
Data Storage - II:
Efficient Usage & Errors

Contains slides from:
Naci Akkök, Hector Garcia-Molina, Pål Halvorsen, Ketil Lund

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 2

Overview

9 Efficient storage usage

9 Disk errors

9 Error recovery

Efficient Storage Usage

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 4

Efficient Secondary Storage Usage

9 Many programs are assumed to fit in main memory,
but when implementing a DBS one must assume that
data is larger than main memory

9 Must take into account the use of secondary storage
¾ there are large access time gaps, i.e., a disk access will

probably dominate the total execution time
¾ there may be huge performance improvements if we reduce

the number of disk accesses
¾ a “slow” algorithm with few disk accesses will probably

outperform a “fast” algorithm with many disk accesses

9 Several ways to optimize

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 5

Block Size – I

9 The block size may have large effects on performance
9 Example:

assume random block placement on disk and sequential file access
¾ doubling block size will halve the number of disk accesses

� each access take some more time to transfer the data, but the total
time is the same (i.e., more data per request)

� halve the seek times
� halve rotational delays are omitted

¾ e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for cheetah X15 typically an average of:
☺ 3.6 ms is saved for seek time
☺ 2 ms is saved in rotational delays
/ 0.026 ms is added per transfer time

¾ e.g., increasing from 2 KB to 64 KB saves ~96,4 % reading 64 KB

} saving a total of 5.6 ms
when reading 4 KB (49,8 %)

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 6

Block Size – II

9 Thus, increasing block size can increase performance
by reducing seek times and rotational delays

9 However, a large block size is not always best
¾ blocks spanning several tracks still introduce latencies
¾ small data elements may occupy only a fraction of the block

9 Which block size to use therefore depend on data size
and data reference patterns

9 The trend, however, is to use large block sizes as new
technology appear with increased performance

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 7

Using Adjacent Sectors, Cylinders and Tracks

9 To avoid seek time (and possibly rotational delay), we
can store data likely to be accessed together on
¾ adjacent sectors

(similar to using larger blocks)
¾ if the track is full, use another track on the same cylinder

(only use another head)
¾ if the cylinder is full, use next cylinder

(track-to-track seek)
9 Advantage

¾ can approach theoretical transfer
rate (no seeks or rotational delays)

9 Disadvantage
¾ no gain if we have unpredictable disk accesses

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 8

Multiple Disks

9 Disk controllers and busses manage several devices
9 One can improve total system performance by

replacing one large disk with many small accessed in
parallel

9 Several independent heads can read simultaneously
(if the other parts of the system can manage the speed)

Single disk:Two disks:
Note 1:
the single disk might be
faster, but as seek time and
rotational delay are the
dominant factors of total
disk access time, the two
smaller disks might operate
faster together...

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 9

Multiple Disks: Striping
9 Another reason to use multiple disks is when one disk cannot

deliver requested data rate
9 In such a scenario, one

might use several disks
for striping:
¾ bandwidth disk: Bdisk

¾ required bandwidth: Bdisplay

¾ Bdisplay > Bdisk

¾ read from n disks in parallel: n Bdisk > Bdisplay

¾ clients are serviced in rounds

9 Advantages
¾ high data rates
¾ faster response time compared to one disk

9 Drawbacks
¾ can’t serve multiple clients in parallel
¾ positioning time increases

(i.e., reduced efficiency)

Client1 Client2 Client3 Client4 Client5

Server

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 10

Multiple Disk: Interleaving

9 Full striping usually not necessary today:
¾ faster disks
¾ better compression algorithms

9 Interleaving lets each client be
serviced by only a set of the available disks
¾ make groups
¾ ”stripe” data in a way such that

a consecutive request arrive at
next group (here each disk is a group)

9 Advantages
¾ multiple clients can still be served in parallel
¾ more efficient disks
¾ potentially shorter response time

9 Drawbacks
¾ load balancing

(all clients access same group)

Client1 Client2 Client3

Server

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 11

Multiple Disks: Mirroring

9 Multiple disks might come in the situation where all
requests are for one of the disks and the rest lie idle

9 In such cases, it might make sense to have replicas of
the data on several disks – if we have identical disks,
it is called mirroring

9 Advantages
¾ faster response time
¾ survive crashes – fault tolerance
¾ load balancing by dividing the requests for the data on the

same disks equally among the mirrored disks

9 Drawbacks
¾ increases storage requirement

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 12

Disk Scheduling – I
9 Seek time is a dominant factor of total disk I/O time
9 Let disk controller choose which request to serve next

depending on current position on disk and requested block’s
position on disk (disk scheduling)

9 Several algorithms
¾ First-Come-First-Serve
¾ Shortest Seek First (SSF): serve the request closest to current position

xxxxxxxxx
cylinder number

tim
e Note:
SSF may have a problem with starvation, e.g., new
requests keep arriving whose positions are close to the
current position – blocks far away will never be read

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 13

Disk Scheduling – II
¾ Elevator (SCAN) algorithm: make head do sweeps from innermost to

outermost cylinder, make a stop if passing over a requested block,
reverse direction if there are no more requests in the current direction

¾ Several other algorithms.....

xxxxxxxxx
cylinder number

tim
e

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 14

Prefetching / Multiple Buffering – I

9 If we can predict the access pattern, one might speed
up performance using prefetching
¾ eases disk scheduling
¾ read larger amounts of data per request
¾ data in memory when requested – reducing page faults

9 One way of doing prefetching is
double (multiple) buffering:
¾ read data into first buffer
¾ process data in first buffer and

at the same time read data into second buffer
¾ process data in second buffer and

at the same time read data into first buffer
¾ etc.

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 15

process
data

Prefetching / Multiple Buffering – II
9 Example:

have a file with block sequence B1, B2, ...
our program processes data sequentially, i.e., B1, B2, ...

¾ single buffer solution:
� read B1 Æ buffer
� process data in buffer
� read B2 Æ buffer
� process data in Buffer
� ...

� if P = time to process/block
R = time to read in 1 block
n = # blocks

single buffer time = n (P+R)

disk:

memory:

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 16

Prefetching / Multiple Buffering – III
¾ double buffer solution:

� read B1 Æ buffer1
� process data in buffer1, read B2 Æ buffer2
� process data in buffer2, read B3 Æ buffer1
� process data in buffer1, read B4 Æ buffer2
� ...

� if P = time to process/block
R = time to read in 1 block
n = # blocks

if P ≥ R
double buffer time = R + nP

¾ if P < R, we can try to add buffers (n - buffering)

process
data

disk:

memory:

process
data

Disk Errors

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 18

Disk Errors – I

9 Disk errors are rare:

10 per 10810 per 10810 per 108seek errors

1 per 10151 per 10151 per 1015unrecoverable errors

10 per 101210 per 101210 per 1012recoverable errors

36.71.2 x 1061.2 x 106mean time to failure (MTTF)

Cheetah X15Cheetah 36Barracuda 180

Note 1:
MTTF is the time in hours between
each time the disk crashes

Note 2:
how often do we read wrong values
– corrected when re-reading

Note 3:
how often do we get permanent errors on
a sector – data moved to spare tracks

Note 4:
how often do we move the arm wrong
(over wrong cylinder) – make another

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 19

Disk Errors – II

9 Nevertheless, a disk can fail in several ways
¾ intermittent failure –

temporarily errors corrected by re-reading the block, e.g.,
dust on the patter making a bit value wrong

¾ media decay/write errors –
permanent errors where the bits are corrupted, e.g.,
disk head touches the platter and damages the magnetic
surface

¾ disk crashes –
the entire disk becomes permanent unreadable

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 20

Checksums – I

9 Disk sectors are stored with some redundant bits,
called checksums

9 Used to validate a read or written sector:
¾ read sector and stored checksum
¾ compute checksum on read sector
¾ compare read and computed checksum

9 If the validation fails (read and computed checksum
differ), the read operation is repeated until
¾ the read operation succeed Æ return correct content
¾ the limit of retries is reached Æ return error “bad disk block”

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 21

Checksums – II

9 Many different ways to compute checksums
¾ 1-bit parity: count 1’s in block

� even number: parity bit 0
� odd number: parity bit 1
� large chance of not detecting errors

¾ Use more redundant bits
� 8-bit parity: one parity bit per bit in a byte

(count 1’s in most significant bit,) Æ decrease amount of missed
errors

� n-bit parity: chance of missing an error is 1/2n

¾ Polynomial codes – CRC (cyclic redundancy check) :
� following properties of binary numbers if using modulo-2 arithmetic
� generate a single set of check digits based on the code

¾ Reed-Solomon, 1-complement sum,
9 Checksums only detect errors

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 22

Stable Storage
9 The stable storage policy may solve some errors

¾ applicable on one or more disks
¾ use checksums for temporarily read errors
¾ sectors are paired to represent one sector X
¾ X is represented by XL and XR

¾ writing policy:
1. write X into XL - use checksum to validate, if wrong retry. If still wrong,

assume a media failure and use spare sector for XL

2. repeat (1) for XR

¾ read policy
1. read XL – use checksum to validate. If OK, return XL as X. If wrong retry.
2. if XL cannot be read, repeat (1) for XR

9 Stable storage doubles storage requirement, but can for
example correct some media failures
(if either XL or XR correct, X can always be read)

Error Recovery

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 24

Crash Recovery

9 The most serious type of errors are disk crashes, e.g.,
¾ head have touched platter and is damaged
¾ platters are out of position
¾ ...

9 No way to restore data unless we have a backup on
another medium, e.g., tape, mirrored disk, etc.

9 A number of schemes have been developed to reduce
the probability of data loss during permanent disk
errors
¾ usually using an extended parity check
¾ most known are the Redundant Array of Independent Disks

(RAID) strategies

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 25

Disk Failure Models

9 Our Seagate disks have a mean-time-to-failure of 55
years (at this time ~50 % of the disks are damaged),
but

¾ many disks fail during the first months (production errors)

¾ if no production errors, disks will probably work many years

¾ old disks have again a larger probability of failure due to
accumulated effects of dust, etc.

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 26

Modulo-2 Sum – I

9 Many parity schemes use modulo-2 sum, or also called
exclusive OR (XOR), to generate a redundant correction block

9 The modulo-2 sum is performed by letting the i-th bit of the
sum to be
¾ 1 – if an odd number of blocks have 1 in the i-th position
¾ 0 - if an even number of blocks have 1 in the i-th position

9 Example

01000110modulo-2 sum
00011100block 3
01010101block 2
00001111block 1

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 27

Modulo-2 Sum – II

9 Let ⊕ be the modulo-2 sum operator. Then ...

¾ ... the commutative law says that
x ⊕ y = y ⊕ x

¾ ... the associative law says that
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

¾ ... the identity is 0, i.e.,
x = 0 ⊕ x = x ⊕ 0

¾ ... ⊕ is its own inverse, i.e.,
x ⊕ x = 0

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 28

RAID (Redundant Array of Inexpensive Disks)

9 RAID level 0: non-redundant

9 RAID level 1: mirrored

9 RAID level 2: memory-style error correcting code (ECC)

9 RAID level 3: bit-interleaved parity

9 RAID level 4: block-interleaved parity

9 RAID level 5: block-interleaved distributed-parity

9 RAID level 6: P+Q redundancy

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 29

RAID 0 (non-redundant) – I

9 RAID 0: striped disk array without fault tolerance
9 Data is broken down into blocks and each block is

written to a separate disk

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 30

RAID 0 (non-redundant) – II

9 Advantages
¾ I/O performance is greatly improved by spreading the I/O

load across many channels and drives
¾ best performance is achieved when data is striped across

multiple controllers with only one drive per controller
(remember that the performance of one disk has improved)

9 Disadvantages
¾ not a "True" RAID because it is NOT fault-tolerant
¾ the failure of just one drive will result in all data in an array

being lost
¾ should never be used in error-critical environments

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 31

RAID 1 (mirroring) – I

9 RAID 1: mirroring
9 Data is duplicated on another disk

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 32

RAID 1 (mirroring) – II

9 Advantages
¾ one write or two reads possible per mirrored pair
¾ 100% redundancy of data means no rebuild is necessary in

case of a disk failure, just a copy to the replacement disk
¾ transfer rate per block is equal to that of a single disk
¾ under certain circumstances, RAID 1 can sustain multiple

simultaneous drive failures

9 Disadvantages
¾ highest disk overhead of all RAID types (100%) - inefficient
¾ may not support hot swap of failed disk when implemented

in "software"

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 33

RAID 2 (Hamming ECC) – I

9 RAID 2: hamming ECC
9 Each bit of data word is written to a data disk drive. Each

data word has its Hamming Code ECC word recorded on the
ECC disks. On read, the ECC code verifies correct data or
corrects single disk errors.

9 NB! no commercial implementations exist

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 34

RAID 3 (Bit-Interleaved Parity) – I

9 RAID 3: parallel transfer with parity
9 The data block is subdivided ("striped") and written

on the data disks. Stripe parity is generated on
writes, recorded on the parity disk and checked on
reads.

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 35

RAID 4 (Block-Interleaved Parity) – I

9 RAID 4: independent data disks with shared parity
disk

9 Each entire block is written onto one data disk. Parity
for same rank blocks is generated on writes,
recorded on the parity disk and checked on reads.

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 36

RAID 4 (Block-Interleaved Parity) – II

9 Advantages
¾ high read data transaction rate
¾ low ratio of parity disks to data disks means high efficiency

9 Disadvantages
¾ quite complex controller design
¾ difficult and inefficient data rebuild in the event of disk

failure
¾ updating blocks can be a bottleneck as all parity blocks are

on the same disk (and must be accessed for all write
operations)

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 37

RAID 4 (Block-Interleaved Parity) – III

9 Read operations
¾ no different than normal disk reads
¾ disks can be accessed in parallel
¾ if requested disk is busy and all of the other disks are idle (including

parity disk), we may read all other disks and generate requested block

9 Write operations
¾ update data block and parity block
¾ parity block can be updated two ways

� reading all n block and generating the whole parity block from scratch
� perform modulo-2 sum of old and new version of the block, and simply add

the sum (again using modulo-2 sum) to the parity block

9 Recovery
¾ Any disk can fail and be restored using modulo-2 sum of the other disks

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 38

RAID 5 (Block-Interleaved Distributed Parity) – I

9 RAID 5: independent data disks with distributed parity disk

9 Each entire data block is written on a data disk; parity for
blocks in the same rank is generated on writes, recorded in a
distributed location and checked on reads.

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 39

RAID 5 (Block-Interleaved Distributed Parity) – II

9 Advantages
¾ highest read data transaction rate
¾ medium write data transaction rate
¾ low ratio of parity disks to data disks means high efficiency
¾ parity distributed, i.e., updating parity blocks goes to

different disks

9 Disadvantages
¾ complex controller design
¾ difficult to rebuild in the event of a disk failure
¾ individual block data transfer rate same as single disk

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 40

RAID 5 (Block-Interleaved Distributed Parity) – III

9 Read, write, and recovery operations are analogous
to RAID 4

9 However, parity is distributed, possible scheme
¾ n + 1 disks numbered 0 to n
¾ let cylinder i on disk j be parity if the

reminder of i / (n + 1) is j,
i.e.,
cylinder i + 1 on disk j + 1 be next parity

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 41

RAID 6 (P+Q Redundancy) – I
9 RAID 6: independent data disks with two independent distributed parity

schemes
9 RAID 6 is essentially an extension of RAID level 5 which allows for

additional fault tolerance by using a second independent distributed parity
scheme

9 Data is striped on a block level across a set of drives, just like in RAID 5,
and a second set of parity is calculated and written across all the drives

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 42

RAID 6 (P+Q Redundancy) – II

9 Advantages
¾ provides for an extremely high data fault tolerance and can

sustain multiple simultaneous drive failures
¾ perfect solution for error-critical applications
¾ parity information can be distributed as in RAID 5

9 Disadvantages
¾ very complex controller design
¾ controller overhead to compute parity addresses is extremely

high
¾ very poor write performance
¾ requires at least N+2 drives to implement because of two-

dimensional parity scheme

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 43

RAID 6 (P+Q Redundancy) – III

9 In general, we can add several redundancy disks to be
able do deal with several simultaneous disk crashes

9 Many different strategies based on different EECs,
e.g.,:
¾ Read-Solomon Code (or derivates):

� corrects n simultaneous disk crashes using n parity disks
� a bit more expensive parity calculations compared to modulo-2 sum

¾ Hamming Code:
� corrects 2 disk failures using 2K – 1 disks where k disks are parity

disks and 2K – k – 1
� uses modulo-2 sum
� the parity disks are calculated using the data disks determined by the

hamming code, i.e., a k x (2K – 1) matrix of 0’s and 1’s representing
the 2K – 1 numbers written binary except 0

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 44

RAID 6 (P+Q Redundancy) – IV
9 Example:

using a Hamming code matrix, 7 disks, 3 parity disks

1111
0112
1013
1104
0015
0106

1007

di
sk

 n
um

be
r

parity

data

Note 1:
the rows represent binary numbers 1 - 7

Note 2:
the rows for the parity disks have single 1’s

Note 3:
the rows for the data disks have two or more 1’s

Note 4:
the idea of each column now is that the parity disk
having a 1 in this column is generated using the
data disks having one in this column:

- parity disk 5 is generated using disk 1, 2, 3
- parity disk 6 is generated using disk 1, 2, 4
- parity disk 7 is generated using disk 1, 3, 4

Note 5:
the parity blocks are generated using modulo-2 sum
from the data blocks

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 45

RAID 6 (P+Q Redundancy) – V

9 Example (cont.):

calculating parity
using the hamming
matrix to find the
corresponding
data disks to each
parity disk

1111
0112
1013
1104
0015
0106

1007

pa
rit

y
da

ta

111100001
101010102
001110003
010000104
011000105
000110116

100010017

pa
rit

y
da

ta

Hamming code matrix disk block values

Note 1: parity disk 5 is generated using disk 1, 2, 3
11110000 ⊕ 10101010 ⊕ 00111000 = 01100010

Note 2: parity disk 6 is generated using disk 1, 2, 4
11110000 ⊕ 10101010 ⊕ 01000010 = 00011011

Note 3: parity disk 7 is generated using disk 1, 3, 4
11110000 ⊕ 00111000 ⊕ 01000010 = 10001001

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 46

RAID 6 (P+Q Redundancy) – VI

9 Read operations is performed from any data disk as a
normal read operation

9 Write operations are performed as shown on previous
slide (similar RAID 5), but
¾ now there are several parity disks
¾ each parity disk does not use all data disks

9 Update operations are performed as for
RAID 4 or RAID 5:
¾ perform modulo-2 sum of old and new version of the block,

and simply add the sum (again using modulo-2 sum) to the
parity block

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 47

RAID 6 (P+Q Redundancy) – VII

9 Example update:
¾ update data disk 2 to 00001111
¾ parity disks 5 and 6 is using data disk 2

111100001
101010102
001110003
010000104
011000105
000110116

100010017

pa
rit

y
da

ta

disk block values

Note 1:
old value is 10101010.
Difference is 10101010 ⊕ 00001111 = 10100101

Note 2:
insert new value in data disk 2: 00001111

00001111

Note 3:
update parity disk 5, take difference between old and new
block, and perform modulo-2 sum with parity:
10100101 ⊕ 01100010 = 11000111

11000111

Note 4:
insert new value in parity disk 5: 11000111

Note 5:
parity disk 6 is similarly updated

10111110

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 48

RAID 6 (P+Q Redundancy) – VIII

9 Recovery operations is performed using modulo-2 sum
and the parity disks

¾ one disk failure is easy – just apply one set of parity and
recover

¾ two disk failures a bit more tricky
� note that all parity disk computations are different
� we will always find one configuration where only one disk has failed
� use this configuration to recover the failed disk
� now there is only one failed disk, and any configuration can be used

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 49

RAID 6 (P+Q Redundancy) – IX

9 Example recovery:
¾ disk 2 and 5 have failed

1111
0112
1013
1104
0015
0106

1007

pa
rit

y
da

ta
111100001
101010012
001110003
010000104
011000015
000110116

100010017
Hamming code matrix disk block values

???

???

Note 1:
there is always a column in the
hamming code matrix where
only one of the failed disks
have a 1- value

Note 2:
column 2 use data disk 2, and
no other disks have crashed,
i.e., use disk 1, 4, and 6 to
recover disk 2

Note 3:
restoring disk 2:
11110000 ⊕ 01000010 ⊕ 00011011 = 10101001

Note 4:
restoring disk 5 can now be
done using column 1

INF3100 – 7.3.2006 – Ellen Munthe-Kaas Page 50

Summary

9 Efficient storage usage
¾ block size
¾ scheduling
¾ adjacent blocks
¾ multiple disks
¾ prefetching / multiple-buffering

9 Disk errors
¾ new disks have few errors, but they DO occur
¾ checksums

9 Error recovery
¾ stable storage
¾ RAID

