Object-Relational Database Systems (ORDBS)

Contains slides made by Naci Akkøk, Pål Halvorsen, Arthur M. Keller and Vera Goebel.

INF3100 – 28.2.2006 – Ellen Munthe-Kaas

Object-Relational Database Systems (ORDBS)

• Motivations

- Allow DBMS to deal with specialized types maps, signals, images, etc. with their own specialized methods.
- Supports specialized methods even on conventional relational data.
- Supports structure more complex than "flat files."
 …
- Object-oriented ideas enter the relational world
 Keep the *relation as the fundamental abstraction* whereas the OODBS use the class as the fundamental abstraction.

ORDBS: New Features

- Structured types Not only atomic types. ODL-like type system. (Also: BLOB, CLOB, ADT, BFILE)
- Methods Special operations can be defined for a type.
- Identifiers Allowing unique IDs for each tuple.
- References Pointers to tuples.

ORDBS: Nested Relations

- Attributes may have non-atomic types
 - Nested-relational data models give up 1NF (atomic values)
 - A relation's type can be any schema consisting of one or more attributes. An attribute may even have an own schema as type.

• Example:

moviestar(name, address(street,city), birth, movies(title,year))

name	address		birth	movie		
Fisher	street	city	9/9/1950	title	year	
	Maple	Hollywood		Star Wars	1977	
	5. Avenue	New York		Empire	1980	
Hamill	street	city	8/8/1962	title	year	
	Sunset Bvld	LA		Star Wars	1977	
				Return	1983	
INF3100 – 28.2.2006 – Ellen Munthe-Kaas						

ORDBS: References - I

- Non-normalized relation
- Introduce references to allow a tuple *t* refer to a tuple *s* rather than including *s* in *t*.

name	address		birth	movie			
Fisher	street	city	9/9/1950	title	year		
	Maple	Hollywood		Star Wars	1977		
	5. Avenue	New York		Empire	1980		
Hamill	street	city	8/8/1962	title	year		
	Sunset Blvd	LA		Star Wars	1977		
				Return	1983		
INF3100 – 28.2.2006 – Ellen Munthe-Kaas							

ORDBS: References - II

- If attribute *A* has a type that is a reference to a relation with schema *R*, we denote *A* as *A*(**R*)
- If A is a set of references, we denote A as $A(\{*R\})$
- Example:

moviestar(name, address(street,city), birth, movie({*movies}))
movies(title,year)

OODBS vs. ORDBS - I

two ways to integrate object-orientation into DBS both directions (OODBS and ORDBS) are also reflected in the standard developments

Several vendors: <u>commercial OODBS</u>:

- GemStone
- O2 (now: Ardent)
- ObjectivityDB
- ObjectStore
- ONTOS
- POET
- Versant
- ...

commercial ORDBS:

- ORACLE
- Sybase
- Illustra
- UNISQL

- ...

OODBS vs. ORDBS - II

- Objects/tuples: Both objects and tuples are structs with components for attributes and relationships
- Extents/relations: Both may share the same declaration among several collections
- Methods:

Both has the same ability to declare and define methods associated with a type

• Type systems:

Both are based on atomic types and constructions of new types by structs and collection types

- References/OID: OODBS OID hidden – ORDBS ID visible (may be part of type)
- Backwards Compatibility:

Migrating existing applications to an OODBS require extensive rewriting, but ORDBSes have maintained backward compatibility

OODBS vs. ORDBS - III

OODBS:

...

- simpler way for programmer to use DBS (familiar with OOPLs)
- "seamlessness", no "impedance mismatch"
- OO functionality + DBS functionality
 → higher performance for specific applications
- "revolutionary" approach, no legacy problems

ORDBS:

. . .

- substancial investment in SQL-based rel. DBSs → evolutionary approach
- systems are more robust due to many years of usage and experience
- application development tools
- transaction processing performance

prediction: both kinds of systems will exist, used for different kinds of applications