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Overview

9 Efficient storage usage

9 Disk errors

9 Error recovery



Efficient Storage Usage
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Efficient Secondary Storage Usage

9 Many programs are assumed to fit in main memory, 
but when implementing a DBS one must assume that 
data is larger than main memory

9 Must take into account the use of secondary storage
¾ there are large access time gaps, i.e., a disk access will 

probably dominate the total execution time
¾ there may be huge performance improvements if we reduce 

the number of disk accesses
¾ a “slow” algorithm with few disk accesses will probably 

outperform a “fast” algorithm with many disk accesses

9 Several ways to optimize .....
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Block Size – I 

9 The block size may have large effects on performance
9 Example:

assume random block placement on disk and sequential file access
¾ doubling block size will halve the number of disk accesses

� each access take some more time to transfer the data, but the total 
time is the same (i.e., more data per request)

� halve the seek times 
� halve rotational delays are omitted

¾ e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for cheetah X15 typically an average of:
☺ 3.6 ms is  saved for seek time
☺ 2 ms is  saved in rotational delays
/ 0.026 ms is added per transfer time 

¾ e.g., increasing from 2 KB to 64 KB saves ~96,4 % reading 64 KB

} saving a total of 5.6 ms 
when reading 4 KB (49,8 %)
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Block Size – II

9 Thus, increasing block size can increase performance 
by reducing seek times and rotational delays

9 However, a large block size is not always best
¾ blocks spanning several tracks still introduce latencies
¾ small data elements may occupy only a fraction of the block

9 Which block size to use therefore depend on data size 
and data reference patterns

9 The trend, however, is to use large block sizes as new 
technology appear with increased performance
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Using Adjacent Sectors, Cylinders and Tracks

9 To avoid seek time (and possibly rotational delay), we 
can store data likely to be accessed together on
¾ adjacent sectors 

(similar to using larger blocks)
¾ if the track is full, use another track on the same cylinder 

(only use another head)
¾ if the cylinder is full, use next cylinder 

(track-to-track seek)
9 Advantage

¾ can approach theoretical transfer 
rate (no seeks or rotational delays)

9 Disadvantage
¾ no gain if we have unpredictable disk accesses
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Multiple Disks

9 Disk controllers and busses manage several devices
9 One can improve total system performance by 

replacing one large disk with many small accessed in 
parallel 

9 Several independent heads can read simultaneously
(if the other parts of the system can manage the speed)

Single disk:Two disks:
Note 1:
the single disk might be 
faster, but as seek time and 
rotational delay are the 
dominant factors of total 
disk access time, the two 
smaller disks might operate 
faster together...
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Multiple Disks: Striping
9 Another reason to use multiple disks is when one disk cannot 

deliver requested data rate
9 In such a scenario, one 

might use several disks 
for striping:
¾ bandwidth disk: Bdisk

¾ required bandwidth: Bdisplay

¾ Bdisplay > Bdisk

¾ read from n disks in parallel: n Bdisk > Bdisplay

¾ clients are serviced in rounds

9 Advantages
¾ high data rates
¾ faster response time compared to one disk

9 Drawbacks
¾ can’t serve multiple clients in parallel
¾ positioning time increases 

(i.e., reduced efficiency)

Client1 Client2 Client3 Client4 Client5

Server
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Multiple Disk: Interleaving

9 Full striping usually not necessary today:  
¾ faster disks
¾ better compression algorithms

9 Interleaving lets each client be 
serviced by only a set of the available disks
¾ make groups 
¾ ”stripe” data in a way such that

a consecutive request arrive at
next group (here each disk is a group)

9 Advantages
¾ multiple clients can still be served in parallel
¾ more efficient disks
¾ potentially shorter response time

9 Drawbacks
¾ load balancing 

(all clients access same group)

Client1 Client2 Client3

Server
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Multiple Disks: Mirroring

9 Multiple disks might come in the situation where all 
requests are for one of the disks and the rest lie idle

9 In such cases, it might make sense to have replicas of 
the data on several disks – if we have identical disks, 
it is called mirroring

9 Advantages
¾ faster response time
¾ survive crashes – fault tolerance
¾ load balancing by dividing the requests for the data on the 

same disks equally among the mirrored disks 

9 Drawbacks
¾ increases storage requirement
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Disk Scheduling – I 
9 Seek time is a dominant factor of total disk I/O time
9 Let disk controller choose which request to serve next 

depending on current position on disk and requested block’s 
position on disk (disk scheduling)

9 Several algorithms
¾ First-Come-First-Serve
¾ Shortest Seek First (SSF): serve the request closest to current position

xxxxxxxxx
cylinder number

tim
e Note:
SSF may have a problem with starvation, e.g., new 
requests keep arriving whose positions are close to the 
current position – blocks far away will never be read
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Disk Scheduling – II 
¾ Elevator (SCAN) algorithm: make head do sweeps from innermost to 

outermost cylinder, make a stop if passing over a requested block, 
reverse direction if there are no more requests in the current direction

¾ Several other algorithms.....

xxxxxxxxx
cylinder number

tim
e
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Prefetching / Multiple Buffering – I 

9 If we can predict the access pattern, one might speed 
up performance using prefetching
¾ eases disk scheduling
¾ read larger amounts of data per request
¾ data in memory when requested – reducing page faults

9 One way of doing prefetching is 
double (multiple) buffering:
¾ read data into first buffer
¾ process data in first buffer and 

at the same time read data into second buffer
¾ process data in second  buffer and 

at the same time read data into first buffer
¾ etc.
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process 
data

Prefetching / Multiple Buffering – II
9 Example:

have a file with block sequence B1, B2, ...
our program processes data sequentially, i.e., B1, B2, ...

¾ single buffer solution:
� read B1 Æ buffer
� process data in buffer
� read B2 Æ buffer
� process data in Buffer 
� ...

� if P = time to process/block
R = time to read in 1 block
n = # blocks

single buffer time = n (P+R)

disk:

memory:
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Prefetching / Multiple Buffering – III
¾ double buffer solution:

� read B1 Æ buffer1
� process data in buffer1, read B2 Æ buffer2
� process data in buffer2, read B3 Æ buffer1
� process data in buffer1, read B4 Æ buffer2
� ...

� if P = time to process/block
R = time to read in 1 block
n = # blocks

if P ≥ R 
double buffer time = R + nP

¾ if P < R, we can try to add buffers (n - buffering) 

process 
data

disk:

memory:

process 
data



Disk Errors
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Disk Errors – I 

9 Disk errors are rare:

10 per 10810 per 10810 per 108seek errors

1 per 10151 per 10151 per 1015unrecoverable errors

10 per 101210 per 101210 per 1012recoverable errors

36.71.2 x 1061.2 x 106mean time to failure (MTTF)

Cheetah X15Cheetah 36Barracuda 180

Note 1:
MTTF is the time in hours between 
each time the disk crashes

Note 2:
how often do we read wrong values 
– corrected when re-reading

Note 3:
how often do we get permanent errors on 
a sector – data moved to spare tracks

Note 4:
how often do we move the arm wrong 
(over wrong cylinder) – make another
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Disk Errors – II

9 Nevertheless, a disk can fail in several ways
¾ intermittent failure –

temporarily errors corrected by re-reading the block, e.g., 
dust on the patter making a bit value wrong

¾ media decay/write errors –
permanent errors where the bits are corrupted, e.g., 
disk head touches the platter and damages the magnetic 
surface

¾ disk crashes –
the entire disk becomes permanent unreadable 
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Checksums – I 

9 Disk sectors are stored with some redundant bits, 
called checksums

9 Used to validate a read or written sector:
¾ read sector and stored checksum
¾ compute checksum on read sector
¾ compare read and computed checksum

9 If the validation fails (read and computed checksum 
differ), the read operation is repeated until
¾ the read operation succeed Æ return correct content
¾ the limit of retries is reached Æ return error “bad disk block”
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Checksums – II 

9 Many different ways to compute checksums
¾ 1-bit parity: count 1’s in block 

� even number: parity bit 0
� odd number: parity bit 1
� large chance of not detecting errors

¾ Use more redundant bits
� 8-bit parity: one parity bit per bit in a byte 

(count 1’s in most significant bit, ....) Æ decrease amount of missed 
errors

� n-bit parity:  chance of missing an error is 1/2n

¾ Polynomial codes – CRC (cyclic redundancy check) : 
� following properties of binary numbers if using modulo-2 arithmetic 
� generate a single set of check digits based on the code

¾ Reed-Solomon, 1-complement sum, ....
9 Checksums only detect errors
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Stable Storage 
9 The stable storage policy may solve some errors

¾ applicable on one or more disks
¾ use checksums for temporarily read errors
¾ sectors are paired to represent one sector X
¾ X is represented by XL and XR

¾ writing policy:
1. write X into XL - use checksum to validate, if wrong retry. If still wrong, 

assume a media failure and use spare sector for XL

2. repeat (1) for XR

¾ read policy
1. read XL – use checksum to validate. If OK, return XL as X. If wrong retry. 
2. if XL cannot be read, repeat (1) for XR 

9 Stable storage doubles storage requirement, but can for 
example correct some media failures
(if either XL or XR correct, X can always be read)



Error Recovery
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Crash Recovery

9 The most serious type of errors are disk crashes, e.g.,
¾ head have touched platter and is damaged
¾ platters are out of position
¾ ...

9 No way to restore data unless we have a backup on 
another medium, e.g., tape, mirrored disk, etc.

9 A number of schemes have been developed to reduce 
the probability of data loss during permanent disk 
errors
¾ usually using an extended parity check
¾ most known are the Redundant Array of Independent Disks

(RAID) strategies
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Disk Failure Models

9 Our Seagate disks have a mean-time-to-failure of 55 
years (at this time ~50 % of the disks are damaged), 
but

¾ many disks fail during the first months (production errors)

¾ if no production errors, disks will probably work many years

¾ old disks have again a larger probability of failure due to 
accumulated effects of dust, etc.
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Modulo-2 Sum – I 

9 Many parity schemes use modulo-2 sum, or also called 
exclusive OR (XOR), to generate a redundant correction block

9 The modulo-2 sum is performed by letting the i-th bit of the 
sum to be 
¾ 1 – if an odd number of blocks have 1 in the i-th position
¾ 0 - if an even number of blocks have 1 in the i-th position

9 Example

01000110modulo-2 sum
00011100block 3
01010101block 2
00001111block 1



INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 27

Modulo-2 Sum – II 

9 Let ⊕ be the modulo-2 sum operator. Then ...

¾ ... the commutative law says that 
x ⊕ y = y ⊕ x

¾ ... the associative law says that 
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

¾ ... the identity is 0, i.e.,  
x = 0 ⊕ x =  x ⊕ 0

¾ ... ⊕ is its own inverse, i.e., 
x ⊕ x = 0
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RAID (Redundant Array of Inexpensive Disks)

9 RAID level 0: non-redundant 

9 RAID level 1: mirrored

9 RAID level 2: memory-style error correcting code (ECC)

9 RAID level 3: bit-interleaved parity

9 RAID level 4: block-interleaved parity 

9 RAID level 5: block-interleaved distributed-parity

9 RAID level 6: P+Q redundancy
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RAID 0 (non-redundant) – I  

9 RAID 0: striped disk array without fault tolerance 
9 Data is broken down into blocks and each block is 

written to a separate disk
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RAID 0 (non-redundant) – II 

9 Advantages
¾ I/O performance is greatly improved by spreading the I/O 

load across many channels and drives
¾ best performance is achieved when data is striped across 

multiple controllers with only one drive per controller 
(remember that the performance of one disk has improved)

9 Disadvantages
¾ not a "True" RAID because it is NOT fault-tolerant
¾ the failure of just one drive will result in all data in an array 

being lost
¾ should never be used in error-critical environments
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RAID 1 (mirroring) – I  

9 RAID 1: mirroring 
9 Data is duplicated on another disk
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RAID 1 (mirroring) – II 

9 Advantages
¾ one write or two reads possible per mirrored pair
¾ 100% redundancy of data means no rebuild is necessary in 

case of a disk failure, just a copy to the replacement disk
¾ transfer rate per block is equal to that of a single disk
¾ under certain circumstances, RAID 1 can sustain multiple 

simultaneous drive failures

9 Disadvantages
¾ highest disk overhead of all RAID types (100%) - inefficient
¾ may not support hot swap of failed disk when implemented 

in "software"
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RAID 2 (Hamming ECC) – I  

9 RAID 2: hamming ECC 
9 Each bit of data word is written to a data disk drive. Each 

data word has its Hamming Code ECC word recorded on the 
ECC disks. On read, the ECC code verifies correct data or 
corrects single disk errors.

9 NB! no commercial implementations exist
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RAID 3 (Bit-Interleaved Parity) – I  

9 RAID 3: parallel transfer with parity 
9 The data block is subdivided ("striped") and written 

on the data disks. Stripe parity is generated on 
writes, recorded on the parity disk and checked on 
reads.
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RAID 4 (Block-Interleaved Parity) – I  

9 RAID 4: independent data disks with shared parity 
disk

9 Each entire block is written onto one data disk. Parity 
for same rank blocks is generated on writes, 
recorded on the parity disk and checked on reads.
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RAID 4 (Block-Interleaved Parity) – II 

9 Advantages
¾ high read data transaction rate
¾ low ratio of parity disks to data disks means high efficiency

9 Disadvantages
¾ quite complex controller design
¾ difficult and inefficient data rebuild in the event of disk 

failure
¾ updating blocks can be a bottleneck as all parity blocks are 

on the same disk (and must be accessed for all write 
operations)
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RAID 4 (Block-Interleaved Parity) – III

9 Read operations
¾ no different than normal disk reads
¾ disks can be accessed in parallel
¾ if requested disk is busy and all of the other disks are idle (including 

parity disk), we may read all other disks and generate requested block

9 Write operations
¾ update data block and parity block
¾ parity block can be updated two ways

� reading all n block and generating the whole parity block from scratch
� perform modulo-2 sum of old and new version of the block, and simply add 

the sum (again using modulo-2 sum) to the parity block

9 Recovery
¾ Any disk can fail and be restored using modulo-2 sum of the other disks
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RAID 5 (Block-Interleaved Distributed Parity) – I

9 RAID 5: independent data disks with distributed parity disk

9 Each entire data block is written on a data disk; parity for 
blocks in the same rank is generated on writes, recorded in a 
distributed location and checked on reads.



INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 39

RAID 5 (Block-Interleaved Distributed Parity) – II

9 Advantages
¾ highest read data transaction rate
¾ medium write data transaction rate
¾ low ratio of parity disks to data disks means high efficiency
¾ parity distributed, i.e., updating parity blocks goes to 

different disks

9 Disadvantages
¾ complex controller design
¾ difficult to rebuild in the event of a disk failure 
¾ individual block data transfer rate same as single disk
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RAID 5 (Block-Interleaved Distributed Parity) – III

9 Read, write, and recovery operations are analogous 
to RAID 4

9 However, parity is distributed, possible scheme
¾ n + 1 disks numbered 0 to n
¾ let cylinder i on disk j be parity if the 

reminder of  i / (n + 1) is j, 
i.e.,
cylinder i + 1 on disk j + 1 be next parity 
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RAID 6 (P+Q Redundancy) – I  
9 RAID 6: independent data disks with two independent distributed parity 

schemes
9 RAID 6 is essentially an extension of RAID level 5 which allows for 

additional fault tolerance by using a second independent distributed parity 
scheme 

9 Data is striped on a block level across a set of drives, just like in RAID 5, 
and a second set of parity is calculated and written across all the drives



INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 42

RAID 6 (P+Q Redundancy) – II

9 Advantages
¾ provides for an extremely high data fault tolerance and can 

sustain multiple simultaneous drive failures
¾ perfect solution for error-critical applications
¾ parity information can be distributed as in RAID 5

9 Disadvantages
¾ very complex controller design
¾ controller overhead to compute parity addresses is extremely 

high
¾ very poor write performance
¾ requires at least N+2 drives to implement because of two-

dimensional parity scheme
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RAID 6 (P+Q Redundancy) – III

9 In general, we can add several redundancy disks to be 
able do deal with several simultaneous disk crashes

9 Many different strategies based on different EECs, 
e.g.,:
¾ Read-Solomon Code (or derivates): 

� corrects n simultaneous disk crashes using n parity disks
� a bit more expensive parity calculations compared to modulo-2 sum

¾ Hamming Code:
� corrects 2 disk failures using 2K – 1 disks where k disks are parity 

disks and 2K – k – 1 
� uses modulo-2 sum
� the parity disks are calculated using the data disks determined by the 

hamming code, i.e., a k x (2K – 1) matrix of 0’s and 1’s representing 
the 2K – 1 numbers written binary except 0 
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RAID 6 (P+Q Redundancy) – IV
9 Example:

using a Hamming code matrix, 7 disks, 3 parity disks

1111
0112
1013
1104
0015
0106

1007

di
sk

 n
um

be
r

parity

data

Note 1:
the rows represent binary numbers 1 - 7

Note 2:
the rows for the parity disks have single 1’s

Note 3:
the rows for the data disks have two or more 1’s

Note 4:
the idea of each column now is that the parity disk 
having a 1 in this column is generated using the 
data disks having one in this column:

- parity disk 5 is generated using disk 1, 2, 3
- parity disk 6 is generated using disk 1, 2, 4
- parity disk 7 is generated using disk 1, 3, 4

Note 5:
the parity blocks are generated using modulo-2 sum
from the data blocks
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RAID 6 (P+Q Redundancy) – V

9 Example (cont.): 

calculating parity
using the hamming
matrix to find the 
corresponding
data disks to each
parity disk

1111
0112
1013
1104
0015
0106

1007

pa
rit

y
da

ta

111100001
101010102
001110003
010000104
011000105
000110116

100010017

pa
rit

y
da

ta

Hamming code matrix disk block values

Note 1: parity disk 5 is generated using disk 1, 2, 3
11110000 ⊕ 10101010 ⊕ 00111000 = 01100010

Note 2: parity disk 6 is generated using disk 1, 2, 4
11110000 ⊕ 10101010 ⊕ 01000010 = 00011011

Note 3: parity disk 7 is generated using disk 1, 3, 4
11110000 ⊕ 00111000 ⊕ 01000010 = 10001001
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RAID 6 (P+Q Redundancy) – VI

9 Read operations is performed from any data disk as a 
normal read operation

9 Write operations are performed as shown on previous 
slide (similar RAID 5), but 
¾ now there are several parity disks
¾ each parity disk does not use all data disks

9 Update operations are performed as for 
RAID 4 or RAID 5:
¾ perform modulo-2 sum of old and new version of the block, 

and simply add the sum (again using modulo-2 sum) to the 
parity block
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RAID 6 (P+Q Redundancy) – VII

9 Example update:
¾ update data disk 2 to 00001111
¾ parity disks 5 and 6 is using data disk 2

111100001
101010102
001110003
010000104
011000105
000110116

100010017

pa
rit

y
da

ta

disk block values

Note 1:
old value is 10101010. 
Difference is 10101010 ⊕ 00001111 = 10100101

Note 2:
insert new value in data disk 2: 00001111

00001111

Note 3:
update parity disk 5, take difference between old and new 
block, and perform modulo-2 sum with parity:
10100101 ⊕ 01100010 = 11000111

11000111

Note 4:
insert new value in parity disk 5: 11000111

Note 5:
parity disk 6 is similarly updated

10111110
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RAID 6 (P+Q Redundancy) – VIII

9 Recovery operations is performed using modulo-2 sum 
and the parity disks

¾ one disk failure is easy – just apply one set of parity and 
recover

¾ two disk failures a bit more tricky
� note that all parity disk computations are different
� we will always find one configuration where only one disk has failed
� use this configuration to recover the failed disk
� now there is only one failed disk, and any configuration can be used
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RAID 6 (P+Q Redundancy) – IX

9 Example recovery:
¾ disk 2 and 5 have failed

1111
0112
1013
1104
0015
0106

1007

pa
rit

y
da

ta
111100001
101010012
001110003
010000104
011000015
000110116

100010017
Hamming code matrix disk block values

???

???

Note 1:
there is always a column in the 
hamming code matrix where 
only one of the failed disks 
have a 1- value

Note 2:
column 2 use data disk 2, and 
no other disks have crashed, 
i.e., use disk 1, 4, and 6 to 
recover disk 2

Note 3:
restoring disk 2:
11110000 ⊕ 01000010 ⊕ 00011011 = 10101001 

Note 4:
restoring disk 5 can now be 
done using column 1
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Summary

9 Efficient storage usage
¾ block size
¾ scheduling
¾ adjacent blocks
¾ multiple disks
¾ prefetching / multiple-buffering

9 Disk errors
¾ new disks have few errors, but they DO occur
¾ checksums

9 Error recovery
¾ stable storage
¾ RAID


