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PART 1, ODMG and OODBMS, OVERVIEWPART 1, ODMG and OODBMS, OVERVIEW

• ODMG

• OO concepts and OO-DBMS properties

• Object identity and object identifier (OID)

• Objects and values

• Extent (instances of a class)

• Complex objects and type constructors

• Operators

• Programming language compatibility (match,

seamlessness)

• Encapsulation, information hiding

• Type/class hierarchies, inheritance and polymorphism
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ODMGODMG

• ODMG (@ Jan. 2000, v3.0) – The Object Data Management Group

• See http://www.odmg.org/
NOTE: ‘Standard Overview’ has a list of all ODMG standards.

• Offers standards for storing (and retrieving) objects.

• ODMG is a close relative of the Object Management Group (OMG).
See: http://www.omg.org/.

• ODMG offers:

• Object Management Architecture (OMA) and Object Data Model

• Object Specification Languages:

• ODL (Object Definition Language), based upon OMG’s Interface Definition
Language (IDL)

• OIF (Object Interchange Format)

• OQL (Object Query Language), based upon SQL (as much as possible)

• Language Bindings: ODL, OML and OQL for C++, Smalltalk and Java

• Note that there is no other distinct Object Manipulation Language (OML).
Manipulation of objects hgappen in the languages C++, Smalltalk and Java.
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OO CONCEPTS #1OO CONCEPTS #1

THE OBJECT-ORIENTED (OO) PARADIGM:

• Intended for modeling a mini-world (the world of interest,

often called the Universe of Discourse or UoD) as a

collection of communicating/co-operating entities called

OBJECTS
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OO CONCEPTS #2OO CONCEPTS #2

• ABSTRACTION AND AUTONOMY:

• OBJECT: <value, {operators}>
where the operators are implemented as methods
and the object is distinct and universally identifiable

• VALUE: Data-structure
where a value can be different form other values but not
distinct or universally identifiable

• ENCAPSULATION:
whereby an object contains and hides information about its
internals

• Requires that other objects “behave” (can’t reach internals)

• CONTRACT:
Requires that all objects “behave” (communicate/cooperate)
according to agreed upon rules
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OO CONCEPTS #3OO CONCEPTS #3

CLASSIFICATION:

• Common description for all objects  belonging to the same

class, like a template

• Also called INTENT

• Can also be though of as a collection of like objects (objects

with same properties)

• Also called EXTENT
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OO CONCEPTS #4OO CONCEPTS #4

TAXONOMY

• Super and sub-classes

• Inheritance of properties

• Polymorphism
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PURPOSE OF THE OO DATA-MODELPURPOSE OF THE OO DATA-MODEL

Record-oriented

data-model

Object-oriented

data-model

1:N

1:1

DB

DB
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ADVANTAGES OF OO DATA MODELINGADVANTAGES OF OO DATA MODELING

• MORE NATURAL (as compared to traditional data models)

• Meaningful abstraction, high modularity

• Better control of complexity

• Separation of interface and implementation

• EVOLUTIONARY SYSTEMS DESIGN

• Incremental programming

• Reuse
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OO DBMSOO DBMS

• OO-DBMS:

DBMS in accordance with the OO DATA MODEL

• OO-database:

A collection of objects

• An OO-DB object:

<OID, value, {operations}>
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OO DBMS, OBJECTS and OBJECT VALUESOO DBMS, OBJECTS and OBJECT VALUES

• Object: <OID, value, {operations}>

• Example class:

class athlete

{

text name;

integer salary;

}

• Exampel values:

V1 = tuple of (name: ”Pooh”, salary: 4.000.000)

V2 = tuple of (name: ”Mowgli”, salary: 1.000.000)

V3 = tuple of (name: ”Mickey”, salary: 6.000.000)

• Example objects:

O1 = < �, V1, � >

O2 = < �, V2, � >

O3 = < �, V3, � >
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CHARACTERISTICS OF OO-DBMSCHARACTERISTICS OF OO-DBMS

MUST HAVE:

• OID (object identity/identifier)

• Complex/composite objects

• Types/Classes

• User-defines types

• Computational (language)
completeness

• Encapsulation

• Inheritance: type/class hierarchies

• Polymorphisms:
overloading, re-definition, late
binding

... all orthogonal properties

SHOULD HAVE:

• Object versions

• Support for distribution

(client/server architectures etc.)

• New transaction mechanisms

• Support for (active/deductive)
rule-based systems

... and much more.
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OIDOID

• Objects exist independently of their (current) values

• No matter how the values in an object are changed, the object
is the same object

• Objects are identified uniquely through the object identifier

(OID)

• Thus, there can be no erroneous references to the object as
long as it is referred to through its OID

• The concepts of being identity and being equal both exist, and
they do not mean the same thing (identity  equality)

• OID can not be (reliably) based upon changing object values, but
are usually system generated and managed surrogate values…

• They are unique (system-wide, global, universal)

GUID: Globally Unique ID (property of the MS world)
UUID: Universally Unique ID (property of the Unix world)

• Immutable (unchanging throughout the life an object – and
kept intact after the object’s destruction as well)



M. Naci Akkøk, W5.L2 Side 15
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OPERATIONS ON OIDOPERATIONS ON OID

Generic Object-operations like…

• Comparing objects for equality, identity etc.

• Referencing objects

• Finding/fetching objects

… are all based upon the OID.
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COMPLEX/COMPOSITE OBJECTSCOMPLEX/COMPOSITE OBJECTS

• The OO paradigm supports objects that are complex in structure

• There are two kinds of complexity that the OO paradigm supports:

• UNSTRUCTURED complex objects
as in long time-series objects, media recording objects etc.,
collectively referred to as Binary Large Objects or BLOBS

• STRUCTURED complex objects
as in composite objects (objects that contain other objects or
parts of other objects)
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CLASSES and TYPESCLASSES and TYPES

• INTENT (INTENSION):
Template for like objects (classes)

• INSTANTIATION:
Creating new objects from the “template” (class)

• EXTENT (EXTENSION):
Set of existing (created) objects

• USER-DEFINED TYPES:
User can create classes and their own types

CLASS1

ATTR1

ATTR2

…

OP1

OP2

…

OBJ1 of CLASS1

VAL1-for-ATTR1 

VAL1-for ATTR2

…
OBJ2 of CLASS1

VAL2-for-ATTR1 

VAL2-for ATTR2

…
OBJ3 of CLASS1

VAL3-for-ATTR1 

VAL3-for ATTR2

…

OP1

OP2

…

Instantiates

from

Instantiates from

Instantiates from

Belong to
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ENCAPSULATIONENCAPSULATION

Definition of the operations’ interface

Implementation of

the operators

Definition of value types

(data-structure for the

object’s state)

Externally visible

(visible to the

users of the class)

Hidden

(hidden from the

users of the class)
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INHERITENCE, TYPE/CLASS HIERARCHIESINHERITENCE, TYPE/CLASS HIERARCHIES

• Object-types(1) are not always independent of each other:
GENERALIZATION/SPECIALIZATION  SUB-TYPES/SUPER-TYPES

• Sub-types INHERIT properties (attributes and operations) from

super-types

• There are two types of inheritance:

• Single inheritance  leads to a type hierarchy

• Multiple inheritance (sub-type or sub-class inherits from more
than one super-type or super-class)  leads to type lattices

• Advantages of inheritance:

• Re-use

• Capability to extend semantics

• Reinforcement of design discipline (stepwise refinement)

(1) Object-types also refer to classes in this context
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POLYMORPHISMPOLYMORPHISM

• OVERLOADING
Use of same name in different operators (in different classes/types)

• RE-DEFINITION
Re-implementation of operators at a lower level in the class or type

hierarchy

• LATE BINDING
Bind an operator name to a specific implementation late in run-time
(decided individually for each object)

• EXAMPLE:

print-geometric-object(go: g-object)

instead of

print-circle(c: circle) and
print-rectangle(r: rectangle) and
print-triangle(t: triangle) etc.



M. Naci Akkøk, W5.L2 Side 21
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

W5.L2W5.L2

Part 2Part 2

Introduction to theIntroduction to the

Object Definition LanguageObject Definition Language

(ODL)(ODL)
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PART 2, ODL, OVERVIEWPART 2, ODL, OVERVIEW

• Object Definition Language (ODL)

• Classes

• Attributes

• Relationships

• Methods

• Type systems

• Extensions

• Keys

• Inheritance
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ODMG and STANDARDIZATION (REPETITION)ODMG and STANDARDIZATION (REPETITION)

• OO-DBMS STANDARDIZATION

• ODMG:

Object Data Management Group

Offers OO DBMS standard

Offers (amongst others) two languages: ODL and OQL

• ODL

Object Definition Language

• OQL

Object Query Language
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ODL CLASS DECLARATIONODL CLASS DECLARATION

• ODL class declaration elements:

• NAME of the class

• KEY, as in other (relational) database systems, optional in
ODL(1)

• EXTENT, name of the set to contain all the instances (objects)
of the class

• ELEMENT declarations:

• ATTRIBUTE

• RELATIONSHIP

• METHOD

• Syntax:
class <class-name>

{  <elements>

}

(1) Remember that a key is dependent upon (mutable) value. Remember also that an object has an OID.
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  ATTRIBUTES #1ATTRIBUTES #1

• Syntax:
attribute <attribute-type> <attribute-elements>

• Example:

class Bars

{ attribute string name;

attribute Struct addr

{ string street,

string city

} address;

attribute Enum license

{ full,

beer,

none

} licenseType;

}

Bars

name addr license



M. Naci Akkøk, W5.L2 Side 26
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  ATTRIBUTES #2ATTRIBUTES #2

• Q: Why do we name Structs and Enums?:

• A: Because we will need to refer to them.

• Example:

class Drinkers

{ attribute string name;

attribute Struct Bars::addr address

}

• NOTE re-use of the Struct addr of Bars as type of the address
attribute in Drinkers

• Elements in another class are represented by
<class-name>::<element-name>

Bars

name addr license

Drinkers

name addr

Frequents
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #1RELATIONSHIPS #1

• Relationships help relate (connect) objects to each other. They are
references.

• Syntax:
relationship <relationship-type> <relationship-name>

• Examples:

relationship Set<Person> hasKids;

relationship Person hasWife;

relationship Set<Cars> hasCars;
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #2RELATIONSHIPS #2

• Relationships come in pairs (with the relationship and its inverse)

• Examples:

The relationship Serves between Bars and Beers is represented
through a relationship in Bars that indicates which Beers are sold,
and another relationship in Beers indicated the Bars where the
specific Beers are sold.

class Bars

{ relationship Set<Beers> Serves inverse Beers::ServedAt;

}

class Beers

{ relationship Set<Bars> ServedAt inverse Bars::Serves;

}

Bars BeersServes
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #3RELATIONSHIPS #3

• ODL supports only binary relationships, and not ternary (3-ways or tertiary)
relationships and higher level relationships

• Ternary relationships and higher level relationships need own “cross-reference” class

• Example:

class Prices

{ attribute real price;

relationship Set<BBP> toBBP inverse BBP::ThePrice

}

class BBP

{ relationship Bars TheBar inverse …;

relationship Beers TheBeer inverse …;

relationship Prices ThePrice inverse Prices::toBBP;

}

Bars BeersServes

Price

Bars

TheBar

BBP

Beers

TheBeer

Prices

ThePrice
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #4RELATIONSHIPS #4

• Many-to-many relationships use Set-types in both directions

• Example:

class Bars

{ relationship Set<Beers> Serves inverse Beers::ServedAt;

}

class Beers

{ relationship Set<Bars> ServedAt inverse Bars::Serves;

}

Bars BeersServes
(many) (many)
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #5RELATIONSHIPS #5

• One-to-many relationships use Set-type in one direction only

• Example:

class Manufacturer

{ relationship Set<Beers> Makes inverse Beers::MadeBy;

}

class Beers

{ relationship Manufacturer MadeBy

inverse Manufacturer::Makes;

}

Manufacturer BeersMadeBy
(one) (many)

NOTE:

Names of the relationships in

the reading direction,
i.e., “Manufacturer Makes Beers”

from Manufacturer to Beers, and
“Beers MadeBy Manufacturer”

from Beers to Manufacturer.
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  RELATIONSHIPS #6RELATIONSHIPS #6

• One-to-one relationships are obvious (only the class-names of
each other in both directions, no Set-type)

• Example:

class Manufacturer

{ relationship Beers HasBestSellingBeer

inverse Beers::IsBestSellingBeerFor;

}

class Beers

{ relationship Manufacturer IsBestSellingBeerFor

inverse Manufacturer::HasBestSellingBeer;

}

Manufacturer BeersBestSeller
(one) (one)

HasBestSellingBeer

IsBestSellingBeerFor
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ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS ––  METHODSMETHODS

• METHOD: Named and parameterized executable code (procedure, function)
that functions as the operations of the class’ objects.

• A method can return a value and raise exceptions.

• All method parameters and return value are typed.

• In addition to standard types for the parameters, parameters of a method
can be tagged with in, out and inout:

• in – for passing a copy of the value in the parameter (variable or

object “value container”) into the method

• out – for passing value out from the method

• inout – both of the above (like passing the value container or a

reference to the value-containing object itself into the method instead
of a copy of the value container’s contents as in the case of in)

• Only the method signature is part of ODL. The code (implementation) is
written in the host language (Java, C++, Smalltalk).

• EXAMPLE: class Bars

{ . . .

void availableBeers(out Set<Beers>);

. . .

}
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ODL ODL ––  THE TYPE SYSTEMTHE TYPE SYSTEM

BASE TYPES:

• integer, real, float, character, string, enumerated types, boolean
and more.

• Type constructors:

• Struct en (a structure composed of type and name pairs, like a
record)

• Collection types:

• Set<T> un-ordered set of (distinct) objects of type T

• Bag<T> un-ordered set of objects of type T where duplicates are
allowed

• List<T> ordered collection of objects of type T where duplicates are
allowed

• Array<T> ordered and indexed collection of objects of type T where
duplicates are allowed

• Dictionary<S,T> set of object-pairs of type S and T respectivelyT

NOTE:

• Type of a relationship can only be a class or a collection of classes as we
have seen.
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ODL ODL ––  KEYSKEYS

• In ODL, classes (and their objects) do not need keys. OID is fully capable of
distinguishing between objects that have the same value-set in its elements
(attributes, relationships etc).

• In ODL, a key is specified with the key-word key or keys and a list of the attributes
that form the key(1)

• Several lists ca be specified to define several alternative keys

• Parentheses are used to group the members in multi-valued keys:

• key(a1, a2 , … , an) = “key with n attributes”

• keys a1, a2 , … , an = “each ai is a key, and each one of them can be a multi-
valued key, i.e., at =(b1,b2 , … , bk)”

• EXAMPLE of a single valued key:

class Beers (key name)

{ attribute string name;

}

• EXAMPLE of two 2-valued keys:

class Courses (key (dept, number), (room, hours))

{ ...

}

(1) Note that use of the term “attributes” here is actually wrong. In addition to attributes, relationships
and even methods cam be part of a key.
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ODL ODL ––  INSTANTIATABLE CLASSES and EXTENTSINSTANTIATABLE CLASSES and EXTENTS

• There is a difference between a class definition and the set of existing
(created and not yet destroyed) instances (objects) of the class, called an
extent

• In ODL the extent is expressed with the key-word extent followed by the

name of the extent (i.e., the name of the set to contain the instances of
the class)

• SYNTAX/EXAMPLE:

class Student (extent students key SSN)

{ ...

}

• Note that a class defined with the key-word class can be instantiated

from, i.e., can be used to create objects from
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ODL ODL ––  INTERFACESINTERFACES

• ODL allows for INTERFACES, which are in essence “signature classes” without own
objects (I.e., classes that one can not be used to instantiate objects from)

• Useful especially when we have several extents but with (some) common properties.

• EXAMPLE

interface Person

{ attribute integer SSN;

}

class Student : Person (extent students key SSN)

{ ...

}

class Teacher : Person (extent teachers key SSN)

{ ...

}

• Interfaces are defined using the key-word interface instead of class

• Interfaces can not be instantiated from but can be used to define other classes (as in
the example, indicating that both Students and Teachers are Persons.

• Since they cannot be instantiated from, it is meaningless to use the keywords extent
and key (or keys) in interfaces.
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ODL ODL –– SUB-CLASSES, SUPER-CLASSES and INHERITANCE SUB-CLASSES, SUPER-CLASSES and INHERITANCE

• A sub-class inherits all properties of its super-class.

• EXAMPLE: Ales gets all the attributes, relationships and methods of the
Beers Class

• Super-classes are denoted by prefixing them with:

• colon (:) for interfaces

• Keyword extends for instantiatable classes

• EXAMPLE: All Ales are Beers with color:

class Ales extends Beers

{ attribute string color;

}

• Interfaces can inherit only from other interfaces (but classes can inherit
from interfaces as in our previous example of interfaces).

Beers

isa

Ales

name manf

color
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ODL ODL –– MULTIPLE INHERITANCE MULTIPLE INHERITANCE

• Multiple inheritance is denoted by the keyword extends and a colon-
separated (“:”-separated) list of the classes being inherited from

• EXAMPLE:

class Amphibian extends car:boat { ... }

• Name conflicts are not allowed and
its designer’s/developer’s responsibility
to avoid such conflicts.

• All classes can inherit from (an arbitrary
number of) other classes or interfaces, but:

• an interfaces can only inherit from other
interfaces as we saw earlier

• and an instantiatable class can only inherit
from another instantiatable class, so a class
cannot be an extension of more than one class

Boat

isa

Amphibian

isa

color manf

Car

color manf
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W5.L2W5.L2

Part 3Part 3

Introduction to Object-Introduction to Object-

Relational Database SystemsRelational Database Systems

(OR-DBMS)(OR-DBMS)

((…… over to old slides) over to old slides)
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NEXT TIMENEXT TIME

Next time is week 6 (22. Feb. 2005)

• A bit about XML

• The Object Query Language (OQL)


