Some Examples
 (for DATA REPRESENTATION)

NOTE: Examples are not lectured, but it is highly recommended that you go through them to check your understanding.

Example: Disk Organization - I

\checkmark Consider a (very old) disk with the following characteristics:
block size $B=512$ bytes
gap size $\mathrm{G}=128$ bytes
20 sectors per track
400 tracks per surface
15 double-sided platters
disk platters rotates at a speed of 2400 RPM
average seek time 30 ms
(all numbers are given as a factor of 2 , i.e., $K B=2^{10}, \mathrm{MB}=2^{20}$)
\checkmark What is the total capacity of a track
\Rightarrow Total $=20 *(512+128)=12800$ bytes $=12.5 \mathrm{~KB}$
\checkmark What is its useful capacity of a track (excluding interblock gaps)
\Rightarrow Useful $=20 * 512=10240$ bytes $=10 \mathrm{~KB}$

Example: Disk Organization - II

\checkmark How many cylinders are there?
\Rightarrow Number of cylinders $=$ number of tracks $=\underline{400}$
\checkmark What is the total capacity of a cylinder?
\Rightarrow Total $=15 * 2 * 20 *(512+128)=384000 \mathrm{~B}=\underline{375} \mathrm{~KB}$
\checkmark What is the useful capacity of a cylinder?
\Rightarrow Useful $=15 * 2 * 20 * 512=307200 \mathrm{~B}=\underline{300 \mathrm{~KB}}$
\checkmark What is the total capacity of the disk?
\Rightarrow Total $=15 * 2 * 400 * 20 *(512+128)=153600000 \mathrm{~B}=146.5 \mathrm{MB}$
\checkmark What is the useful capacity of a disk?
\Rightarrow Useful $=15 * 2 * 400 * 20 * 512=117.18 \mathrm{MB}$
\checkmark What is the average rotational delay rd?
$\Rightarrow \mathrm{rd}=($ time for one disk revolution) $/ 2=25 / 2=\underline{12.5 \mathrm{~ms}}$

Example: Disk Organization - III

\checkmark What is the total transfer rate (ttr)?
$\Rightarrow \mathrm{ttr}=$ (total track size in bytes) / (time for one disk revolution)
$=12800$ B / (60 / 2400) s = 12800 B / $25 \mathrm{~ms}=500 \mathrm{~KB} / \mathrm{s}$
\checkmark What is the efficient (formatted) transfer rate (etr)?
\Rightarrow etr $=$ (useful capacity of a track) / (time for one disk revolution)

$$
=10240 \mathrm{~B} /(60 / 2400) \mathrm{s}=10240 \mathrm{~B} / 25 \mathrm{~ms}=\underline{400 \mathrm{~KB} / \mathrm{s}}
$$

\checkmark What is the sector transfer time (stt)?
$\Rightarrow 512 /(512+128) * 360 / 20=14.4$ degrees per sector $\mathrm{stt}=14.4 / 360 * 25 \mathrm{~ms}=1 \mathrm{~ms}$

Example: Disk Organization - IV

\checkmark What is the time to transfer 4 KB (sectors in same track)?
$\Rightarrow 7$ gaps and 8 sectors must pass under disk head 14.4 degrees per sector
$128 /(512+128) * 360 / 20=3.6$ degrees per gap
btt $=((8 * 14.4)+(7 * 3.6)) / 360 *(60 / 2400) \mathrm{s}$
$=140.4 / 360 * 25 \mathrm{~ms}=\underline{9.75} \mathrm{~ms}$
\Rightarrow an approximate value may be calculated using the efficient transfer time or bulk transfer rate (btr) $b t r=(B /(B+G)) * t t r=0.8 * 500=400 \mathrm{~KB} / \mathrm{s}$ time to transfer $4 \mathrm{~KB} \approx 4096 / 400 \mathrm{~KB} / \mathrm{s}=10 \mathrm{~ms}$

Example: Disk Organization - V

\checkmark How much time does it take (on average) to locate and transfer a single sector given its address?
\Rightarrow average time $=s+r d+s t t=30+12.5+1=\underline{43.5 \mathrm{~ms}}$
\checkmark Calculate the average time to transfer 20 random sectors
\Rightarrow time $=20 *(\mathrm{~s}+\mathrm{rd}+\mathrm{stt})=20 * 43.5=\underline{870 \mathrm{~ms}}$
\checkmark How much time is saved if the 20 sectors are stored contiguously (on same track)?
$\Rightarrow 20$ sectors and 19 gaps $=356.6$ degrees
time $=30+12.5+(356.6 / 360 * 25)=67.25 \mathrm{~ms}$
you save $=870-67.25=\underline{802.75 \mathrm{~ms}} \quad(92.2 \%)$

Example: Disk Organization - VI

\checkmark Assume a process uses 100 ms to process the data in a 4 KB block. How much time is saved using double buffering compared to single buffering if we shall process 10 blocks?
\Rightarrow single $\quad=10 *$ (retrieval time + processing time)

$$
=10 *(9.75+100)=1097.5 \mathrm{~ms}
$$

double $\quad=$ retrieval time $+10 *$ processing time
$=9.75+10 * 100=1009.75 \mathrm{~ms}$
savings $\quad=1097.5-1009.75=87.75 \mathrm{~ms}(8 \%)$

Example: Disk Organization - VI

\checkmark Assume we want to read an MPEG movie in DVD quality (average 3.5 Mbps). How many disks do we need in parallel to achieve requested bandwidth assuming
(i) random placement
$\Rightarrow 3.5 \mathrm{Mbit} / \mathrm{s} \approx 458.8 \mathrm{~KB} / \mathrm{s}$
per-disk-transfer-rate $=512$ byte $/(30+12.5+1) \mathrm{ms} \approx 11.5 \mathrm{~KB} / \mathrm{s}$
number of needed disks $=$ ceiling(458.8/11.5) $=\underline{40 \text { disks }}$
\checkmark (i) random placement, but increasing block size to 4 KB
\Rightarrow per-disk-transfer-rate $=4096$ byte $/(30+12.5+9.75) \mathrm{ms} \approx 214 \mathrm{~KB} / \mathrm{s}$ number of needed disks $=$ ceiling $(458.8 / 214)=\underline{3}$ disks

Example: Disk Organization - VI

\checkmark The disk we have used is OLD. What would the total transfer time (using bulk/efficient transfer time) be for a 4 KB blocks if use specifications from Seagate X15 to change
(i) only data density on the platter to 617 sectors per track
(20)
\Rightarrow the new track can hold 315904 B data
(10240 B)
etr $=$ (useful capacity of a track) / (time for one disk revolution)

$$
=(617 * 512) \mathrm{B} /(60 / 2400) \mathrm{s}=12.05 \mathrm{MB} / \mathrm{s}
$$

($400 \mathrm{~KB} / \mathrm{s}$)
total $=30+12.5+(4 / 12340)=\underline{42.5003 \mathrm{~ms}}$
(52.5 ms)
\checkmark (ii) only seek time to 3.6 ms (30 ms)
\Rightarrow total $=3.6+12.5+10=26.1 \mathrm{~ms}$
(52.5 ms)
\checkmark (iii) only rotational speed to 15.000 RPM
(2400 RPM)
\Rightarrow etr $=10240 /(60 / 15000)=10240 / 0.004=2.44 \mathrm{MB} / \mathrm{s}$ total $=30+2+(4 / 2500)=\underline{32.502 \mathrm{~ms}}$
(iv) all the above
\Rightarrow etr $=315904 / 0.004=75.31 \mathrm{MB} / \mathrm{s}$
($400 \mathrm{~KB} / \mathrm{s}$)
total $=3.6+2+(4 / 77125)=\underline{5.60005 \mathrm{~ms}}$
(52.5 ms)

Example: File Organization - I

\checkmark A file has $r=20000$ fixed-length STUDENT records. Each record has the following fields:

NAME (30 bytes),
SSN (9 bytes),
ADDRESS (40 bytes),
PHONE (9 bytes),
BIRTHDATE (8 bytes),
SEX (1 byte),
MAJ ORDEPTCODE (4 bytes),
MI NORDEPTCODE (4 bytes),
CLASSCODE (4 bytes),
DEGREEPROGRAM (3 bytes)
The file is stored on the disk used in the previous example.

Example: File Organization - II

\checkmark If the record header have 5 fields of 4 bytes for pointers to schema, record length, etc. Calculate the record size R in bytes
$\Rightarrow \mathrm{R}=$ record header + record fields

$$
\begin{aligned}
& =(4+4+4+4+4)+(30+9+40+9+8+1+4+4+4+3) \\
& =132 \mathrm{~B}
\end{aligned}
$$

\checkmark Calculate the blocking factor bfr
$\Rightarrow \mathrm{bfr}=$ floor $(\mathrm{B} / \mathrm{R})=$ floor(512 / 132) $=3$ records per block
\checkmark Calculate the number of file blocks b needed assuming
(i) an unspanned organization.
$\Rightarrow \mathrm{b}=$ ceiling $(\mathrm{r} / \mathrm{bfr})=$ ceiling(20000 / 3) $=\underline{6667 \text { blocks }}$
(ii) a spanned organization (assume $3 * 2 \mathrm{~B}$ extra for record header)
$\Rightarrow \mathrm{b}=138$ bytes per record * 20000 records / $512 \mathrm{~B}=\underline{5391 \text { blocks }}$

Example: File Organization - III

\checkmark If the 32-bit processor requires 4-byte alignment. What is the new record size?
\Rightarrow For each field: size $=$ ceiling(old_size/4) $* 4$
$R=144 B$
\checkmark If the block header have 3 fields of 4 bytes for ID, pointer to first record, and pointer to overflow. What is the new blocking factor?
$\Rightarrow \mathrm{bfr}=$ floor $((512-12) / 144)=\underline{3}$ records per block
\checkmark What is the new number of file blocks b needed assuming
(i) an unspanned organization.
$\Rightarrow \mathrm{b}=$ ceiling $(\mathrm{r} / \mathrm{bfr})=$ ceiling $(20000 / 3)=\underline{667 \text { blocks }}$
(ii) a spanned organization (assume $3 * 2 \mathrm{~B}$ extra for record header)
$\Rightarrow b=156$ bytes per record * 20000 records / $500 B=\underline{6240 \text { blocks }}$

Example: File Organization - IV

\checkmark What is the time to retrieve the whole file assuming random placement on disk for
(i) unspanned records?
\Rightarrow Average time to retrieve a block is 43.5 ms
Total time $=6667 * 43.5 \mathrm{~ms}=\underline{290} \mathrm{~s}$
(i) spanned records?
\Rightarrow Total time $=6240 * 43.5 \mathrm{~ms}=\underline{271} \mathrm{~s}$
\checkmark How much time is saved using larger block sizes (4096 B) when using unspanned records?
$\Rightarrow \mathrm{bfr}=$ floor $((4096-12) / 144)=28$ records per block
b = ceiling (20000 / 28) $=715$ blocks
time to transfer one block is $=30+12.5+9.75=52.25 \mathrm{~ms}$
total time $=52.25 * 715=37 \mathrm{~s}$
savings $=290-37=\underline{253}$ s (87%)

Example: File Organization - V

\checkmark Assume we want to change the order of the fields of all records, i.e., update all fields. The update processing operation takes $1 \mu \mathrm{~s}\left(10^{-6}\right)$ per record. What is the time to update the database using contiguous placement and
(i) single buffering, 512 B blocks, unspanned records
$\Rightarrow 3$ records per block $\rightarrow 6667$ blocks, update operation: read, update, write, verify total time $=6667 *\left(43.5+\left(3^{*} 10^{-3}\right)+43.5+25\right)=\underline{747 \mathrm{~s}}$
\checkmark (ii) single buffering, 4 KB blocks, unspanned records
$\Rightarrow 28$ records $\rightarrow 715$ blocks
total time $=715 *\left(52.25+\left(28^{*} 10^{-3}\right)+52.25+25\right)=\underline{93}$
\Rightarrow NOTE: processing time consumes about 0.003% and 0.022% of the total time, respectively \rightarrow disk I/O consumes VERY much time

