
M. Naci Akkøk, W5.L2 Side 1
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

W5.L2W5.L2

Week 5, Lecture 2Week 5, Lecture 2

Part 1:Part 1:

ODMG and ODMGODMG and ODMG’’s object models object model

Part 2:Part 2:

Introduction to Object Definition Language (ODL)Introduction to Object Definition Language (ODL)

Part 3:Part 3:

Introduction to Object-Relational DatabaseIntroduction to Object-Relational Database

Management Systems (OR-DBMS)Management Systems (OR-DBMS)

M. Naci Akkøk, W5.L2 Side 2
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

W5.L2W5.L2

Part 1Part 1

ODMG andODMG and

ODMGODMG’’s object models object model

M. Naci Akkøk, W5.L2 Side 3
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

PART 1, ODMG and OODBMS, OVERVIEWPART 1, ODMG and OODBMS, OVERVIEW

• ODMG

• OO concepts and OO-DBMS properties

• Object identity and object identifier (OID)

• Objects and values

• Extent (instances of a class)

• Complex objects and type constructors

• Operators

• Programming language compatibility (match,

seamlessness)

• Encapsulation, information hiding

• Type/class hierarchies, inheritance and polymorphism

M. Naci Akkøk, W5.L2 Side 4
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODMGODMG

• ODMG (@ Jan. 2000, v3.0) – The Object Data Management Group

• See http://www.odmg.org/
NOTE: ‘Standard Overview’ has a list of all ODMG standards.

• Offers standards for storing (and retrieving) objects.

• ODMG is a close relative of the Object Management Group (OMG).
See: http://www.omg.org/.

• ODMG offers:

• Object Management Architecture (OMA) and Object Data Model

• Object Specification Languages:

• ODL (Object Definition Language), based upon OMG’s Interface Definition
Language (IDL)

• OIF (Object Interchange Format)

• OQL (Object Query Language), based upon SQL (as much as possible)

• Language Bindings: ODL, OML and OQL for C++, Smalltalk and Java

• Note that there is no other distinct Object Manipulation Language (OML).
Manipulation of objects hgappen in the languages C++, Smalltalk and Java.

M. Naci Akkøk, W5.L2 Side 5
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO CONCEPTS #1OO CONCEPTS #1

THE OBJECT-ORIENTED (OO) PARADIGM:

• Intended for modeling a mini-world (the world of interest,

often called the Universe of Discourse or UoD) as a

collection of communicating/co-operating entities called

OBJECTS

M. Naci Akkøk, W5.L2 Side 6
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO CONCEPTS #2OO CONCEPTS #2

• ABSTRACTION AND AUTONOMY:

• OBJECT: <value, {operators}>
where the operators are implemented as methods
and the object is distinct and universally identifiable

• VALUE: Data-structure
where a value can be different form other values but not
distinct or universally identifiable

• ENCAPSULATION:
whereby an object contains and hides information about its
internals

• Requires that other objects “behave” (can’t reach internals)

• CONTRACT:
Requires that all objects “behave” (communicate/cooperate)
according to agreed upon rules

M. Naci Akkøk, W5.L2 Side 7
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO CONCEPTS #3OO CONCEPTS #3

CLASSIFICATION:

• Common description for all objects belonging to the same

class, like a template

• Also called INTENT

• Can also be though of as a collection of like objects (objects

with same properties)

• Also called EXTENT

M. Naci Akkøk, W5.L2 Side 8
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO CONCEPTS #4OO CONCEPTS #4

TAXONOMY

• Super and sub-classes

• Inheritance of properties

• Polymorphism

M. Naci Akkøk, W5.L2 Side 9
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

PURPOSE OF THE OO DATA-MODELPURPOSE OF THE OO DATA-MODEL

Record-oriented

data-model

Object-oriented

data-model

1:N

1:1

DB

DB

M. Naci Akkøk, W5.L2 Side 10
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ADVANTAGES OF OO DATA MODELINGADVANTAGES OF OO DATA MODELING

• MORE NATURAL (as compared to traditional data models)

• Meaningful abstraction, high modularity

• Better control of complexity

• Separation of interface and implementation

• EVOLUTIONARY SYSTEMS DESIGN

• Incremental programming

• Reuse

M. Naci Akkøk, W5.L2 Side 11
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO DBMSOO DBMS

• OO-DBMS:

DBMS in accordance with the OO DATA MODEL

• OO-database:

A collection of objects

• An OO-DB object:

<OID, value, {operations}>

M. Naci Akkøk, W5.L2 Side 12
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OO DBMS, OBJECTS and OBJECT VALUESOO DBMS, OBJECTS and OBJECT VALUES

• Object: <OID, value, {operations}>

• Example class:

class athlete

{

text name;

integer salary;

}

• Exampel values:

V1 = tuple of (name: ”Pooh”, salary: 4.000.000)

V2 = tuple of (name: ”Mowgli”, salary: 1.000.000)

V3 = tuple of (name: ”Mickey”, salary: 6.000.000)

• Example objects:

O1 = < �, V1, � >

O2 = < �, V2, � >

O3 = < �, V3, � >

M. Naci Akkøk, W5.L2 Side 13
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

CHARACTERISTICS OF OO-DBMSCHARACTERISTICS OF OO-DBMS

MUST HAVE:

• OID (object identity/identifier)

• Complex/composite objects

• Types/Classes

• User-defines types

• Computational (language)
completeness

• Encapsulation

• Inheritance: type/class hierarchies

• Polymorphisms:
overloading, re-definition, late
binding

... all orthogonal properties

SHOULD HAVE:

• Object versions

• Support for distribution

(client/server architectures etc.)

• New transaction mechanisms

• Support for (active/deductive)
rule-based systems

... and much more.

M. Naci Akkøk, W5.L2 Side 14
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OIDOID

• Objects exist independently of their (current) values

• No matter how the values in an object are changed, the object
is the same object

• Objects are identified uniquely through the object identifier

(OID)

• Thus, there can be no erroneous references to the object as
long as it is referred to through its OID

• The concepts of being identity and being equal both exist, and
they do not mean the same thing (identity equality)

• OID can not be (reliably) based upon changing object values, but
are usually system generated and managed surrogate values…

• They are unique (system-wide, global, universal)

GUID: Globally Unique ID (property of the MS world)
UUID: Universally Unique ID (property of the Unix world)

• Immutable (unchanging throughout the life an object – and
kept intact after the object’s destruction as well)

M. Naci Akkøk, W5.L2 Side 15
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

OPERATIONS ON OIDOPERATIONS ON OID

Generic Object-operations like…

• Comparing objects for equality, identity etc.

• Referencing objects

• Finding/fetching objects

… are all based upon the OID.

M. Naci Akkøk, W5.L2 Side 16
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

COMPLEX/COMPOSITE OBJECTSCOMPLEX/COMPOSITE OBJECTS

• The OO paradigm supports objects that are complex in structure

• There are two kinds of complexity that the OO paradigm supports:

• UNSTRUCTURED complex objects
as in long time-series objects, media recording objects etc.,
collectively referred to as Binary Large Objects or BLOBS

• STRUCTURED complex objects
as in composite objects (objects that contain other objects or
parts of other objects)

M. Naci Akkøk, W5.L2 Side 17
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

CLASSES and TYPESCLASSES and TYPES

• INTENT (INTENSION):
Template for like objects (classes)

• INSTANTIATION:
Creating new objects from the “template” (class)

• EXTENT (EXTENSION):
Set of existing (created) objects

• USER-DEFINED TYPES:
User can create classes and their own types

CLASS1

ATTR1

ATTR2

…

OP1

OP2

…

OBJ1 of CLASS1

VAL1-for-ATTR1

VAL1-for ATTR2

…
OBJ2 of CLASS1

VAL2-for-ATTR1

VAL2-for ATTR2

…
OBJ3 of CLASS1

VAL3-for-ATTR1

VAL3-for ATTR2

…

OP1

OP2

…

Instantiates

from

Instantiates from

Instantiates from

Belong to

M. Naci Akkøk, W5.L2 Side 18
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ENCAPSULATIONENCAPSULATION

Definition of the operations’ interface

Implementation of

the operators

Definition of value types

(data-structure for the

object’s state)

Externally visible

(visible to the

users of the class)

Hidden

(hidden from the

users of the class)

M. Naci Akkøk, W5.L2 Side 19
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

INHERITENCE, TYPE/CLASS HIERARCHIESINHERITENCE, TYPE/CLASS HIERARCHIES

• Object-types(1) are not always independent of each other:
GENERALIZATION/SPECIALIZATION SUB-TYPES/SUPER-TYPES

• Sub-types INHERIT properties (attributes and operations) from

super-types

• There are two types of inheritance:

• Single inheritance leads to a type hierarchy

• Multiple inheritance (sub-type or sub-class inherits from more
than one super-type or super-class) leads to type lattices

• Advantages of inheritance:

• Re-use

• Capability to extend semantics

• Reinforcement of design discipline (stepwise refinement)

(1) Object-types also refer to classes in this context

M. Naci Akkøk, W5.L2 Side 20
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

POLYMORPHISMPOLYMORPHISM

• OVERLOADING
Use of same name in different operators (in different classes/types)

• RE-DEFINITION
Re-implementation of operators at a lower level in the class or type

hierarchy

• LATE BINDING
Bind an operator name to a specific implementation late in run-time
(decided individually for each object)

• EXAMPLE:

print-geometric-object(go: g-object)

instead of

print-circle(c: circle) and
print-rectangle(r: rectangle) and
print-triangle(t: triangle) etc.

M. Naci Akkøk, W5.L2 Side 21
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

W5.L2W5.L2

Part 2Part 2

Introduction to theIntroduction to the

Object Definition LanguageObject Definition Language

(ODL)(ODL)

M. Naci Akkøk, W5.L2 Side 22
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

PART 2, ODL, OVERVIEWPART 2, ODL, OVERVIEW

• Object Definition Language (ODL)

• Classes

• Attributes

• Relationships

• Methods

• Type systems

• Extensions

• Keys

• Inheritance

M. Naci Akkøk, W5.L2 Side 23
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODMG and STANDARDIZATION (REPETITION)ODMG and STANDARDIZATION (REPETITION)

• OO-DBMS STANDARDIZATION

• ODMG:

Object Data Management Group

Offers OO DBMS standard

Offers (amongst others) two languages: ODL and OQL

• ODL

Object Definition Language

• OQL

Object Query Language

M. Naci Akkøk, W5.L2 Side 24
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONODL CLASS DECLARATION

• ODL class declaration elements:

• NAME of the class

• KEY, as in other (relational) database systems, optional in
ODL(1)

• EXTENT, name of the set to contain all the instances (objects)
of the class

• ELEMENT declarations:

• ATTRIBUTE

• RELATIONSHIP

• METHOD

• Syntax:
class <class-name>

{ <elements>

}

(1) Remember that a key is dependent upon (mutable) value. Remember also that an object has an OID.

M. Naci Akkøk, W5.L2 Side 25
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– ATTRIBUTES #1ATTRIBUTES #1

• Syntax:
attribute <attribute-type> <attribute-elements>

• Example:

class Bars

{ attribute string name;

attribute Struct addr

{ string street,

string city

} address;

attribute Enum license

{ full,

beer,

none

} licenseType;

}

Bars

name addr license

M. Naci Akkøk, W5.L2 Side 26
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– ATTRIBUTES #2ATTRIBUTES #2

• Q: Why do we name Structs and Enums?:

• A: Because we will need to refer to them.

• Example:

class Drinkers

{ attribute string name;

attribute Struct Bars::addr address

}

• NOTE re-use of the Struct addr of Bars as type of the address
attribute in Drinkers

• Elements in another class are represented by
<class-name>::<element-name>

Bars

name addr license

Drinkers

name addr

Frequents

M. Naci Akkøk, W5.L2 Side 27
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #1RELATIONSHIPS #1

• Relationships help relate (connect) objects to each other. They are
references.

• Syntax:
relationship <relationship-type> <relationship-name>

• Examples:

relationship Set<Person> hasKids;

relationship Person hasWife;

relationship Set<Cars> hasCars;

M. Naci Akkøk, W5.L2 Side 28
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #2RELATIONSHIPS #2

• Relationships come in pairs (with the relationship and its inverse)

• Examples:

The relationship Serves between Bars and Beers is represented
through a relationship in Bars that indicates which Beers are sold,
and another relationship in Beers indicated the Bars where the
specific Beers are sold.

class Bars

{ relationship Set<Beers> Serves inverse Beers::ServedAt;

}

class Beers

{ relationship Set<Bars> ServedAt inverse Bars::Serves;

}

Bars BeersServes

M. Naci Akkøk, W5.L2 Side 29
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #3RELATIONSHIPS #3

• ODL supports only binary relationships, and not ternary (3-ways or tertiary)
relationships and higher level relationships

• Ternary relationships and higher level relationships need own “cross-reference” class

• Example:

class Prices

{ attribute real price;

relationship Set<BBP> toBBP inverse BBP::ThePrice

}

class BBP

{ relationship Bars TheBar inverse …;

relationship Beers TheBeer inverse …;

relationship Prices ThePrice inverse Prices::toBBP;

}

Bars BeersServes

Price

Bars

TheBar

BBP

Beers

TheBeer

Prices

ThePrice

M. Naci Akkøk, W5.L2 Side 30
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #4RELATIONSHIPS #4

• Many-to-many relationships use Set-types in both directions

• Example:

class Bars

{ relationship Set<Beers> Serves inverse Beers::ServedAt;

}

class Beers

{ relationship Set<Bars> ServedAt inverse Bars::Serves;

}

Bars BeersServes
(many) (many)

M. Naci Akkøk, W5.L2 Side 31
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #5RELATIONSHIPS #5

• One-to-many relationships use Set-type in one direction only

• Example:

class Manufacturer

{ relationship Set<Beers> Makes inverse Beers::MadeBy;

}

class Beers

{ relationship Manufacturer MadeBy

inverse Manufacturer::Makes;

}

Manufacturer BeersMadeBy
(one) (many)

NOTE:

Names of the relationships in

the reading direction,
i.e., “Manufacturer Makes Beers”

from Manufacturer to Beers, and
“Beers MadeBy Manufacturer”

from Beers to Manufacturer.

M. Naci Akkøk, W5.L2 Side 32
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– RELATIONSHIPS #6RELATIONSHIPS #6

• One-to-one relationships are obvious (only the class-names of
each other in both directions, no Set-type)

• Example:

class Manufacturer

{ relationship Beers HasBestSellingBeer

inverse Beers::IsBestSellingBeerFor;

}

class Beers

{ relationship Manufacturer IsBestSellingBeerFor

inverse Manufacturer::HasBestSellingBeer;

}

Manufacturer BeersBestSeller
(one) (one)

HasBestSellingBeer

IsBestSellingBeerFor

M. Naci Akkøk, W5.L2 Side 33
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL CLASS DECLARATIONS ODL CLASS DECLARATIONS –– METHODSMETHODS

• METHOD: Named and parameterized executable code (procedure, function)
that functions as the operations of the class’ objects.

• A method can return a value and raise exceptions.

• All method parameters and return value are typed.

• In addition to standard types for the parameters, parameters of a method
can be tagged with in, out and inout:

• in – for passing a copy of the value in the parameter (variable or

object “value container”) into the method

• out – for passing value out from the method

• inout – both of the above (like passing the value container or a

reference to the value-containing object itself into the method instead
of a copy of the value container’s contents as in the case of in)

• Only the method signature is part of ODL. The code (implementation) is
written in the host language (Java, C++, Smalltalk).

• EXAMPLE: class Bars

{ . . .

void availableBeers(out Set<Beers>);

. . .

}

M. Naci Akkøk, W5.L2 Side 34
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– THE TYPE SYSTEMTHE TYPE SYSTEM

BASE TYPES:

• integer, real, float, character, string, enumerated types, boolean
and more.

• Type constructors:

• Struct en (a structure composed of type and name pairs, like a
record)

• Collection types:

• Set<T> un-ordered set of (distinct) objects of type T

• Bag<T> un-ordered set of objects of type T where duplicates are
allowed

• List<T> ordered collection of objects of type T where duplicates are
allowed

• Array<T> ordered and indexed collection of objects of type T where
duplicates are allowed

• Dictionary<S,T> set of object-pairs of type S and T respectivelyT

NOTE:

• Type of a relationship can only be a class or a collection of classes as we
have seen.

M. Naci Akkøk, W5.L2 Side 35
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– KEYSKEYS

• In ODL, classes (and their objects) do not need keys. OID is fully capable of
distinguishing between objects that have the same value-set in its elements
(attributes, relationships etc).

• In ODL, a key is specified with the key-word key or keys and a list of the attributes
that form the key(1)

• Several lists ca be specified to define several alternative keys

• Parentheses are used to group the members in multi-valued keys:

• key(a1, a2 , … , an) = “key with n attributes”

• keys a1, a2 , … , an = “each ai is a key, and each one of them can be a multi-
valued key, i.e., at =(b1,b2 , … , bk)”

• EXAMPLE of a single valued key:

class Beers (key name)

{ attribute string name;

}

• EXAMPLE of two 2-valued keys:

class Courses (key (dept, number), (room, hours))

{ ...

}

(1) Note that use of the term “attributes” here is actually wrong. In addition to attributes, relationships
and even methods cam be part of a key.

M. Naci Akkøk, W5.L2 Side 36
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– INSTANTIATABLE CLASSES and EXTENTSINSTANTIATABLE CLASSES and EXTENTS

• There is a difference between a class definition and the set of existing
(created and not yet destroyed) instances (objects) of the class, called an
extent

• In ODL the extent is expressed with the key-word extent followed by the

name of the extent (i.e., the name of the set to contain the instances of
the class)

• SYNTAX/EXAMPLE:

class Student (extent students key SSN)

{ ...

}

• Note that a class defined with the key-word class can be instantiated

from, i.e., can be used to create objects from

M. Naci Akkøk, W5.L2 Side 37
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– INTERFACESINTERFACES

• ODL allows for INTERFACES, which are in essence “signature classes” without own
objects (I.e., classes that one can not be used to instantiate objects from)

• Useful especially when we have several extents but with (some) common properties.

• EXAMPLE

interface Person

{ attribute integer SSN;

}

class Student : Person (extent students key SSN)

{ ...

}

class Teacher : Person (extent teachers key SSN)

{ ...

}

• Interfaces are defined using the key-word interface instead of class

• Interfaces can not be instantiated from but can be used to define other classes (as in
the example, indicating that both Students and Teachers are Persons.

• Since they cannot be instantiated from, it is meaningless to use the keywords extent
and key (or keys) in interfaces.

M. Naci Akkøk, W5.L2 Side 38
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– SUB-CLASSES, SUPER-CLASSES and INHERITANCE SUB-CLASSES, SUPER-CLASSES and INHERITANCE

• A sub-class inherits all properties of its super-class.

• EXAMPLE: Ales gets all the attributes, relationships and methods of the
Beers Class

• Super-classes are denoted by prefixing them with:

• colon (:) for interfaces

• Keyword extends for instantiatable classes

• EXAMPLE: All Ales are Beers with color:

class Ales extends Beers

{ attribute string color;

}

• Interfaces can inherit only from other interfaces (but classes can inherit
from interfaces as in our previous example of interfaces).

Beers

isa

Ales

name manf

color

M. Naci Akkøk, W5.L2 Side 39
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

ODL ODL –– MULTIPLE INHERITANCE MULTIPLE INHERITANCE

• Multiple inheritance is denoted by the keyword extends and a colon-
separated (“:”-separated) list of the classes being inherited from

• EXAMPLE:

class Amphibian extends car:boat { ... }

• Name conflicts are not allowed and
its designer’s/developer’s responsibility
to avoid such conflicts.

• All classes can inherit from (an arbitrary
number of) other classes or interfaces, but:

• an interfaces can only inherit from other
interfaces as we saw earlier

• and an instantiatable class can only inherit
from another instantiatable class, so a class
cannot be an extension of more than one class

Boat

isa

Amphibian

isa

color manf

Car

color manf

M. Naci Akkøk, W5.L2 Side 40
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

W5.L2W5.L2

Part 3Part 3

Introduction to Object-Introduction to Object-

Relational Database SystemsRelational Database Systems

(OR-DBMS)(OR-DBMS)

((…… over to old slides) over to old slides)

M. Naci Akkøk, W5.L2 Side 41
Institutt for informatikk, Universitetet i Oslo
INF3100/INF4100 – Database Systems

NEXT TIMENEXT TIME

Next time is week 6 (22. Feb. 2005)

• A bit about XML

• The Object Query Language (OQL)

