Data Storage - |l

!'_ Efficient Usage & Errors

Week 10, Spring 2005

Updated by M. Naci Akkgk, 27.02.2004, 03.03.2005
based upon slides by Pal Halvorsen, 12.3.2002.

Contains slides from:
Hector Garcia-Molina & Ketil Lund

i Overview

v Efficient storage usage
v Disk errors

v" Error recovery

| INF3100/INF4100 — Database Systems Page 2 M. Naci Akkgk, Spring 2005

!L Efficient Storage Usage

i Efficient Secondary Storage Usage

v Many programs are assumed to fit in main memory,
but when implementing a DBS one must assume that
data Is larger than main memory

v Must take into account the use of secondary storage

» there are large access time gaps, i.e., a disk access will
probably dominate the total execution time

» there may be huge performance improvements if we reduce
the number of disk accesses

> a “slow” algorithm with few disk accesses will probably
outperform a “fast” algorithm with many disk accesses

v' Several ways to optimize

| INF3100/INF4100 — Database Systems Page 4 M. Naci Akkgk, Spring 2005

Block Size — |

v The block size may have large effects on performance

v Example:
assume random block placement on disk and sequential file access
» doubling block size will halve the number of disk accesses

= each access take some more time to transfer the data, but the total
time iIs the same (i.e., more data per request)

= halve the seek times
= halve rotational delays are omitted
» e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for cheetah X15 typically an average of:
© 3.6 msis saved for seek time
© 2 msis saved in rotational delays
@ 0.026 ms is added per transfer time

> e.d., increasing from 2 KB to 64 KB saves ~96,4 % reading 64 KB

| INF3100/INF4100 — Database Systems Page 5 M. Naci Akkgk, Spring 2005

saving a total of 5.6 ms
when reading 4 KB (49,8 %)

i Block Size — 11

v Thus, increasing block size can increase performance
by reducing seek times and rotational delays

v However, a large block size is not always best
> blocks spanning several tracks still introduce latencies
» small data elements may occupy only a fraction of the block

v Which block size to use therefore depend on data size
and data reference patterns

v The trend, however, Is to use large block sizes as new
technology appear with increased performance

| INF3100/INF4100 — Database Systems Page 6 M. Naci Akkgk, Spring 2005

i Using Adjacent Sectors, Cylinders and Tracks

v To avoid seek time (and possibly rotational delay), we
can store data likely to be accessed together on

» adjacent sectors
(similar to using larger blocks)

> If the track is full, use another track on the same cylinder
(only use another head)

> If the cylinder is full, use next cylinder
(track-to-track seek)

v Advantage
» can approach theoretical transfer

rate (no seeks or rotational delays) ’
v Disadvantage
» no gain if we have unpredictable disk accesses

| INF3100/INF4100 — Database Systems Page 7 M. Naci Akkgk, Spring 2005

i Multiple Disks

v" Disk controllers and busses manage several devices

v One can improve total system performance by
replacing one large disk with many small accessed In

parallel

v Several independent heads can read simultaneously
(if the other parts of the system can manage the speed)

Two disks: Single disk: :
v v Note 1:

the single disk might be
faster, but as seek time and
! | rotational delay are the
I I dominant factors of total
t disk access time, the two

smaller disks might operate
faster together...

| INF3100/INF4100 — Database Systems Page 8 M. Naci Akkgk, Spring 2005

Multiple Disks: Striping

v Another reason to use multiple disks is when one disk cannot
deliver requested data rate

v In such a scenario, one |Giientt| [Ciieni2! [Ciienia! [Ciienia! [Ciients|

. I d . k
I I I I I I % 3 4
- o
g 2N] RO .
o - o N
= R oo
. . - A
- -~ Rty
- o0
™ R
- - 0%t
= R4
- o0
= W%
- - ¥ R W S
. " S e
- o 'y - S e
- dlSk 2 * - R
o s - B
S !, =~ o%e
e s - Lo
2N -
2 .
& o
2R B m el e
o, (A - e
2N ol
0 3

> required bandwidth: By,

> Buisplay = Buisk
> read from ndisks in parallel: 7B > Buisplay

> clients are serviced in rounds

v Advantages

» high data rates
» faster response time compared to one disk

> can't serve multiple clients in parallel ¢
| INF3100/INF4100 — Database Systems Page 9 M. Naci Akkgk, Spring 2005

> positioning time increases

Multiple Disk: Interleaving

v" Full striping usually not necessary today:
» faster disks

» better compression algorithms - - -

v' Interleaving lets each client be
serviced by only a set of the available disks
> make groups
» "stripe” data in a way such that
a consecutive request arrive at
next group (here each disk is a group)
v Advantages
» multiple clients can still be served in parallel
» more efficient disks
» potentially shorter response time

v" Drawbacks

> load balancing
(all clients access same group)

| INF3100/INF4100 — Database Systems Page 10 M. Naci Akkgk, Spring 2005

iMuItipIe Disks: Mirroring

v Multiple disks might come in the situation where all
requests are for one of the disks and the rest lie idle

v In such cases, it might make sense to have replicas of
the data on several disks — if we have identical disks,
it Is called mirroring

v Advantages
» faster response time

> survive crashes — fault tolerance

» load balancing by dividing the requests for the data on the
same disks equally among the mirrored disks

v Drawbacks
» Increases storage requirement

| INF3100/INF4100 — Database Systems Page 11 M. Naci Akkgk, Spring 2005

Disk Scheduling — |

v Seek time i1s a dominant factor of total disk I/0 time

v' Let disk controller choose which request to serve next
depending on current position on disk and requested block’s
position on disk (disk scheduling)

v' Several algorithms
» First-Come-First-Serve
» Shortest Seek First (SSF): serve the request closest to current position
cylinder number

X X X XX X XX X

Note:

SSF may have a problem with starvation, e.g., new
requests keep arriving whose positions are close to the
current position — blocks far away will never be read

| INF3100/INF4100 — Database Systems Page 12 M. Naci Akkgk, Spring 2005

time

v

Disk Scheduling — I

» Elevator (SCAN) algorithm: make head do sweeps from innermost to
outermost cylinder, make a stop if passing over a requested block,
reverse direction if there are no more requests in the current direction

cylinder number

X X X XX X XX X

time

» Several other algorithms.....

| INF3100/INF4100 — Database Systems Page 13 M. Naci Akkgk, Spring 2005

i Prefetching / Multiple Buffering — |

v If we can predict the access pattern, one might speed
up performance using prefetching
» eases disk scheduling
» read larger amounts of data per request
» data In memory when requested — reducing page faults

v One way of doing prefetching is
double (multiple) buffering:
> read data into first buffer

» process data in first buffer and
at the same time read data into second buffer

» process data in second buffer and
at the same time read data into first buffer

> elc.

| INF3100/INF4100 — Database Systems Page 14 M. Naci Akkgk, Spring 2005

Prefetching / Multiple Buffering — I

v Example:
have a file with block sequence B1, B2, ...
our program processes data sequentially, i.e., B1, B2, ...

» single buffer solution:
= read B1 - buffer
= process data in buffer memory:
= read B2 - buffer
= process data in Buffer

= If P = time to process/block . '
R = time to read in 1 block disk:
n = # blocks

single buffer time = n (P+R)

| INF3100/INF4100 — Database Systems Page 15 M. Naci Akkgk, Spring 2005

Prefetching / Multiple Buffering — 111

» double buffer solution:
« read B1 - bufferl
= process data in bufferl, read B2 - buffer2
= process data in buffer2, read B3 - bufferl
= process data in bufferl, read B4 - buffer2

memory.

n If P = time to process/block
R = time to read in 1 block
n = # blocks disk- '
if P >R

double buffer time =R + nP

» If P <R, we can try to add buffers (/7 - buffering)

| INF3100/INF4100 — Database Systems Page 16 M. Naci Akkgk, Spring 2005

!'_ Disk Errors

Disk Errors — |

v Disk errors are rare:

Barracuda 180 | Cheetah 36 | Cheetah X15

Note 1: Note 3:

MTTF is the time in hours between how often do we get permanent errors on
each time the disk crashes a sector — data moved to spare tracks
Note 2: Note 4:

how often do we read wrong values how often do we move the arm wrong

— corrected when re-reading (over wrong cylinder) — make another

| INF3100/INF4100 — Database Systems Page 18 M. Naci Akkgk, Spring 2005

i Disk Errors — |1

v Nevertheless, a disk can fail in several ways

» Intermittent failure —
temporarily errors corrected by re-reading the block, e.g.,
dust on the patter making a bit value wrong

» media decay/write errors —
permanent errors where the bits are corrupted, e.g.,
disk head touches the platter and damages the magnetic
surface

» disk crashes —
the entire disk becomes permanent unreadable

| INF3100/INF4100 — Database Systems Page 19 M. Naci Akkgk, Spring 2005

iChecksums — |

v Disk sectors are stored with some redundant bits,
called checksums

v Used to validate a read or written sector:
> read sector and stored checksum

» compute checksum on read sector
» compare read and computed checksum

v If the validation fails (read and computed checksum
differ), the read operation Is repeated until
» the read operation succeed -> return correct content
> the limit of retries is reached - return error “bad disk block”

| INF3100/INF4100 — Database Systems Page 20 M. Naci Akkgk, Spring 2005

Checksums — 11

v Many different ways to compute checksums
» 1-bit parity: count 1's in block
= even number: parity bit O

=« 0dd number: parity bit 1
« large chance of not detecting errors

> Use more redundant bits

= 8-bit parity: one parity bit per bit in a byte
(count 1's in most significant bit,) = decrease amount of missed
errors

= N-bit parity: chance of missing an error is 1/2"

» Polynomial codes — CRC (cyclic redundancy check) :
= following properties of binary numbers if using modulo-2 arithmetic
= generate a single set of check digits based on the code

» Reed-Solomon, 1-complement sum,
v Checksums only detect errors

| INF3100/INF4100 — Database Systems Page 21 M. Naci Akkgk, Spring 2005

Stable Storage

v The stable storage policy may solve some errors

YV V. V YV V

applicable on one or more disks

use checksums for temporarily read errors
sectors are paired to represent one sector X
X is represented by X, and Xy

writing policy:

1. write X into X, - use checksum to validate, if wrong retry. If still wrong,
assume a media failure and use spare sector for X,

2. repeat (1) for X,

read policy

1. read X_ — use checksum to validate. If OK, return X as X. If wrong retry.
2. If X_ cannot be read, repeat (1) for Xg

Stable storage doubles storage requirement, but can for

example correct some media failures
(if either X_ or Xy correct, X can always be read)

| INF3100/INF4100 — Database Systems Page 22 M. Naci Akkgk, Spring 2005

!'_ Error Recovery

iCrash Recovery

v The most serious type of errors are disk crashes, e.g.,
» head have touched platter and is damaged
> platters are out of position
> ...

v No way to restore data unless we have a backup on
another medium, e.g., tape, mirrored disk, etc.

v" A number of schemes have been developed to reduce
the probability of data loss during permanent disk
errors

» usually using an extended parity check

» most known are the Redundant Array of Independent Disks
(RAID) strategies

| INF3100/INF4100 — Database Systems Page 24 M. Naci Akkgk, Spring 2005

i Disk Faillure Models

v Our Seagate disks have a mean-time-to-failure of 55
years (at this time ~50 % of the disks are damaged),
but

» many disks fail during the first months (production errors)
» If no production errors, disks will probably work many years

» old disks have again a larger probability of failure due to
accumulated effects of dust, etc.

| INF3100/INF4100 — Database Systems Page 25 M. Naci Akkgk, Spring 2005

iModulo-Z Sum — |

v' Many parity schemes use modulo-2 sum, or also called
exclusive OR (XOR), to generate a redundant correction block

v The modulo-2 sum is performed by letting the i-th bit of the
sum to be
» 1 —if an odd number of blocks have 1 in the i-th position
> 0 - if an even number of blocks have 1 in the i-th position

v Example

block 1
block 2
block 3
modulo-2sum |0 |1|1(0|(0j0|1]|0

| INF3100/INF4100 — Database Systems Page 26 M. Naci Akkgk, Spring 2005

i Modulo-2 Sum — |11

v Let @ be the modulo-2 sum operator. Then ...

> ... the commutative law says that
XOYy=y®X

> ... the associative law says that
XPY)Dz=xD (y D 2)

> ... the rdentityis 0, I.e.,
X=0®x=x®0

> ... @IS ItS own Inverse, I.e.,
X@®x=0

| INF3100/INF4100 — Database Systems Page 27

M. Naci Akkgk, Spring 2005

i RAID (Redundant Array of Inexpensive Disks)

v RAID level 0: non-redundant

v RAID level 1: mirrored

v RAID level 2: memory-style error correcting code (ECC)
v RAID level 3: bit-interleaved parity

v RAID level 4: block-interleaved parity

v RAID level 5: block-interleaved distributed-parity

v RAID level 6: P+Q redundancy

| INF3100/INF4100 — Database Systems Page 28 M. Naci Akkgk, Spring 2005

i RAID 0 (non-redundant) — |

v RAID O: striped disk array without fault tolerance

v' Data i1s broken down into blocks and each block is
written to a separate disk

RAID ©

COFYRIGHT & 1996, 1997, 1958, 15%% ADVANCED COMPUTER E NETWORK CORPORATION

| INF3100/INF4100 — Database Systems Page 29 M. Naci Akkgk, Spring 2005

iRAID 0 (non-redundant) — I

v Advantages

» 1/0O performance is greatly improved by spreading the 1/0
load across many channels and drives

> best performance is achieved when data is striped across
multiple controllers with only one drive per controller
(remember that the performance of one disk has improved)

v" Disadvantages
> hot a "True" RAID because it 1Is NOT fault-tolerant

> the failure of just one drive will result in all data in an array
being lost

> should never be used in error-critical environments

| INF3100/INF4100 — Database Systems Page 30 M. Naci Akkgk, Spring 2005

iRAID 1 (mirroring) — |

v RAID 1: mirroring
v' Data Is duplicated on another disk

RAID 1

i
J
K
L

L

COPYRIGHT & L9956, 1997, 1998, 1999 ADVANCED COMPUTER E NETWORE CORFPORATION

| INF3100/INF4100 — Database Systems Page 31 M. Naci Akkgk, Spring 2005

iRAID 1 (mirroring) — I

v Advantages
» one write or two reads possible per mirrored pair

» 100% redundancy of data means no rebuild is necessary In
case of a disk failure, just a copy to the replacement disk

» transfer rate per block is equal to that of a single disk
» under certain circumstances, RAID 1 can sustain multiple
simultaneous drive failures
v Disadvantages
» highest disk overhead of all RAID types (100%) - inefficient

» may not support hot swap of failed disk when implemented
In "software"

| INF3100/INF4100 — Database Systems Page 32 M. Naci Akkgk, Spring 2005

RAID 2 (Hamming ECC) — |

v RAID 2: hamming ECC

v" Each bit of data word is written to a data disk drive. Each
data word has its Hamming Code ECC word recorded on the
ECC disks. On read, the ECC code verifies correct data or

corrects single disk errors.
v NB! no commercial implementations exist

RAID 2

AD

Co
DO

A1

B1

(1
D1

A2
B2

(2
D2

A3
B3

3
[E]

ECC/Ax
ECC/Bx

ECC/Cx
ECC/Dx

ECC/Az
ECC/Bz
ECC/Cz
ECC/Dz

AO to A3=Word A: BO to B3 = Word B:
€0 to C3=Word C; DO to D3 = Word D

COFYRIGHT & 199G, 1957, 1998, 159559 ADVANCED COMPUTER & NETWOREK CORPORATION

ECC/Ax to Az=Word A ECC; ECC/Bx to Bz = Word B ECC;
ECC/Cx to Cz=Word € ECC; ECC/Dx to Dz = Word D ECC

| INF3100/INF4100 — Database Systems Page 33

M. Naci Akkgk, Spring 2005

i RAID 3 (Bit-Interleaved Parity) — |

v RAID 3: parallel transfer with parity

v The data block is subdivided ("striped") and written
on the data disks. Stripe parity is generated on
writes, recorded on the parity disk and checked on
reads.

RAID 3
Stripes 0, 1,
2, 3 Parity

Stripe 0 |Stripe 1 | Stripe 2 | Stripe 3 Parity
Generation

COPYRIGHT & 1996, 1997, 1958, 1959 ADVANCED COMMPUTER E NETWIEE CORPORATION

| INF3100/INF4100 — Database Systems Page 34 M. Naci Akkgk, Spring 2005

i RAID 4 (Block-Interleaved Parity) — |

v RAID 4: independent data disks with shared parity
disk
v Each entire block is written onto one data disk. Parity

for same rank blocks is generated on writes,
recorded on the parity disk and checked on reads.

RAID 4

Block 0, 1,
2, 3 Parity

Block 1 Block 3

Parity
Generation

COPYRIGHT & 19926, L9597, 199E, 1990 ADVANCED COMPUTER E NETWORE CORPORATION

| INF3100/INF4100 — Database Systems Page 35 M. Naci Akkgk, Spring 2005

i RAID 4 (Block-Interleaved Parity) — I

v Advantages
» high read data transaction rate
> low ratio of parity disks to data disks means high efficiency

v' Disadvantages
» quite complex controller design

> difficult and inefficient data rebuild in the event of disk
failure

» updating blocks can be a bottleneck as all parity blocks are
on the same disk (and must be accessed for all write
operations)

| INF3100/INF4100 — Database Systems Page 36 M. Naci Akkgk, Spring 2005

RAID 4 (Block-Interleaved Parity) — I

v Read operations
» no different than normal disk reads
» disks can be accessed in parallel

» If requested disk is busy and all of the other disks are idle (including
parity disk), we may read all other disks and generate requested block

v Write operations
» update data block and parity block

» parity block can be updated two ways
= reading all n block and generating the whole parity block from scratch

= perform modulo-2 sum of old and new version of the block, and simply add
the sum (again using modulo-2 sum) to the parity block

v Recovery
> Any disk can fail and be restored using modulo-2 sum of the other disks

| INF3100/INF4100 — Database Systems Page 37 M. Naci Akkgk, Spring 2005

RAID 5 (Block-Interleaved Distributed Parity) — |
v RAID 5: independent data disks with distributed parity disk

v Each entire data block is written on a data disk; parity for
blocks in the same rank is generated on writes, recorded Iin a
distributed location and checked on reads.

RAID 5

NFS

Parity
Generation

Bl|Blocks C|Blocks D|]Blocks E|Blocks

COPYRIGHT £ 1996, 1997, 1958, 1995 ADVANCED COMPUTER E NETWIRE CORPORATION

| INF3100/INF4100 — Database Systems Page 38 M. Naci Akkgk, Spring 2005

i RAID 5 (Block-Interleaved Distributed Parity) — I

v Advantages
» highest read data transaction rate
» medium write data transaction rate
> low ratio of parity disks to data disks means high efficiency
» parity distributed, i.e., updating parity blocks goes to
different disks
v' Disadvantages
» complex controller design
» difficult to rebuild in the event of a disk failure
» Individual block data transfer rate same as single disk

| INF3100/INF4100 — Database Systems Page 39 M. Naci Akkgk, Spring 2005

i RAID 5 (Block-Interleaved Distributed Parity) — Il

v Read, write, and recovery operations are analogous
to RAID 4

v However, parity is distributed, possible scheme

> N + 1 disks numbered O to n

> let cylinder 7 on disk s be parity if the
reminder of //(n+ 1) is J,
l.e.,
cylinder / + 7 on disk y + 1 be next parity

| INF3100/INF4100 — Database Systems Page 40 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — |

v RAID 6: independent data disks with two independent distributed parity
schemes

v RAID 6 is essentially an extension of RAID level 5 which allows for
additional fault tolerance by using a second independent distributed parity
scheme

v Data is striped on a block level across a set of drives, just like in RAID 5,
and a second set of parity is calculated and written across all the drives

RAID &

C]Blocks D|Blocks

AlBlocks B|Blocks

Parity
Generation

COFYRIGHT © 1996, 199y, LO9E, 1999 ADVANCED COMPUTER & NETWDOREE CORPORATIOHN

| INF3100/INF4100 — Database Systems Page 41 M. Naci Akkgk, Spring 2005

i RAID 6 (P+Q Redundancy) — II

v Advantages

» provides for an extremely high data fault tolerance and can
sustain multiple simultaneous drive failures

> perfect solution for error-critical applications
> parity information can be distributed as in RAID 5

v" Disadvantages
» very complex controller design
» controller overhead to compute parity addresses is extremely
high
> very poor write performance

> requires at least N+2 drives to implement because of two-
dimensional parity scheme

| INF3100/INF4100 — Database Systems Page 42 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — Il

v In general, we can add several redundancy disks to be
able do deal with several simultaneous disk crashes

v Many different strategies based on different EECs,
e.g.,:

» Read-Solomon Code (or derivates):

= corrects n simultaneous disk crashes using n parity disks
= a bit more expensive parity calculations compared to modulo-2 sum

» Hamming Code:

= corrects 2 disk failures using 2¢ — 1 disks where k disks are parity
disks and 2 —k — 1

= uses modulo-2 sum

« the parity disks are calculated using the data disks determined by the

hamming code, i.e., a k x (2 — 1) matrix of 0’s and 1’s representing
the 2% — 1 numbers written binary except 0

| INF3100/INF4100 — Database Systems Page 43 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — IV

v Example:

using a Hamming code matrix, 7 disks, 3 parity disks

parity <

~

data <

N

N WA |G| | Ny | disk number

1

Note 1:
the rows represent binary numbers 1 - 7

Note 2:
the rows for the parity disks have single 1's

Note 3:
the rows for the data disks have two or more 1's

Note 4:
the idea of each column now is that the parity disk
having a 1 in this column is generated using the
data disks having one in this column:
- parity disk 5 is generated using disk 1, 2, 3
- parity disk 6 is generated using disk 1, 2, 4
- parity disk 7 is generated using disk 1, 3, 4

Note 5:
the parity blocks are generated using modulo-2 sum
from the data blocks

| INF3100/INF4100 — Database Systems Page 44 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — V

v Examp|e (Cont_): Hamming code matrix

disk block values

/ /
calculating parity > P
using the hamming &| 6 s| 6
matrix to find the 5 5
corresponding
data disks to each 4 4 | 01000010
parity disk <| 3 «| 3| 00111000
© ©
e % < 2 | 10101010
1 Z | 11110000

Note 1: parity disk 5 is generated using disk 1, 2, 3
11110000 © 10101010 © 00111000 = 01100010

Note 2: parity disk 6 is generated using disk 1, 2, 4
11110000 ¢ 10101010 ¢ 01000010 = 00011011

Note 3: parity disk 7 is generated using disk 1, 3, 4

11110000 @ 00111000 © 01000010 = 10001001
| INF3100/INF4100 — Database Systems Page 45

M. Naci Akkgk, Spring 2005

i RAID 6 (P+Q Redundancy) — VI

v Read operations is performed from any data disk as a
normal read operation

v Write operations are performed as shown on previous
slide (similar RAID 5), but
» now there are several parity disks
» each parity disk does not use all data disks

v Update operations are performed as for
RAID 4 or RAID 5:

» perform modulo-2 sum of old and new version of the block,
and simply add the sum (again using modulo-2 sum) to the
parity block

| INF3100/INF4100 — Database Systems Page 46 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — VII

disk block values

v Example update:

> update data disk 2 to 00001111 _| 7| 10001001
> parity disks 5 and 6 is using data disk 2 '§ 6 | 10111110
5 (11000111
Note 1:
olg vealue is 10101010. 4 01000010
Difference is 10101010 @ 00001111 =[10100201] <]l 3 1 00111000
Note2: S| 2 Toooo1111
Insert new value in data disk 2: 00001111
Z | 11110000

Note 3:

update parity disk 5, take difference between old and new
block, and perform modulo-2 sum with parity:

10100101 © 01100010 = 11000111

Note 5:

Note 4: : : .
parity disk 6 is similarly updated

insert new value in parity disk 5: 11000111

| INF3100/INF4100 — Database Systems Page 47 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — VIII

v Recovery operations is performed using modulo-2 sum
and the parity disks

» one disk failure is easy — just apply one set of parity and
recover

> two disk failures a bit more tricky
= note that all parity disk computations are different
« we will always find one configuration where only one disk has failed
= use this configuration to recover the failed disk
= now there is only one failed disk, and any configuration can be used

| INF3100/INF4100 — Database Systems Page 48 M. Naci Akkgk, Spring 2005

RAID 6 (P+Q Redundancy) — IX

Hamming code matrix

disk block values

v Example recovery:

> disk 2 and 5 have failed / 1

/| 10001001

parity

Note 1:
there is always a column in the

hamming code matrix where

only one of the failed disks
have a 1- value

data

Note 2:

column 2 use data disk 2, and
no other disks have crashed,

NINWVINO|S
R |lO|Fr|—|O|O

l.e., use disk 1, 4, and 6 to
recover disk 2

Note 4:

Note 3: restoring disk 5 can now be
restoring disk 2: done using column 1

11110000 © 01000010 @ 00011011 = 10101001

| INF3100/INF4100 — Database Systems Page 49 M. Naci Akkgk, Spring 2005

Summary

v' Efficient storage usage
> block size
» scheduling
» adjacent blocks
> multiple disks
» prefetching / multiple-buffering

v" Disk errors
» new disks have few errors, but they DO occur
» checksums

v' Error recovery

» stable storage
> RAID

| INF3100/INF4100 — Database Systems Page 50 M. Naci Akkgk, Spring 2005

	Data Storage - II:�Efficient Usage & Errors
	Overview
	Efficient Storage Usage
	Efficient Secondary Storage Usage
	Block Size – I
	Block Size – II
	Using Adjacent Sectors, Cylinders and Tracks
	Multiple Disks
	Multiple Disks: Striping
	Multiple Disk: Interleaving
	Multiple Disks: Mirroring
	Disk Scheduling – I
	Disk Scheduling – II
	Prefetching / Multiple Buffering – I
	Prefetching / Multiple Buffering – II
	Prefetching / Multiple Buffering – III
	Disk Errors
	Disk Errors – I
	Disk Errors – II
	Checksums – I
	Checksums – II
	Stable Storage
	Error Recovery
	Crash Recovery
	Disk Failure Models
	Modulo-2 Sum – I
	Modulo-2 Sum – II
	RAID (Redundant Array of Inexpensive Disks)
	RAID 0 (non-redundant) – I
	RAID 0 (non-redundant) – II
	RAID 1 (mirroring) – I
	RAID 1 (mirroring) – II
	RAID 2 (Hamming ECC) – I
	RAID 3 (Bit-Interleaved Parity) – I
	RAID 4 (Block-Interleaved Parity) – I
	RAID 4 (Block-Interleaved Parity) – II
	RAID 4 (Block-Interleaved Parity) – III
	RAID 5 (Block-Interleaved Distributed Parity) – I
	RAID 5 (Block-Interleaved Distributed Parity) – II
	RAID 5 (Block-Interleaved Distributed Parity) – III
	RAID 6 (P+Q Redundancy) – I
	RAID 6 (P+Q Redundancy) – II
	RAID 6 (P+Q Redundancy) – III
	RAID 6 (P+Q Redundancy) – IV
	RAID 6 (P+Q Redundancy) – V
	RAID 6 (P+Q Redundancy) – VI
	RAID 6 (P+Q Redundancy) – VII
	RAID 6 (P+Q Redundancy) – VIII
	RAID 6 (P+Q Redundancy) – IX
	Summary

