
Semi-Structured Data

and XML

Edited By M. Naci Akkøk spring 2003, 2004 and 2005.

Based upon slides by Pål Halvorsen (26/2-2002).

Contains slides made by Arthur M. Keller and Vera Goebel.

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

Information Integration - I

Problem: related data exists in many places. They talk
about the same things, but differ in model,
schema, conventions (e.g., terminology).
How should one retrieve data from different places?

Examples:

In the real world, every bar has its own database.

Some may have relations like beer-price; others have an
Microsoft Word file from which the menu is printed.

Some keep phones of manufacturers but not addresses.

Some distinguish beers and ales; others do not.

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

Information Integration - II

Warehousing:
Make copies of information at each data source centrally, combine

into a global schema. Query data stored at the warehouse.

Reconstruct (recopy) data daily/weekly/monthly, but do not try to

keep it up-to-date.

Mediation:
Create a view of all information, but do not make copies. Answer

queries by sending appropriate queries to sources (no local data).

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

Semi-Structured Data

Semi-structured data model allows information from several sources,
with related but different properties, to be fit together in one whole.
Thus, suitable for

¬ integration of databases

¬ sharing information on the Web

Semi-structured data is data that may be irregular or incomplete and
have a structure that may change rapidly or unpredictably.

¬ It generally has some structure, but does not conform to a fixed schema

¬ “Schemaless” and self-describing, i.e., data carries information about its
own schema (e.g., in terms of XML element tags)

Characteristics

¬ Heterogeneous

¬ Irregular structure

¬ Large evolving schema

Major application: XML documents

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

Semi-Structured Data:

Graph Representation

Collection of nodes
¬ Atomic values on leaf nodes

¬ Interior nodes have one or more
arcs

Nodes connected in a general
rooted graph structure

Labels on arcs
¬ name of attribute/type

¬ relationship

Example: Beer-Bar-Manufacturer

root

se
rv

ed
At

bar
beer

beer

bud

name

name

miller

manufacturer

name

addr

addr

name

serves

makes madeBy

Joe’s

Extensible Markup Language

(XML)

2002 Pål HalvorsenINF 212 – database theory

Data Models & Database System Architectures

- Chronological Overview -

Network Data Models (1964)

Hierarchical Data Models (1968)

Relational Data Models (1970)

Object-oriented Data Models (~ 1985)

Object-relational Data Models (~ 1990)

Semistructured Data Models (XML 1.0) (~1998)

2002 Pål HalvorsenINF 212 – database theory

Extensible Markup Language (XML)

Standard of the World Wide Web Consortium (W3C) in
1998

An XML document is only a file of characters

Similar to HTML, but

¬ HTML uses tags for formatting (e.g., “italic”).

¬ XML uses tags for semantics (e.g., “this is an address”).

Two modes:

¬ Well-formed XML allows you to invent your own tags, much
like labels in semi-structured data.

¬ Valid XML involves a Document Type Definition (DTD) that
tells the labels and gives a grammar for how they may be
nested.

2002 Pål HalvorsenINF 212 – database theory

XML:

Tags

Tags are text surrounded by brackets, i.e., <...>

Tags come in matching pairs, e.g.,

<FOO> is balanced by </FOO>

Nesting allowed (start and end in same range), e.g.,
<BAR> <NAME></NAME> </BAR>

Unbalanced tags not allowed, e.g.,

<P>,
, and <HR> in HTML

2002 Pål HalvorsenINF 212 – database theory

XML:

Well-Formed XML

Minimal requirement:
XML declaration and root tags surrounding entire body

<? XML VERSION = "1.0" STANDALONE = "yes" ?>

<XXX>

.....

</XXX>

NOTE 1:

XML version

NOTE 2:

there is no DTD specified

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

 Well-Formed XML: Example
<?XML VERSION = "1.0" STANDALONE = "yes"?>

<BARS>

<BAR> <NAME>Joe's Bar</NAME>

<BEER> <NAME>Bud</NAME>

<PRICE>2.50</PRICE>

</BEER>

<BEER> <NAME>Miller</NAME>

<PRICE>3.00</PRICE>

</BEER>

</BAR>

<BAR>

...

</BAR>

</BARS>

NOTE 1:

only balanced tags

NOTE 2:

value between two surrounding tags

NOTE 3:

nesting within the same range

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

Document Type Definitions (DTD)
Essentially a grammar describing the legal nesting of tags

Intention is that DTD’s will be standards for a domain,
used by everyone preparing or using data in that domain
Example: a DTD for describing protein structure; a DTD for describing bar

 menus, etc.

Structure of a DTD:

<!DOCTYPE root tag [

<!ELEMENT name (components)>

... more elements ...

]>

The root-tag is used to surround the document which uses
these rules

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

Elements of a DTD
An element is a name (its tag) and a parenthesized description of
tags within an element.

Special case: (#PCDATA) after an element name means it is text.

Each element name is a tag.

Its components are the tags that appear nested within, in the order
specified.

Multiplicity of a tag is controlled by:

1. * = zero or more of.

2. + = one or more of.

3. ? = zero or one of.

In addition: | = “or.”

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

DTD: Example

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

NOTE 1:

BARS is root-tag

NOTE 2:

multiplicity of tags

NOTE 3:

name (and price) has a text value

NOTE 4:

Inside <BARS>-tag we’ll find zero or

more <BAR>-tags

NOTE 5:

a BAR has a name and serves one or more

beers (which again has components)

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

Using a DTD

To use a DTD, set STANDALONE = "no":
<?XML VERSION = "1.0" STANDALONE = "no"?>

Either

¬ Include the DTD as a preamble, or

¬ Follow the XML tag by a DOCTYPE declaration with the root tag,

the keyword SYSTEM, and a file where the DTD can be found.

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

Using a DTD: Example
<?XML VERSION = "1.0" STANDALONE = "no"?>

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER> <NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER> <NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

NOTE 1:

DTD may be in a separate file<!DOCTYPE Bars SYSTEM "bar.dtd">

NOTE 2:

DTD may be included as a

preamble

NOTE 3:

BARS is root-tag and

surround the document

which uses these rules

NOTE 4:

BEER has a name and a price

NOTE 5:

BAR has a name and serves

one or more beers.

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

 Attribute Lists

Opening tags can have “arguments” that appear within the tag, in
analogy to constructs like in HTML.

Keyword !ATTLIST introduces a list of attributes and their types for
a given element in the DTD.

Example of declaration:

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR type = "sushi" | "sports" | "other">

Bar objects can have a type, and the value of that type is limited to
the three strings shown.

Example of use:

<BAR type = "sports">

. . .

</BAR>

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

 ID’s and IDREF’s

ID is used to give a unique name for an element/object

IDREF is used to provide pointers to elements/object

(by the ID-name), and multiple object references within

one tag is allowed. IDREFS is used if there might be a set

of references

Analogous to NAME = foo and HREF = #foo in HTML

Allows the structure of an XML document to be a general

graph, rather than just a tree.

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

XML:

 ID’s and IDREF’s: Example
Let us include in our Bars document type elements that are the manufacturers of
beers, and have each beer object link, with an IDREF, to the proper manufacturer
object:

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT MANUFACTURER (ADDR,...)>

<!ATTLIST MANUFACTURER (name ID)>

<!ELEMENT ADDR (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ATTLIST BEER (manf IDREF)>

<!ELEMENT PRICE (#PCDATA)>

]>

...

<MANUFACTURER name= ="X">...</MANUFACTURER>

...

<BEER manf="X"><NAME>Bud</NAME><PRICE>2.50</PRICE></BEER>

NOTE 1:

MANUFACTURER has

a name-ID

NOTE 2:

BEER has a poiner

to a manufacturer

NOTE 3:

The IDREF value in

BEER equals the ID

value in the

corresponding
manufacturer

Spring 2005, M. Naci AkkøkINF3100/INF4100 – Database Systems

Summary

Semi-structured data

Extensible Markup Language (XML)

