
mum residuals
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General Class of Problems

Assume the PDE: L(u(x)) = 0, x ∈ Ω

Example: Let us revisit the steady heat equation

−∇
[

K(x)∇u
]

= f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

−→ L(u(x)) = f(x) + ∇
[

K(x)∇u
]

Here
• K(x), f(x), and g(x) are known functions
• u(x) is the unknown function
• Ω is a domain with complete boundary ∂Ω
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Weighted Residual Methods, cont’d

Seek approximations of the form

û =

M
∑

j=1

ujNj(x)

where Nj(x) are prescribed functions and uj are unknown
coefficients. The Nj ’s are called basis functions or trial functions

An approximate solution û should minimize the error u− û:
• For special problems, minimize ‖u− û‖

• Not possible in general, since u is unknown
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How to Compute the Coefficients uj?

In general, to determine uj we must minimize the residual

R(u1, . . . , uM ;x) = L(û)

i.e., minimize how far û is from satisfying the equation L(u) = 0

• Galerkin-type methods: the weighted residual should
disappear over Ω for linearly independent weights Wi or
weighting functions Wi(x)

∫

Ω
RWi dΩ = 0, i = 1, . . . ,M.

Notice that R(û) = 0 in the weak sense and that R(û) 6= 0
pointwise
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How to Compute the Coefficients uj, cont’d

• The least-squares method : minimize the average square
residual

∫

Ω
R2 dΩ

∫

Ω

R
∂R

∂ui

dΩ = 0, i = 1, . . . ,M

i.e., Wi = ∂R/∂ui.

• The collocation method : choose Wi = δ(x− x
[i]), where δ is the

Dirac delta function,

R(u1, . . . , uM ;x[i]) = 0, i = 1, . . . ,M.

• The subdomain collocation method : decompose Ω into M
subdomains, Ω = ∪M

`=1Ω` (equivalent to a finite-volume method)

∫

Ωi

L(û)dΩ = 0, i = 1, . . . ,M.
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Example: 1D Poisson equation

L(u) = u′′(x) + f(x) = 0, x ∈ [0, 1]

Discretization:

u(x) ≈ û(x) =

M
∑

j=1

ujNj(x)

The residual:

R
(

û(x)
)

= f(x) +

M
∑

j=1

ujN
′′

j (x)

Using the least-squares approach:

∂R

∂ui

=
M
∑

j=1

∂uj

∂ui

N ′′

j (x) = N ′′

i (x)
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Example, cont’d

The system of equations becomes

∫ 1

0

(

f(x) +

M
∑

j=1

ujNj(x)
)

N ′′
i (x) dx = 0

−
M
∑

j=1

(

∫ 1

0
N ′′

i (x)N ′′
j (x) dx

)

uj =

∫ 1

0
f(x)N ′′

i (x) dx

−→ linear system of equations Au = b, where

• Ai,j =
∫ 1
0 N

′′
i (x)N ′′

j (x) dx

• bi =
∫ 1
0 f(x)N ′′

i (x) dx
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Example, cont’d

Using the Galerkin approach:

−

M
∑

j=1

(

∫ 1

0
Wi(x)N

′′
j (x) dx

)

uj =

∫ 1

0
f(x)Wi(x) dx

Again a system of equations Au = b.

Two type of methods:
• Wi = Ni, Galerkin method
• Wi 6= Ni, Petrov–Galerkin method
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How to Choose Test Functions?

For simplicity, assume that u = 0 on ∂Ω.

The functions Nk(x) can in principle be choosen almost
arbitrarily:

• power series: Nk(x) = xk

• fourier series: Nk(x) = {sin(kx), cos(kx)}

• Lagrange, Hermite, Chebychev polynomials
• . . .

In general, to get a well-behaved method we require that:
• Nk = 0 on the boundary
• Nk almost orthogonal, to avoid numerical instabilities
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The Finite-Element Method (FEM)

Finite elements is a way of fulfilling these two requirements:
• divide the domain into non-overlapping elements
• let Nk be a simple polynomial over each element
• the global Nk is a picewise polynomial that vanishes

except on a local patch of elements

Features:
• A very flexible approach
• Straightforward handling of complicated geometries
• Easy to construct higher-order approximations
• A broad spectrum of applications
• An engineering method
• Has a strong mathematical foundation
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Piecewise Polynomial Basis Functions

Define elements Ωe and nodes x[i]

The Ni’s have the properties:
• Ni is a polynomial over each element, determined uniquely

by the nodal values
• Ni(x

[j]) = δi,j , i.e., 1 if i = j and zero otherwise

• Hence, û(x[i]) =
∑

j ujNj(x
[i]) = ui
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Examples of Basis Functions

Linear basis functions Quadratic basis functions

21 3 4 5 6 7 x

Each element has two nodes Each element has three nodes
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Essential Boundary Conditions

Boundary-value problem

−u′′ = f, x ∈ (0, 1), u(0) = uL, u(1) = uR

Expansion with ui = û(x[i]):

û(x) = ψ(x) +

n−1
∑

j=2

ûjNj(x), ψ(x) = uLN1(x) + uRNn(x)

Alternative: skip ψ and enforce a1 = uL and an = uR directly in
the linear system

This is a general procedure
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A Worked Example with Linear Elements

Boundary-value problem

−u′′ = f, x ∈ (0, 1), u(0) = uL, u(1) = uR

Galerkin’s method (using integration by parts):

n
∑

j=1

Ai,juj = bi, i = 1, . . . n

where

Ai,j =

1
∫

0

N ′
i(x)N

′
j(x)dx, bi =

1
∫

0

f(x)Ni(x)dx

INF2340 / Spring 2005 – p. 16



Worked Example, cont’d

Observation: Ni(x) and N ′
i(x) vanish over large parts of the

domain ("nearly" orthogonal functions)

21 3 4 5 6 7 x 21 3 4 5 6 7 x

Ai,j =
∫ 1
0 N

′
i(x)N

′
j(x)dx 6= 0 only for j = i− 1, i, i+ 1

INF2340 / Spring 2005 – p. 17



Example: Evaluation of the Coefficients

Direct computations:

Ai,i−1 =

∫ 1

0

N ′

i−1N
′

idx = −
1

h
A1,1 = An,n =

1

h

Ai,i =

∫ 1

0

N ′

iN
′

idx =
2

h
, A1,2 = An,n−1 = −

1

h

Ai,i+1 =

∫ 1

0

N ′

iN
′

i+1dx = −
1

h
bi =

∫ 1

0

f(x)Ni(x) dx

Numerical integration by trapezoidal rule:

∫ 1

0

f(x)Ni(x) dx ≈
1

2
f(x[1])Ni(x

[1])h+
n

∑

j=1

f(x[j])Ni(x
[j])h+

1

2
f(x[n])Ni(x

[n])h

= 0 + · · · + 0 + f(x[i])h+ 0 + · · · + 0
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Example: The Linear Equations

Replace eq. no. 1 and n by boundary conditions

The linear system:

u1 = uL,

−
1

h
ui−1 +

2

h
ui −

1

h
ui+1 = f(x[i])h, i = 2, . . . , n− 1,

un = uR

Same result as from the finite difference method!

Exact or more accurate numerical integration: different
right-hand side term
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Element by Element Computations

Split integral into a sum over each element:

Ai,j =

1
∫

0

N ′
iN

′
j dx =

m
∑

e=1

A
(e)
i,j , A

(e)
i,j =

∫

Ωe

N ′
iN

′
j dx

bi =

1
∫

0

fNi dx =

m
∑

e=1

b
(e)
i , b

(e)
i =

∫

Ωe

fNi dx

A
(e)
i,j 6= 0 iff i and j are nodes in element e

b
(e)
i 6= 0 iff i is node in element e
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Element by Element Computations, cont’d

Collect nonzero A(e)
i,j in a 2 × 2 elemental matrix (for piecewise

linear elements):
Ã(e)

r,s , r, s = 1, 2

r, s: local node numbers

Similar strategy for b(e)i give the elemental vector b̃(e)r

Algorithm:

• compute all Ã(e)
r,s and b̃(e)r ,

• combine them to a linear system
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Local Coordinates

• Map element Ωe = [x[e], x[e+1]] to
[−1, 1]

• Define Ni in local ξ coordinates

• Perform all computations in local
coordinates

6

-
-1 0 1

ξ

1 HHHHHHHHHH����������
Ñ1(ξ) Ñ2(ξ)

• Local node r (=1,2) in element e corresponds to global node
i = q(e, r)

• Local linear basis functions:

Ñ1(ξ) =
1

2
(1 − ξ), Ñ2(ξ) =

1

2
(1 + ξ)
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Local Coordinates, cont’d

• Jacobian matrix of mapping: J

• Change integration variable from x to ξ:

x[e+1]
∫

x[e]

N ′

i(x)N
′

j(x) dx =

1
∫

−1

J−1 dÑr(ξ)

dξ
J−1 dÑs(ξ)

dξ
detJ dξ

• Uniform partition in 1D: J = {h/2}

• We often write
∫

Ωe

dÑr

dx

dÑs

dx
detJ dξ

as the expression in local coordinates, knowing that

dÑr

dx
= J−1 dÑ

dξ
=

2

h

dÑ

dξ
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1D Poisson Equation, revisited

• −u′′(x) = f(x)

• Elemental matrix and vector:

Ã(e)
r,s =

∫ 1

−1

2

h
N ′

r(ξ)
2

h
N ′

s(ξ)
h

2
dξ

b̃(e)r =

∫ 1

−1

f(x(e)(ξ))Ñr(ξ)
h

2
dξ

• Example: r = s = 1,

Ã
(e)
1,1 =

2

h

∫ 1

−1

(−
1

2
)(−

1

2
) dξ =

1

h
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1D Poisson Equation, cont’d

• Elemental matrix and vector:

{

Ã(e)
r,s

}

=
1

h





1 −1

−1 1





{

b̃(e)r

}

=
h

2





f(x(e)(−1))

f(x(e)(1))





where numerical integration is used:

∫ 1

−1

g(ξ) dξ ≈ g(−1) + g(1)
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Numerical Integration

Integration rules are normally tabulated for integrals on [−1, 1]:

1
∫

−1

g(ξ)dξ ≈

nI
∑

k=1

g(ξk)wk

ξk: integration points, wk: integration weights

Some rules:

name nI p weights points

Gauss-Legendre 1 1 (1) (0)

Gauss-Legendre 2 3 (1, 1) (−1/
√

3, 1/
√

3)

Gauss-Legendre 3 5 (5/9, 8/9, 5/9) (−
p

3/5, 0,
p

3/5)

Gauss-Lobatto 2 2 (1, 1) (−1, 1)

Gauss-Lobatto 3 3 (1/3, 4/3, 1/3) (−1, 0, 1)

The rules integrate polynomials of degree p exactly
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Assembly
element matrices global matrix

3

4

q(e,r)

Elemental matrices and vectors must be assembled in the global
system. Essential: local → global mapping, q(e, r)
Algorithm:

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s = 1, 2

bq(e,r) := bq(e,r) + b̃(e)r , r = 1, 2

INF2340 / Spring 2005 – p. 27



Summing up the Procedures
• Weighted residual formulation, often Galerkin’s choice with
Wi = Ni

• Integration by parts
• Derivative boundary conditions in boundary terms
• Compute elemental matrices and vectors

− Local coordinates with local numbering
− Numerical integration
− Enforce essential boundary conditions
− Assemble local contributions

• Solve linear system
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The Elementwise Algorithm:

initialize global linear system:
set Ai,j = 0 for i, j = 1, . . . , n, bi = 0 for i = 1, . . . , n

loop over all elements:
for e = 1, . . . , m

set Ã
(e)
r,s = 0, r, s = 1, . . . , ne, set b̃

(e)
r = 0, r = 1, . . . , ne

loop over numerical integration points:
for k = 1, . . . , nI

evaluate Ñr(ξk), derivatives of Ñr wrt. ξ and x, J

contribution to elemental matrix and vector from the current integration point
for r = 1, . . . , ne

for s = 1, . . . , ne

Ã
(e)
r,s := Ã

(e)
r,s + dÑr

dx
Ñs

dx
det Jwk

b̃
(e)
r := b̃(e) + f(x(e)(ξk))Nr det Jwk

incorporate essential boundary conditions:
for r = 1, . . . , ne

if node r has an essential boundary condition then
modify Ã

(e)
r,s and b̃

(e)
r due to this condition

assemble:
for r = 1, . . . , ne

for s = 1, . . . , ne

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã
(e)
r,s

bq(e,r) := bq(e,r) + b̃
(e)
r INF2340 / Spring 2005 – p. 29



2D Domains

Strength of the finite element method:
easy to work with geometrically complicated domains

0−8.92 7.92

1
2

3

4

5

6

7

8

Lake Superior with 6 islands, 2330 triangles

0−8.92 7.92

1
2

3

4

5

6

7

8
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