W5.L2

Week 5, Lecture 2

Part 1:
ODMG and ODMG’s object model
Part 2:
Introduction to Object Definition Language (ODL)
Part 3:

Introduction to Object-Relational Database
Management Systems (OR-DBMS)

_"',.m' "‘ Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 & INF3100/1INF4100 — Database Systems

Side



W5.L2

Part 1

ODMG and
ODMG'’s object model

f".i' "‘ Institutt for informatikk, Universitetet i Oslo

M. Naci Akkak, W5.L2 @il 5 INF3100/INF4100 — Database Systems

Side




PART 1, ODMG and OODBMS, OVERVIEW

- ODMG
- OO concepts and OO-DBMS properties

Object identity and object identifier (OID)
Objects and values

Extent (instances of a class)

Complex objects and type constructors
Operators

Programming language compatibility (match,
seamlessness)

Encapsulation, information hiding
Type/class hierarchies, inheritance and polymorphism

M. Naci Akkgk, W5.L2

f\
% Institutt for informatikk, Universitetet i Oslo

AN i
& INF3100/1INF4100 — Database Systems side 3




ODMG

ODMG (@ Jan. 2000, v3.0) — The Object Data Management Group

See http://www.odmg.org/
NOTE: ‘Standard Overview’ has a list of all ODMG standards.

Offers standards for storing (and retrieving) objects.

ODMG is a close relative of the Object Management Group (OMG).
See: http://www.omg.org/.

ODMG offers:
Object Management Architecture (OMA) and Object Data Model
Object Specification Languages:
ODL (Object Definition Language), based upon OMG's Interface Definition
Language (IDL)
OIF (Object Interchange Format)
OQL (Object Query Language), based upon SQL (as much as possible)
Language Bindings: ODL, OML and OQL for C++, Smalltalk and Java

Note that there is no other distinct Object Manipulation Language (OML).
Manipulation of objects hgappen in the languages C++, Smalltalk and Java.

Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 & INF3100/1INF4100 — Database Systems

Side 4




OO CONCEPTS #1

THE OBJECT-ORIENTED (OO) PARADIGM:

Intended for modeling a mini-world (the world of interest,
often called the Universe of Discourse or UoD) as a
collection of communicating/co-operating entities called

OBJECTS

o Y Institutt for informatikk, Universitetet i Oslo .
= Side 5

M. Naci Akkak, W5.L2 & INF3100/1INF4100 — Database Systems




OO CONCEPTS #2

- ABSTRACTION AND AUTONOMY:

- OBJECT: <value, {operators}=>
where the operators are implemented as methods
and the object is distinct and universally identifiable

« VALUE: Data-structure
where a value can be different form other values but not
distinct or universally identifiable

- ENCAPSULATION:
whereby an object contains and hides information about its
internals

- Requires that other objects “behave” (can’t reach internals)

- CONTRACT:
Requires that all objects “behave” (communicate/cooperate)
according to agreed upon rules

f\
% Institutt for informatikk, Universitetet i Oslo

i AN
M. Naci Akkak, W5.L2 & INF3100/1INF4100 — Database Systems

Side 6




OO CONCEPTS #3

CLASSIFICATION:

- Common description for all objects belonging to the same
class, like a template

- Also called INTENT

- Can also be though of as a collection of like objects (objects
with same properties)

- Also called EXTENT

1]
% Institutt for informatikk, Universitetet i Oslo

& INF3100/1INF4100 — Database Systems side 7

M. Naci Akkgk, W5.L2




OO CONCEPTS #4

TAXONOMY

- Super and sub-classes
- Inheritance of properties
- Polymorphism

S (= ) Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 I 5 INF3100/INF4100 — Database Systems

Side 8




PURPOSE OF THE OO DATA-MODEL

T o N
Record-oriented (~_ PB
data-model
1:N
—
w
T N
. DB
1:1 —
Object-oriented =0
data-model -

_"',.m' "‘ Institutt for informatikk, Universitetet i Oslo

& INF3100/1INF4100 — Database Systems side 9

M. Naci Akkgk, W5.L2




ADVANTAGES OF OO DATA MODELING

- MORE NATURAL (as compared to traditional data models)
e Meaningful abstraction, high modularity
e Better control of complexity

e Separation of interface and implementation

e EVOLUTIONARY SYSTEMS DESIGN
e Incremental programming

e Reuse

& i Institutt for informatikk, Universitetet i Oslo

M. Naci Akkak, W5.L2 & INF3100/1INF4100 — Database Systems

Side 10




OO DBMS

- OO0O-DBMS:
DBMS in accordance with the OO DATA MODEL

- OO-database:
A collection of objects

- An OO-DB object:
<OID, value, {operations}=>

? ¥ At e
i L, o ; : . . f .
Sl v Institutt for informatikk, Universitetet i Oslo Side 11

M. Naci Akkak, W5.L2 J 5 INF3100/1NF4100 — Database Systems




OO DBMS, OBJECTS and OBJECT VALUES

- Object: <OID, value, {operations}>

- Example class:

class athlete

{

text name;
integer salary;

}

- Exampel values:

V1 = tuple of (hame: "Pooh”, salary: 4.000.000)
V2 = tuple of (name: "Mowgli”, salary: 1.000.000)
V3 = tuple of (name: "Mickey”, salary: 6.000.000)

- Example objects:

O1=<[, VL[>
02=<[, V2>
03=<[, V3>

M. Naci Akkgk, W5.L2 Side 12




CHARACTERISTICS OF OO-DBMS

MUST HAVE: SHOULD HAVE:
- OID (object identity/identifier) - Object versions
- Complex/composite objects - Support for distribution

(client/server architectures etc.)
- New transaction mechanisms

- Support for (active/deductive)
rule-based systems

- Types/Classes
- User-defines types

- Computational (language)
completeness

- Encapsulation
- Inheritance: type/class hierarchies

- Polymorphisms:
overloading, re-definition, late
binding

.. and much more.

. all orthogonal properties

M. Naci Akkgk, W5.L2 Side 13




OID

- Objects exist independently of their (current) values

- No matter how the values in an object are changed, the object
IS the same object

- Objects are identified uniquely through the object identifier
(OID)

- Thus, there can be no erroneous references to the object as
long as it is referred to through its OID

- The concepts of being identity and being equal both exist, and
they do not mean the same thing (identity = equality)

- OID can not be (reliably) based upon changing object values, but
are usually system generated and managed surrogate values...

- They are unique (system-wide, global, universal)
GUID: Globally Unique ID (property of the MS world)
UUID: Universally Unique ID (property of the Unix world)

- Immutable (unchanging throughout the life an object — and
kept intact after the object’s destruction as well)

e
b ] el i i ; ; ; i
5 . Institutt for informatikk, Universitetet i Oslo Side 14

_ 0
M. Nact Akkale, Wo.L2 TP 2 INF3100/1NF4100 — Database Systems




OPERATIONS ON OID

Generic Object-operations like...
- Comparing objects for equality, identity etc.
- Referencing objects

- Finding/fetching objects

... are all based upon the OID.

TR
s Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 £ INF3100/INF4100 — Database Systems

Side 15




COMPLEX/COMPOSITE OBJECTS

- The OO paradigm supports objects that are complex in structure
- There are two kinds of complexity that the OO paradigm supports:

- UNSTRUCTURED complex objects
as in long time-series objects, media recording objects etc.,
collectively referred to as Binary Large Objects or BLOBS

- STRUCTURED complex objects
as in composite objects (objects that contain other objects or
parts of other objects)

S ;r..m' "‘ Institutt for informatikk, Universitetet i Oslo

' & INF3100/1NF4100 — Database Systems Side 16

M. Naci Akkgk, W5.L2




CLASSES and TYPES

- INTENT (INTENSION):
Template for like objects (classes)

- INSTANTIATION:
Creating new objects from the “template” (class)

CLASS1 OBJ1 of CLASS1
ATTR1 : VAL1-for-ATTR1
ATTR2 < 'nStant:c?;ﬁ VAL1-for ATTR2 | [[OBJ2 of CLASS1
VAL2-for-ATTR1
OP1 Y VAL2-for ATTR2 OBJ3 of CLASS1
opP2 Instantiates-from
- VAL3-for-ATTR1
= e VAL3-for ATTR2
Instantiates from|
« EXTENT (EXTENSION): |
Set of existing (created) objects N |
- USER-DEFINED TYPES: Belong to
User can create classes and their own types -
P1
oP2
,;er.;lm' ® Institutt for informatikk, Universitetet i Oslo Side 17

M. Naci Akkak, W5.L.2 INF3100/INF4100 — Database Systems




ENCAPSULATION

A
o Definition of the operations’ interface
Externally visible
(visible to the
users of the class)
v
A
_ Implementation of
_ Hidden the operators
(hidden from the
users of the class)
v

‘Definition of value types
(data-structure for the
object’s state)

Institutt for informatikk, Universitetet i Oslo Side 18

M. Naci Aliale, WS.L.2 B WP 5 INF3100/INF4100 — Database Systems



INHERITENCE, TYPE/CLASS HIERARCHIES

- Object-types® are not always independent of each other:
GENERALIZATION/SPECIALIZATION ¢{ SUB-TYPES/SUPER-TYPES

- Sub-types INHERIT properties (attributes and operations) from
super-types

- There are two types of inheritance:
- Single inheritance () leads to a type hierarchy

- Multiple inheritance (sub-type or sub-class inherits from more
than one super-type or super-class) () leads to type lattices

- Advantages of inheritance:
- Re-use
- Capability to extend semantics
- Reinforcement of design discipline (stepwise refinement)

(1) Object-types also refer to classes in this context

f\
% Institutt for informatikk, Universitetet i Oslo

5 INF3100/INF4100 — Database Systems Side 19

M. Naci Akkgk, W5.L2




POLYMORPHISM

- OVERLOADING
Use of same name in different operators (in different classes/types)

- RE-DEFINITION
Re-implementation of operators at a lower level in the class or type
hierarchy

- LATE BINDING
Bind an operator name to a specific implementation late in run-time
(decided individually for each object)

- EXAMPLE:
print-geometric-object(go: g-object)
instead of

print-circle(c: circle) and
print-rectangle(r: rectangle) and
print-triangle(t: triangle) etc.

M. Naci Akkgk, W5.L2 Side 20




W5.L2

Part 2

Introduction to the

Object Definition Language
(ODL)

Side 21




PART 2, ODL, OVERVIEW

- Object Definition Language (ODL)

Classes
Attributes
Relationships
Methods

Type systems
Extensions
Keys
Inheritance

M. Naci Akkgk, W5.L2

& (S Institutt for informatikk, Universitetet i Oslo
.: INF3100/1INF4100 — Database Systems

Side 22



ODMG and STANDARDIZATION (REPETITION)

- OO-DBMS STANDARDIZATION

- ODMG:
Object Data Management Group
Offers OO DBMS standard
Offers (amongst others) two languages: ODL and OQL

- ODL
Object Definition Language

- OQL
Object Query Language

& Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 & INF3100/1INF4100 — Database Systems

Side 23




ODL CLASS DECLARATION

- ODL class declaration elements:
- NAME of the class

- KEY, as in other (relational) database systems, optional in
ODL®

- EXTENT, name of the set to contain all the instances (objects)
of the class

- ELEMENT declarations:
- ATTRIBUTE
- RELATIONSHIP
- METHOD

- Syntax:
class <class-name>
{ <elements>

}

(1) Remember that a key is dependent upon (mutable) value. Remember also that an object has an OID.

& (S Institutt for informatikk, Universitetet i Oslo side 24

M. Naci Akkak, W5.L2 & INF3100/1INF4100 — Database Systems




ODL CLASS DECLARATIONS — ATTRIBUTES #1

- Syntax:
attribute <attribute-type> <attribute-elements>

- Example:

class Bars
{ attribute string name;

attribute Struct addr
{ string street, name addr l1cense
string city

} address;
attribute Enum license

{ Tull,
beer , Bars
none

} licenseType;

S i Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 £ INF3100/INF4100 — Database Systems

Side 25




ODL CLASS DECLARATIONS — ATTRIBUTES #2

- Q: Why do we name Structs and Enums?:
- A: Because we will need to refer to them.

class Drinkers

Drinkers

{ attribute string name;
attribute Struct Bars::addr address

}

- NOTE re-use of the Struct addr of Bars as type of the address

attribute in Drinkers

- Elements in another class are represented by
<class-name=>::.<element-name>

M. Naci Akkgk, W5.L2

i . Institutt for informatikk, Universitetet i Oslo
.:7? INF3100/1INF4100 — Database Systems

Side 26



ODL CLASS DECLARATIONS — RELATIONSHIPS #1

- Relationships help relate (connect) objects to each other. They are
references.

- Syntax:
relationship <relationship-type> <relationship-name>

- Examples:
relationship Set<Person> hasKids;
relationship Person hasWife;
relationship Set<Cars> hasCars;

1]
™ % Institutt for informatikk, Universitetet i Oslo

. jm K .
M. Naci Akkak, W5.L2 & INF3100/1INF4100 — Database Systems side 27




ODL CLASS DECLARATIONS — RELATIONSHIPS #2

- Relationships come in pairs (with the relationship and its inverse)

- Examples:

The relationship Serves between Bars and Beers is represented
through a relationship in Bars that indicates which Beers are sold,

and another relationship in Beers indicated the Bars where the

specific Beers are sold.

Bars

class Bars

Beers

{ relationship Set<Beers> Serves Inverse Beers::ServedAt;

<\
~
~
~

}

~_~-
-~

class Beers o

{ relationship Set<Bars> ServedAt inverse Bars::Serves;

}

Institutt for informatikk, Universitetet i Oslo

M. Naci Aliale, WS.L.2 & INF3100/1INF4100 — Database Systems

Side 28



ODL CLASS DECLARATIONS — RELATIONSHIPS #3

- ODL supports only binary relationships, and not ternary (3-ways or tertiary)
relationships and higher level relationships

- Ternary relationships and higher level relationships need own “cross-reference” class

- Example:

Price

=)

BBP

@

Bars Beers
Bars Beers Prices

class Prices
{ attribute real price;

relationship Set<BBP> toBBP inverse BBP::ThePrice
}
class BBP
{ relationship Bars TheBar inverse ..;

relationship Beers TheBeer i1nverse ..;

relationship Prices ThePrice inverse Prices::toBBP;
}
M. Naci Akkgk, W5.L2 Side 29




ODL CLASS DECLARATIONS — RELATIONSHIPS #4

- Many-to-many relationships use Set-types in both directions

- Example:

Bars Beers

class Bars
{ relationship Set<Beers> Serves iInverse Beers::ServedAt;

}

class Beers
{ relationship Set<Bars> ServedAt i1Inverse Bars::Serves;

}

TR
s Institutt for informatikk, Universitetet i Oslo

5 INF3100/INF4100 — Database Systems Side 30

M. Naci Akkgk, W5.L2




ODL CLASS DECLARATIONS — RELATIONSHIPS #5

- One-to-many relationships use Set-type in one direction only

- Example:

Manufacturer MadeBy Beers

class Manufacturer
{ relationship Set<Beers> Makes Inverse Beers::MadeBy;

) /

NOTE:
class Beers Names of the relationships in
{ relationship Manufacturer MadeBy the reading direction,
- . h i.e., “Manufacturer Makes Beers”
Inverse Manufacturer::Makes; from Manufacturer to Beers, and
“Beers MadeBy Manufacturer”
} from Beers to Manufacturer.
M. Naci Akkgk, W5.L2 ._ :"‘ Institutt for informatikk, Universitetet i Oslo Side 31




ODL CLASS DECLARATIONS — RELATIONSHIPS #6

- One-to-one relationships are obvious (only the class-names of
each other in both directions, no Set-type)

- Example:

Manufacturer

class Manufacturer

BestSeller

{ relationship Beers HasBestSellingBeer

inverse Beers::IsBestSellingBeerFor;

}

class Beers

{ relationship Manufacturer IsBestSellingBeerFor
inverse Manufacturer::HasBestSellingBeer;

}

Beers

M. Naci Akkgk, W5.L2

Side 32



ODL CLASS DECLARATIONS — METHODS

- METHOD: Named and parameterized executable code (procedure, function)
that functions as the operations of the class’ objects.

- A method can return a value and raise exceptions.
- All method parameters and return value are typed.

- In addition to standard types for the parameters, parameters of a method
can be tagged with 1n, out and i1nout:

- 1In — for passing a copy of the value in the parameter (variable or
object “value container”) into the method
- out — for passing value out from the method

- 1nout — both of the above (like passing the value container or a

reference to the value-containing object itself into the method instead
of a copy of the value container’s contents as in the case of In)

- Only the method signature is part of ODL. The code (implementation) is
written in the host language (Java, C++, Smalltalk).

- EXAMPLE: class Bars
{

void availableBeers(out Set<Beers>);

M. Naci Akkgk, W5.L2 Side 33




ODL — THE TYPE SYSTEM

BASE TYPES:

- integer, real, float, character, string, enumerated types, boolean
and more.

- Type constructors:

- Struct en (a structure composed of type and name pairs, like a
record)

- Collection types:
- Set<T>= un-ordered set of (distinct) objects of type T

- Bag<T=>= un-ordered set of objects of type T where duplicates are
allowed

- List<T> ordered collection of objects of type T where duplicates are
allowed

- Array<T> ordered and indexed collection of objects of type T where
duplicates are allowed

- Dictionary<S,T> set of object-pairs of type S and T respectivelyT

NOTE:

- Type of a relationship can only be a class or a collection of classes as we
have seen.

M. Naci Akkgk, W5.L2 Side 34




ODL — KEYS

- In ODL, classes (and their objects) do not need keys. OID is fully capable of
distinguishing between objects that have the same value-set in its elements
(attributes, relationships etc).

- In ODL, a key is specified with the key-word key or keys and a list of the attributes
that form the key®

- Several lists ca be specified to define several alternative keys

- Parentheses are used to group the members in multi-valued keys:

- key(a,, a,, .., a,) = “key with n attributes”
- keysa,, a,, .., a,="each a, is a key, and each one of them can be a multi-
valued key, i.e., at =(b1,b2, ..., b.)”

- EXAMPLE of a single valued key:
class Beers (key name)
{ attribute string name;
}

- EXAMPLE of two 2-valued keys:
class Courses (key (dept, number), (room, hours))

{ ...
}

(1) Note that use of the term “attributes” here is actually wrong. In addition to attributes, relationships
and even methods cam be part of a key.

Institutt for informatikk, Universitetet i Oslo Side 35

M. Naci Akkak, W5.L.2 INF3100/1NF4100 — Database Systems




ODL — INSTANTIATABLE CLASSES and EXTENTS

- There is a difference between a class definition and the set of existing
(created and not yet destroyed) instances (objects) of the class, called an
extent

- In ODL the extent is expressed with the key-word extent followed by the

name of the extent (i.e., the name of the set to contain the instances of
the class)

- SYNTAX/EXAMPLE:

class Student (extent students key SSN)

{ ...
}

- Note that a class defined with the key-word class can be instantiated
from, i.e., can be used to create objects from

M. Naci Akkgk, W5.L2 Side 36




ODL — INTERFACES

- ODL allows for INTERFACES, which are in essence “signature classes” without own
objects (l.e., classes that one can not be used to instantiate objects from)

- Useful especially when we have several extents but with (some) common properties.

- EXAMPLE
interface Person
{ attribute integer SSN;

}

class Student : Person (extent students key SSN)

{ ...
}

class Teacher : Person (extent teachers key SSN)

{ ...
}

- Interfaces are defined using the key-word 1nterface instead of class

- Interfaces can not be instantiated from but can be used to define other classes (as in
the example, indicating that both Students and Teachers are Persons.

- Since they cannot be instantiated from, it is meaningless to use the keywords extent
and key (or keys) in interfaces.

Institutt for informatikk, Universitetet i Oslo

INF3100/1INF4100 — Database Systems Side 37

M. Naci Akkgk, W5.L2




ODL — SUB-CLASSES, SUPER-CLASSES and INHERITANCE

- A sub-class inherits all properties of its super-class.

- EXAMPLE: Ales gets all the attributes, relationships and methods of the

Beers Class
- Super-classes are denoted by prefixing them with:

- colon (:) for interfaces Beers
- Keyword extends for instantiatable classes

isa

- EXAMPLE: All Ales are Beers with color: Ales
class Ales extends Beers
{ attribute string color; @
+

- Interfaces can inherit only from other interfaces (but classes can inherit
from interfaces as in our previous example of interfaces).

M. Naci Akkgk, W5.L2 Side 38




ODL — MULTIPLE INHERITANCE

- Multiple inheritance is denoted by the keyword extends and a colon-
separated (“:”-separated) list of the classes being inherited from

- EXAMPLE:
class Amphibian extends car:boat { ... }

- Name conflicts are not allowed and

its designer’s/developer’s responsibility
to avoid such conflicts.

) ) ) Car Boat
- All classes can inherit from (an arbitrary
number of) other classes or interfaces, but:
i1sa i1sa
- an interfaces can only inherit from other
interfaces as we saw earlier
Amphibian

- and an instantiatable class can only inherit
from another instantiatable class, so a class
cannot be an extension of more than one class

M. Naci Akkgk, W5.L2 Side 39




W5.L2

Part 3

Introduction to Object-
Relational Database Systems

(OR-DBMS)

(... over to old slides)_

Side 40

ase Systems



NEXT TIME

Next time is week 6 (22. Feb. 2005)

- A bit about XML
- The Object Query Language (OQL)

& K Institutt for informatikk, Universitetet i Oslo

M. Naci Akkak, W5.L2 J 5 INF3100/1NF4100 — Database Systems

Side 41




