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Overview

• Implementing a DBS is easy!!??
• Memory hierarchies

– caches
– main memory
– secondary storage
– tertiary storage

• Disks
– characteristics
– access time
– throughput
– complicating issues
– disk controllers



Example:
A Simple DBS 

Implementation
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Isn’t Implementing a DBS Simple?

• A DBMS can be easily implemented!!??

– just storing data on persistent storage devices (usually disks)
– represent data as characters / text strings in plain files
– use traditional file systems like FFS, LFS, etc.
– when performing operations, just read data from the files 

using the underlying operating system

Relations Statements Results
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Megatron 2002 Relational DBS

• Store everything in their own files

• Relations stored in files (ASCII), 
e.g., relation R(a, b, c) is in /usr/db/R

• Directory (schema) stored in file (ASCII), 
e.g., /usr/db/directory

Smith # 123 # CS
Jones # 522 # EE
...

R # A # TEXT # B # INTEGER # C # TEXT
S # D # TEXT # E # CHARACTER
...
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Megatron 2002: Queries

• How do you execute 
SELECT * FROM R WHERE <condition> ?

• It is “easy”
– read schema from the /usr/db/directory file
– check that <condition> is semantically valid for R
– draw the resulting table, i.e., with columns a, b, and c
– read data from relation R from the /usr/db/R file
– for each line, check <condition>
– if condition evaluates to TRUE, print tuple 
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Megatron 2002: Queries

• How do you execute 
SELECT * FROM R,S WHERE a = d ?

• Again, it is “easy”
– read schema from file
– join table R and S and check condition in WHERE clause:

• read R file, for each line (tuple)
• read S file and for each line (tuple):

• create join tuple
• check condition for resulting tuple, i.e., if “R.a” = “S.d”
• print the tuple-pair if condition is TRUE

– pseudo code:
FOR EACH tuple x in relation R DO

FOR EACH tuple y in relation S DO
IF x.a = y.d THEN print(“x.a  x.b  x.c  y.d  y.e  \n”);
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Megatron 2002: What’s Wrong??? – I

• No flexibility when updating the database, e.g.,
– if we change string from ‘Cat’ to ‘Cats’, we must rewrite file
– ASCII storage is expensive
– deletions are expensive

• Search expensive; no indexes, e.g.,
– cannot find tuple with given key quickly
– always have to read full relation

• “Brute force” query processing, e.g.,
– do select first?
– more efficient join?

• No appropriate buffer manager, e.g.,
– caching – frequently accessing slow devices (disks)
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Megatron 2002: What’s Wrong??? – II

• No concurrency control, e.g.,
– several users modify a file at the same time

• No reliability, e.g.,
– can lose data

• Luckily, Megatron 2002 is a fictitious system
• The remainder of the course will more or less look at 

mechanisms that address efficient implementations
of DBSs

• Today, we look at some hardware “facilities”



Memory Hierarchies
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Memory Hierarchies

• We can’t access the disk each time we need data
• Typical computer systems therefore have several 

different components where data may be stored
– different capacities
– different speeds
– less capacity gives faster access 

and higher cost per byte

• Lower levels have a copy of 
data in higher levels

• A typical memory hierarchy:

cache(s)

main memory

secondary storage 
(disks) 

tertiary storage 
(tapes) sp
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d
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Note:
this hierarchy is sometimes reversed, i.e., cache as 
the highest level and tertiary storage at the bottom
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Storage Costs: Access Time vs Capacity
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Storage Costs: Access Time vs Price
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The Big Picture

other I/O devices

I/O bus

disk controller

Note 1:
the CPU and the memory is connected to a memory 
bus or front end bus due to speed mismatch 
compared to other devices. For example, the dual 
memory channels of the Intel 840 chipset can transfer 
data at 25.6 Gbit/s using Rambus PC800 RDRAM  

Note 2:
secondary storage is connected to the I/O bus. For example, a 
64 bit, 66 MHz PCI bus can at maximum transfer 4.2 Gbit/s

Note 3:
the I/O bus also host several 
other I/O devices such as 
network cards, sound cards, 
etc.

Note 4:
a small “bridge”
to connect the 
busses memory bus

CPU memory

cache
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Data Movement in the Memory Hierarchy – I 

• Lower level components are closer to the CPU
• Each data element in a lower level is a mapping from 

(a piece of) a data element in a higher level 
• If data is not in the current level, we have to see in 

the layer above (slower, but more capacity)
• If we retrieve a data element from a higher layer, we 

have to replace one of the elements that already is in 
this component (i.e., if there are no free space)

• There exists many different algorithms for selecting an 
appropriate “victim” for replacement in a lower level 
– different components
– different data access patterns
– usually based on reference locality in time and space
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Data Movement in the Memory Hierarchy – II

• If data is modified, we also have to modify the data 
elements in the higher layers to have a consistent 
data set
– delayed write –data in higher layers are modified at a time 

“appropriate” for the system (typically when the system is 
idle)

– write through – we modify data in slower components at 
once, i.e., right after the update (the other operations have 
to wait for the update operation)

– if (1) a data element has been updated, (2) we are using 
delayed write, and (3) the data element is being replaced, 
we cannot wait for the system itself to write changes to 
higher levels, i.e., it must be written back no later than 
replacement time 
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Caches

• Caches are at the lowest level
• Often we have two levels

– L1: on CPU chip
• up to 32 KB or more?
• often partitioned – data and instruction cache

– L2: on another chip
• up to 1024 KB or more?
• typical access time is a few nanoseconds, 

i.e.,  10-9 seconds

• If each CPU has a private cache in a multi-processor 
system, we must use a write-through update strategy

cache(s)

main memory

secondary storage 
(disks) 

tertiary storage 
(tapes) 
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Main Memory

• Main memory is random access, i.e.,
we can usually obtain any byte in 
the same amount of time, but ...
– ... accessing different parts of 

memory takes a different amount 
of time (multi-processor)

– ... accessing a memory location close 
to the previous is sometimes faster 
than accessing one further away

• Typical numbers:
– size from a couple hundred MB to several GB
– access times from 10 to 100 nanoseconds (10-8 – 10-7)

• The memory manager usually uses virtual memory

cache(s)

main memory

secondary storage 
(disks) 

tertiary storage 
(tapes) 



INF3100 – 6.-7.3.2006 – Ellen Munthe-Kaas

Virtual Memory

• Mono-programming
• Multi-programming with memory partitions
• As the number of concurrent processes and the 

amount of data used in each process increased, 
physical memory become a scare resource that had to 
be carefully managed

• Virtual memory introduce the idea of allowing 
processes use more memory than physically available
– typical a 232 bit virtual address space – 4 GB
– (usually) much larger than available memory per process 
– the operating system keeps track those parts of data that 

are in memory and keeps the rest on disk, e.g., using paging
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Paging 

• The virtual address space is divided into units called 
pages, i.e., transfers between disk and memory is in 
units of pages

• The memory management unit (MMU) maps virtual 
addresses to physical addresses using a page table

• Example:
– page size: 212 (4 KB)
– virtual address space: 216 (64 KB) 24 (16) virtual pages
– physical memory: 215 (32 KB) 23 (8) physical pages 
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Paging: Virtual to physical Mapping
0010000000000100

001115

011114

.........

01015

11004

10003

11102

00011

10100

valid bitphysical 
page

index

Incoming (16-bit) virtual 
address: 8196

Outgoing (15-bit) physical 
address: 24580 (page 6 – byte 4)

001000000000011

16 virtual pages
16 entries in the page table
4-bit index to page table

use the 4-bit index to look up 
physical address page table
(0010 = 2)

check valid bit:
1: page in memory
0: page on disk (page fault)

if page in memory, 
read physical page number

copy (12-bit) page offset 
from virtual address
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Paging: Page Tables 

• Thus, page tables map virtual addresses to physical 
addresses

• Two major issues:
1. page tables may be very large:

• modern computers use at least 32-bit addresses
• 4 KB pages gives 220 (~106) pages – and thus page table entries
• each process has its own page table

multi-level page tables keeping only recently used parts resident in 
memory

2. mapping must be fast
• mapping done for each memory reference
• a typical instruction has more than one reference

associative memory (translation lookaside buffer) working as a 
cache for the page table, i.e., most programs tend to make a their 
references to a small number of pages
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Paging: Page Replacement

• As we will see later, retrieving data from disk is
very expensive compared to memory references

• Thus, we must make a careful selection when 
choosing which page to replace in case of a page fault

• Many different algorithms exist based on reference 
locality, e.g.:
– Traditional: random, FIFO, NRU, LRU, clock, etc.
– “New”:  LRU-K, 2Q, L/MRP, interval caching, distance, etc.

• Which one that is most appropriate may differ from 
application to application
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Paging: Page Fault Management

• If valid bit in page table is 0, a page fault occur:
1. hardware trap (saving program counter, ...)
2. assembly routine saves registers and volatile information
3. operating system (OS) finds the needed virtual page
4. OS checks whether the address is valid and access rights
5. OS checks whether the page to replace is dirty
6. OS finds disk address and sends a disk request
<storage system finds disk block, rest of system continues>
7. OS receives a disk interrupt when disk block is retrieved 

and page table is updated
8. faulting instruction is backed up as ready to continue
9. faulting instruction is scheduled
10. assembly routine restores registers and volatile information
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Memory Management and DBS

• Usually, one tries to keep the database in memory to 
increase performance

• A general rule is not to use a write-through updating 
scheme between memory and disk, but a DBS require 
that a change in the database state is persistent, i.e., 
every update must be written back to disk and logged

• Small systems, i.e., having less data than the size of 
virtual memory (~4 GB in 32-bit systems), ...
– ...can use the OS’s memory management
– ...sometimes access the disk directly and manage the 

allocated memory itself due to OS and DBS requirement 
mismatch

• Large systems must manage their data directly on disk
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Secondary Storage

• Secondary storage is significantly slower 
and significantly more capacious 

• Many types: various hard disks, 
floppy disks, etc.

• Secondary storage are used both as 
persistent storage for files and to hold 
pages of a program’s virtual memory

• Data is moved between disks and 
memory in blocks (a multiple of pages)

• A DBS often manage I/O by itself, but the issues are basically 
the same as in a file system

• Typical numbers for disks:
– capacities of 100 GB or more
– access times from 10 to 30 milliseconds (10-3 – 3 x 10-3), i.e., an order of 

at least 105 (typical 106) slower than to main memory

cache(s)

main memory

secondary storage 
(disks) 

tertiary storage 
(tapes) 
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Tertiary Storage

• Some systems are too large even 
for large disk(s) tertiary storage

• Tertiary storage is again significantly 
slower and significantly more 
capacious 

• Many types: ad-hoc tape storage, 
optical juke boxes,
tape silos, etc.

• Typical numbers for disks:
– capacities of 50 GB or more per tape cassette

– access times from a few seconds to a few minutes, i.e., an 
order of at least 103 slower than to disks

cache(s)

main memory

secondary storage 
(disks) 

tertiary storage 
(tapes) 
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Volatile vs Nonvolatile Storage

• Volatile device: “forgets” everything when power 
goes off – data is cleared, e.g.,
main memory

• Nonvolatile devices: keep content intact even with no 
power – persistent, e.g.,
magnetic devices (disks, tapes,..)

• A DBS must retain its data even in presence of errors 
such as power failures

• A DBS running with volatile memory must therefore 
back up every change on nonvolatile devices, i.e., 
giving a LOT of write operations

• We therefore look closer on disks which are most 
commonly used....



Disks
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Disks

• Disks are orders of magnitude slower than main 
memory, but are cheaper and have more capacity

• Disks are used to have a persistent system and 
manage huge amounts of information

• Because...
– ...a DBS often manage the disks by them self,
– ...there is a large speed mismatch compared to main 

memory (this gap will increase according to Moore’s law), 
and

– ...we need to minimize the number of accesses,

we look closer on how to manage disks
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Mechanics of Disks

Platters
circular platters covered with 
magnetic material to provide 
nonvolatile storage of bits

Tracks
concentric circles on a
single platter

Sectors
segments of the track circle 
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different 
platters are said to form a cylinder

Spindle
of which the platters 
rotate around

Disk heads
read or alter the 
magnetism (bits) passing 
under it. The heads are 
attached to an arm 
enabling it to move 
across the platter surface
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Disk Specifications

• Disk technology develops “fast”
• Some existing (Seagate) disks today:

522 – 709520 – 682282 – 508 internal transfer rate (Mbps)

22.994.17average latency

71216max (full stroke) seek (ms)

0.30.60.8min (track-to-tack) seek (ms) 

3.6 5.77.4average seek time (ms)

18.4799.77224.247#cylinders

15.00010.0007200Spindle speed (RPM)

36.736.4181.6Capacity (GB)

Cheetah X15Cheetah 36Barracuda 180

Note 1:
disk manufacturers usually
denote GB as 109 whereas
computer quantities often are
powers of 2, i.e., GB is 230

Note 2:
there might be a 
trade off between 
speed and capacity

Note 3:
there is a difference between internal and formatted transfer rate. Internal
is only between platter. Formatted is after the signals interfere with the 
electronics (cabling loss, interference, retransmissions, checksums, etc.)
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Disk Capacity

• The size of the disk is dependent on
– the number of platters 
– whether the platters use one or both sides
– number of tracks per surface
– (average) number of sectors per track
– number of bytes per sector

• Example (Cheetah X15):
– 4 platters using both sides: 8 surfaces
– 18497 tracks per surface
– 617 sectors per track (average)
– 512 bytes per sector
– Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB
– Formatted capacity = 36.7 GB

Note 1:
the tracks on the edge of the platter 
is larger than the tracks close to the 
spindle. Today, most disks are 
zoned, i.e., the outer tracks have 
more sectors than the inner tracks

Note 2:
there is a difference between 
formatted and total capacity. Some 
of the capacity is used for storing 
checksums, spare tracks, gaps, etc. 



INF3100 – 6.-7.3.2006 – Ellen Munthe-Kaas

Disk Access Time – I

• How do we retrieve data from disk?
– position head over the cylinder (track) on which the block 

(consisting of one or more sectors) are located
– read or write the data block as the sectors move under the 

head when the platters rotate

• The time between the moment issuing a disk request 
and the time the block is resident in memory is called 
disk latency or disk access time
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Disk Access Time – II 

+ Rotational delay

+ Transfer time

Seek time

Disk access time =

+ Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X
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Disk Access Time: Seek Time

• Seek time is the time to position the head
– the heads require a minimum amount of time to start and 

stop moving the head
– some time is used for actually moving the head –

roughly proportional to the number of cylinders traveled

~ 3x or 5x

x

1 N
Cylinders Traveled

Time

“Typical” average: 
10 ms → 40 ms
7.4 ms (Barracuda 180)
5.7 ms (Cheetah 36)
3.6 ms (Cheetah X15)
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Disk Access Time: Rotational Delay

• Time for the disk platters to rotate so the first of the 
required sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average: 
8.33 ms (3.600 RPM)
5.56 ms (5.400 RPM)
4.17 ms (7.200 RPM)
3.00 ms (10.000 RPM)
2.00 ms (15.000 RPM)
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Disk Access Time: Transfer Time
• Time for data to be read by the disk head, i.e., time it takes the 

sectors of the requested block to rotate past the head

• Transfer time =

• Example 1:
If a disk has 250 KB per track and operates at 
10.000 RPM, we can read from the disk at 40.69 MB/s

• Example 2 – Barracuda 180:
406 KB per track x 7.200 RPM ≈ 47.58 MB/s

• Example 2 – Cheetah X15:
316 KB per track x 15.000 RPM ≈ 77.15 MB/s

• Access time is dependent on data density and rotation speed
• If we has to change track, time must also be added for moving 

the head

amount of data per track
time per rotation

Note:
one might achieve these 
transfer rates reading 
continuously on disk, 
but time must be added 
for seeks, etc.
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Disk Access Time: Other Delays

• There are several other factors which might introduce 
additional delays:
– CPU time to issue and process I/O
– contention for controller
– contention for bus
– contention for memory
– verifying block correctness with checksums (retransmissions)
– ...

• Typical values: “0”
(at least compared to the other factors – ns/µs vs ms)
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Disk Access Time: Example – I 
• Disk properties:

– rotation speed: 7200 RPM
– bytes per sector: 512
– sectors per track (average): 128 
– maximum seek: 15 ms
– average seek: 8 ms
– track-to-track seek: 0.8 ms
– assume 10 % of a track is used by the gap between tracks

• Example:
Calculate time to transfer a (logical) disk block of 4096 bytes

– we neglect the “other delays”
– a logical block contains 8 physical sectors
– gaps cover 36 degrees of the track, sectors 324 degrees
– one 4096 bytes block “contains” 8 sectors and 7 gaps 

36 degrees x (7/128) + 324 degrees x (8/128) = 22.22 degrees
– one rotation takes 8.33 ms 
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Disk Access Time: Example – II

• Example-A, minimum time:
– head directly under first required sector
– all sectors in same track

time = (22.22 / 360) x 8.33 ms = 0.51 ms

Note 1:
fraction of a rotation needed for our block

Note 2:
time to make one rotation
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Disk Access Time: Example – III

• Example-B, maximum time:
– head as far away required sector as possible (max seek)
– sectors in two different tracks (track-to-track seek)
– max rotational delay (twice)
– transmission time as Example-A (0.51 ms)

time = (15 + 8.33 + 0.8 + 8.33 + 0.51) ms = 32.97 ms

Note 1:
time to position head (max seek)

Note 2:
max rotational delay

Note 3:
must change track in-between
(track-to-track seek)

Note 4:
max rotational delay once more

Note 5:
transmission time (time to rotate 22.22 degrees). 
This time will be equal even though it is split into 
two parts when changing track
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Disk Throughput
• How much data can we retrieve per second?

• Throughput =

• Example:
for each operation we have
- average seek
- average rotational delay
- transfer time
- no gaps, etc.

– Cheetah X15
4 KB blocks 0.71 MB/s
64 KB blocks 11.42 MB/s

– Barracuda 180  
4 KB blocks 0.35 MB/s
64 KB blocks 5.53 MB/s 100 200 300 400 500
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Note:
to increase overall throughput, 
one should read as much as 
possible contiguously on disk
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Some Complicating Issues

• There are several complicating factors:
– The “other delays” described earlier like 

consumed CPU time, resource contention, etc.
– zoned disks, i.e., outer tracks are longer and therefore 

usually have more sectors than inner
– checksums are also stored with each the sectors

inner:

outer:

Note 1:
transfer rates are 
higher on outer tracks

Note 2:
gaps between sectors

Note 3:
the checksum is read for each track 
and used to validate the track

Note 4:
the checksum is usually calculated using 
Reed-Solomon interleaved with CRC

Note 5:
for older drives the checksum 
is 16 bytes

Note 6:
SCSI disks may be changed by 
user to have other sector sizes
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Writing and Modifying Blocks

• A write operation is analogous to read operations
• A complication occurs if the write operation has to be 

verified – must wait another rotation and then read 
the block to see if it is the block we wanted to write

• Total write time ≈ read time + time for one rotation

• Cannot modify a block directly:
– read block into main memory
– modify the block
– write new content back to disk
– (verify the write operation)

• Total modify time  ≈ read time + time to modify + 
write operation
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Disk Controllers

• To manage the different parts of the disk, we use a 
disk controller, which is a small processor capable of:
– controlling the actuator moving the head to the desired track
– selecting which platter and surface to use
– knowing when right sector is under the head
– transferring data between main memory and disk

• Newer controllers acts like small computers 
themselves
– both disk and controller now have an own buffer reducing 

disk access time
– data on damaged disk blocks/sectors are just moved to 

spare room at the disk – the system above (OS) does not 
know this, i.e., a block may lie elsewhere than the OS thinks  
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Summary

• Implementing a DBS is NOT easy!! 
• Memory hierarchies

– caches
– main memory
– secondary storage
– tertiary storage

• Disks
– characteristics
– access time
– throughput
– complicating issues
– disk controllers


