
Representing
Data Elements

Contains slides by
Hector Garcia-Molina, Vera Goebel



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 2

Overview

9 Basic data representation – fields

9 Records

9 Data layout on disk

9 Pointer management moving records

9 Comparison



Representation of 
Basic Data Types



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 4

Data Representation

9 Attributes need to be represented by fixed- or 
variable-length sequences of bytes called fields

9 Fields are put in fixed- or variable-length collections 
called records

9 Records are stored in physical blocks where design is 
dependent on access pattern, modification policy, 
having sorted records, ....

9 Records belonging together (relation or extent) are
stored together and form a file.



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 5

Basic Data Elements

9 What do we want to store?
names, addresses, salaries, dates, times, pictures, sounds, 
videos, ....

9 What is available:  bits and bytes (0’s and 1’s)

9 We must define a bit sequence within a byte (or a consecutive 
collection of bytes) that has a certain meaning

9 Ultimately, all data is represented by sequence of bytes 
(operations on single bits is more expensive, makes storage 
more complex, ...)

9 A data element may be of fixed length or variable length
(first, we assume only fixed length)



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 6

Numbers
9 Numbers are easy – just a binary representation which allows 

the machine’s hardware to perform arithmetic operations 
9 Integers: 

¾ short: 2 bytes
e.g., 35 can be represented as
(0 x 215 +...+ 1 x 26 + 0 x 25 + 0 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20)

¾ long: 4 bytes
¾ signed: first bit tells whether or not it is a negative number
¾ unsigned: all bits are used for one positive number

9 Reals:
¾ n bytes for mantissa, m for exponent (e.g., 1 + 1)

e.g., 35.4 can be represented as

00000000 00100011

00100011 00000100



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 7

Characters – I 

9 Single characters - char: 
various coding schemes suggested, most popular is ascii
e.g.: A:    01000001

a:     01100001
5:     00110101
LF:   00001010

9 Fixed-length character strings – char(n):
array of characters, each coded as above, use padding 
characters to fill out all fields if string is shorter than n
e.g.:

CHAR(5) x;
x = “cat”; c ta



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 8

Characters – II

9 “Variable”-length character strings – varchar(n):
actually a fixed length string of n characters, but the text value 
has a length that varies

¾ length + content (n + x bytes):

first x bytes indicate the length of the text value

¾ null-terminated (n + 1 bytes):

first bytes is used for the text value, string is ended with 
NULL character

c ta3

c ta



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 9

Date and Time

9 Date, e.g.:
¾ integer, # days since Jan 1, 1900
¾ 8 characters – YYYYMMDD 
¾ why not YYMMDD?

9 Time, e.g.:   
¾ integer – seconds since midnight
¾ characters – HHMMSS



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 10

Boolean and Enumerated Types

9 Boolean
¾ TRUE

¾ FALSE

9 Enumerated types – give a finite set of valid values, 
e.g., enum {Mon, Tur, Wed,..., Sun} days;

can be represented by 1, 2, 3, ..., 7

9 Can we use less than one byte per value 
(e.g., boolean as 1 bit, days as 3 bits)?

Ö YES, but it is usually inconvenient 
(complex and error-prone operations – use only if storage shortage)

1111 1111

0000 0000



Records



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 12

Records 

9 Records are collections of related values – fields 
grouped together (typical values tuples or objects),
e.g.: 
Employee: name, gender, department, ...

9 A record type consists of names and types of the 
fields,
e.g.: 
name char(10), 
gender character, 
department char(3), ...

9 Records may be of
¾ fixed format or variable format

¾ fixed length or variable length



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 13

Fixed Format and Length Records

9 Easiest approach is to store each field (in its defined 
length) sequentially, 
e.g.; 

IFIM♦NESROVLAH

name 
char(10)

department 
char(3)

gender
char

padding character



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 14

Schema

9 The record schema includes the record types and each 
field’s offset within the record

9 The DBS maintains schema information which 
is essentially what appears for example in 
CREATE TABLE for a relation
¾ attributes and their types (record schema)

¾ order of the attributes (fields)

¾ constraints such as keys, ...

9 The scheme is consulted when accessing a field



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 15

Data Alignment - I

9 4- and 8-byte alignment: 
some machines require (or are more efficient) if a field 
starts at a memory address that is 4- or 8-byte aligned
¾ store data as on previous slide and align data when copying 

it to main memory
¾ store data in an aligned form, i.e., each field is a multiple of

the align-number, and just copy block to memory

9 The last solution is usually preferred, i.e., all field sizes 
are rounded up to the next multiple of the align size



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 16

Data Alignment - II

9 Fixed-length example (4-byte alignment):

IFIM♦NESROVLAH

name 
char(10)

department 
char(3)

gender
char

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name 
char(10)

department 
char(3)

gender
char



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 17

Record Headers – I 
9 There is often information about a record that is not a field, 

e.g.:
¾ record schema
¾ length of record
¾ timestamps
¾ ....

9 This information is stored in a record header requiring  
additional bytes for this additional information

9 Some of this information is equal for all records of this type, 
i.e., provide only a pointer

9 Still, some information may be equal for each record (and 
deducible from schema), but still we might put it into the record 
header – why?
Æ for example reducing accesses to slower storage – e.g.:
¾ length of records if using clustering (described later)
¾ ...



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 18

Record Headers – II 

9 Example:

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name 
char(10)

department 
char(3)

gender
char

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name 
char(10)

department 
char(3)

gender
char

po
int

er
 to

sc
he

ma

tim
es

tam
p

record header
Note:
if we need x-byte alignment, each of the record 
header fields also must be a multiple of x



Variable 
Fields and Records



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 20

Fixed Records and Variable-Length Fields – I

9 Data items (stored in a field) where the size varies,
e.g.:
¾ text strings like name, address, ...

e.g., fixed vs variable declaration of names:

¾ large data items like pictures, audio clips, video clips, ...
e.g.: the size of a video may vary according to length, encoding format, 
frame rate, color depth, resolution, ...

Æ waste of space to make the field large and fixed size to 
hold the largest element, if the average is much less 

SNEVETS

ANILOM-AICRAG

RELLIM

NESROVLAH

♦♦♦♦♦♦♦♦SNEVETS

♦♦ANILOM-AICRAG

♦♦♦♦♦♦♦♦♦RELLIM

♦♦♦ ♦ ♦♦NESROVLAH



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 21

Fixed Records and Variable-Length Fields – II

9 If one or more fields in a record have variable size, the record
header must contain enough information to find any field
¾ add record length in record header
¾ put all fixed length fields first
¾ add pointers (offsets of first byte) to variable-length fields in record 

header

9 Example
Employee: name, gender, department_code

namedepartmentgender

oth
er 

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 22

Repeating Record Fields – I 

9 Records may contain a variable number of a field F,
e.g.:
¾ representing a one-many-relationship in ODL objects, e.g., set of 

children
(in the relational model we would have a connecting relation)

¾ having a collection type as attribute type, e.g., set of phones

9 “Solution” 1:
Group all occurrences of F and treat as a variable length field
¾ add pointer (offset to first byte) to first element
¾ if each field F is L bytes long, element i is accessed by 
offset + ((i – 1) x L)

¾ the final element is found by comparing with offset of next field or 
record length



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 23

Repeating Record Fields – II 

9 Example
Employee: name, gender, department_code, projects

namedepartmentgender

oth
er 

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter

pointers to 
projectspro

jec
t p

oin
ter

s

(not exactly double 
indirection, but close)



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 24

Repeating Record Fields – III
9 “Solution” 2:

Keep fixed length record and put the variable-length portion on 
separate block, add for each variable-length field
¾ a pointer in record header to place where the field starts
¾ either a counter, total length, or end address 

9 Example
Employee: name, gender, department_code, projects

departmentgender

oth
er 

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter

pointers to projects
(double indirection)

pro
jec

t p
oin

ter
s

name additional space

# pr
oje

ct 
po

int
ers

na
me l

en
gth

x y



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 25

Repeating Record Fields – IV

9 “Solution” 1 (variable-length record): 
☺ less block accesses (possible disk I/O’s) examining all fields
/ random record access requires reading all headers
/more complicated to move records around 

9 “Solution” 2 (fixed-length record + indirection) 
☺ eases searching as record i is accessed by (i-1) x record size
☺ easy to move records around
/ several blocks must be accessed to get whole record

9 A compromise is to have a fixed-length record holding
¾ some repeating fields
¾ pointer to where additional occurrences can be found
¾ count of how many additional occurrences there are



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 26

Variable-Format Records – I 

9 Records do not necessarily have fixed formats, i.e., 
fields and their orders may vary during run-time

9 Record itself contains format (“self describing”) –
using tags
¾ name
¾ type
¾ length
¾ value

role of field



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 27

Variable-Format Records – II

9 For what is variable-format records useful?
¾ information-integration applications, for example using XML 

and semi-structured data models, like data warehousing and 
mediation

¾ records with a flexible schema, e.g., an attribute may not 
appear at all (allowing NULL values)

¾ ...

9 Example: author record with tagged fields 

Database Systems: The Complete Book35STUllman6SN

cod
e f

or 
na

me

cod
e f

or 
str

ing
 ty

pe

len
gth

val
ue

cod
e f

or 
bo

ok 
titl

e

cod
e f

or 
str

ing
 ty

pe

len
gth

val
ue



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 28

Question

9 We have seen examples for
¾ fixed format and length records
¾ variable format and length records

9 Does fixed format and variable length make sense?

9 Does variable format and fixed length make sense?

9 Does it make sense to have hybrid formats?



Placing Records into Blocks



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 30

Disk Blocks

9 Records representing tuples of a relation or objects of 
an extent of a class are stored on disk

9 The disk block header is optional and may contain
¾ block ID
¾ directory with offsets of each record
¾ modification and access timestamps
¾ information about which relation(s) the tuples belong to
¾ links to other blocks
¾ ...

record n...record 2record 1block 
header



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 31

Allocating Disk Blocks

9 Contiguous allocation: 
store file in contiguous blocks on the disk
☺ fast to read whole file
/ update file difficult 

9 Linked allocation:
each block has a pointer to next block
☺ easy to expand file
/ slow to read whole file or a random block 

9 Cluster allocation: 
several contiguous blocks (segments) and linking several 
segments with pointers 

9 Indexed allocation:
having index blocks pointing to actual file blocks (e.g., I-node)

9 Different combinations of the above schemes ...



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 32

Placing Records into Blocks – I 
9 We have seen different kinds of records
9 How do we put the records on disk blocks?

♦♦♦ I♦♦ M IF♦♦NESROVLAH

...

records:

logical disk blocks:

physical disk sectors:



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 33

Placing Records into Blocks – II

9 Some options when storing records in blocks:
¾ separating records within a block
¾ spanned vs unspanned storage
¾ mixed record types – clustering
¾ sequencing
¾ indirection
¾ ...



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 34

Separating Blocks

Block

9 fixed size records – no need to separate

9 special separation marker

9 give record lengths (or offsets) 
¾ within each record header
¾ in disk block header

R2R1 R3



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 35

Spanned vs Unspanned Records – I 

9 Unspanned records must be within one disk block

☺ easy to find a record
☺ need only to access one block to find a record
/ introduce fragmentation – wasted space in a disk block
/ access many blocks to retrieve many records

...

tuples:

disk blocks:

Note:
not enough room in block, choose next 



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 36

Spanned vs Unspanned Records – II 
9 Spanned records can be split between two (or more) disk blocks

¾ spanned essential if record size larger than block size
☺ no fragmentation
☺ saves total disk blocks
☺ saves total disk accesses retrieving many records
/ may need to access two or more blocks to find a record
/ more complex headers, i.e., fragmentation field, fragment number, 

pointers to other fragments

...

tuples:

disk blocks:

Note 1:
not enough room in 
one block, split and 
store on two blocks 

Note 2:
need indication that it is 
a partitial record and a 
“pointer” to the rest 

Note 3:
need indication that it is a 
continuation of a record 
and a pointer back



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 37

Spanned vs Unspanned Records – III

9 Unspanned records:
¾ fixed size records:

� records per block: blocking factor bfr = ⎣B/R⎦
where B is block size and R is record size

� unused space u per block: u = B – (bfr x R)
� blocks bunspanned needed for a file with r records: bunspanned = ⎡r/bfr⎤

¾ variable sized records
� each block may store a different number of records
� bfr, u, b above gives an average if R is average record size 

9 Spanned records:
¾ number of blocks needed for a file, whose size is f, is given 

by bspanned = f/B
¾ average record size (and file size) is somewhat larger 

compared to unspanned records, because we need some 
elements in the headers for pointers, etc.



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 38

Spanned vs Unspanned Records – IV

9 Example: 106 records, fixed record size = 2050 bytes,
block size = 4096 bytes

¾ unspanned:

� bfr = ⎣4096/2050⎦ = 1 
� total blocks = ⎡106/1⎤ = 106

� space used = 2050 x 106 = 1955 MB
� total space = 4096 x 106 = 3906 MB

¾ spanned:
� each record is larger – say 3 bytes for indicating fragmentation, 

fragment number, and pointers
� file size f = 106 x (2050 + 3) = 1957 MB
� total blocks = 1957 MB / 4 KB ≈ 0.501 x 106

block 1 block 2

2050 bytes wasted 2046 2050 bytes    wasted 2046

R1 R2

utilization ≈ 50%



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 39

Mixed Record Types (Clustering) – I 
9 Allow records of different types interleaved on same block –

why?
Ö Records that are frequently accessed together should be in the 

same block to minimize disk I/O
9 Example:

using clustering on customer and account records in a bank DBS

¾ query 1: SELECT c.id, c.name, sum_credit: SUM(a.credit) 
FROM customer c, account a 
WHERE c.id = a.owner
GROUP BY c.id

Ö if query 1 is frequent, clustering can be efficient

¾ query 2: SELECT c.name, c.address 
FROM customer c

Ö if query2 is frequent, clustering can be counter productive

customer n account n...account 1customer 1block header



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 40

Mixed Record Types (Clustering) – II
9 As different queries will be used, one might need a way to 

optimize several different queries
9 Compromise:

no mixing, but keep related records in adjacent blocks (e.g., 
same cylinder, but different tracks)

9 Example:
using the compromise on costumer and account records in a bank DBS

Note 1:
read only one record 
type within one block
(query 2)

Note 2:
do not need seek time when 
reading both costumer and 
account record types, only 
change head (query 1)

costumer n account n...account 1costumer 1records:



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 41

Sequencing

9 Ordering records in file (and block) by some key value

9 Why sequencing?
Ö To make it possible to efficiently read records in order

¾ merge-join
¾ quick lookup using indexes
¾ ...

9 Keeping the records sorted makes insert and 
modification operations more complex



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 42

Indirection – I 
9 How do we represent addresses, pointers, or 

references? 
¾ data on disk
¾ data in main memory

9 Pure physical: device ID 
e.g.: record address =  cylinder block ID

track
block
offset

☺ gives exact position of record
☺ no indirection – direct access
/ long addresses
/ must update all occurrences of pointers if record moves  



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 43

Indirection – II

9 Indirect: 
e.g., record ID arbitrary bit string and using a map table

☺ update only entry in map table in case of modification
/ one memory reference (or disk access) to read map table  

ar

logical   physical
record ID = r

physical address = a



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 44

Indirection – III

9 Which one to choose is a tradeoff: flexibility vs cost

9 However, many combinations possible
¾ physical block number and record number (fixed size)
¾ physical block number and offset table (variable size)

¾ logical block (file system) and block offset
¾ ...

R2free space R3 R3



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 45

File and Record Operations – I 

9 Insertion:
¾ no order : just insert new record in any available space, or 

get a new block
¾ sorted : find appropriate block

� space in block – slide blocks to the side and insert new, 
e.g.: insert record r3.1 between r3 and r4: 

header r1 r2 r3 r4 r5

r3.1

r3.1

Note:
references and pointers to a record which 
is moved must be updated – depending on 
how we manage addresses and pointers



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 46

r4 r5header

File and Record Operations – II
� no room in block – find space in a “near-by” block, slide last block(s) 

to next block, and insert new 
e.g.: insert record r2.1 between r2 and r3 

� no room in block – create overflow block, add pointer to block 
header, if necessary use block sliding as above,
e.g.: insert record r2.1 between r2 and r3 

header r1 r2 r3 

r2.1

r2.1

r2.1

header r1 r2 r3 headerr2.1



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 47

File and Record Operations – III

9 Deletion:

¾ remove record r3

¾ slide other records to have one large available space in block

¾ may be able to do away with some blocks – save space

header r1 r2 r4 headerr3



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 48

free space

File and Record Operations – IV

¾ complications – references:
� update all references in various records
� leave “invalid mark” (tombstones) in old location

o physical addresses

o logical addresses

R1free space R2 R3

Note 1:
space for tombstone is never re-used

Note 2:
tombstone may also go into record header

ar

logical   physicalrecord ID = r

physical address = a

Note 3:
neither record ID r nor 
place in map is reused



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 49

File and Record Operations – IV

9 Update:

¾ fixed length records are easy –
just replace old value with new value

¾ if updated record is longer, we need additional space
� slide records
� overflow block

¾ if updated record is shorter, we can “compress” data



Pointer Management



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 51

Managing Pointers – I  

9 Pointers are often part of a record, i.e., a field is a 
reference to another record

9 If the data block is in memory, it is far more efficient 
to use the memory address of the record than the 
physical storage address

9 Translation table:
storage   memory

storage address

memory address



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 52

Managing Pointers – II
9 Pointer swizzling avoid repeated translations

¾ when we move a record from secondary storage to main memory, the
pointers to this record are swizzled (translated)

¾ a pointer then consists of
� a swizzled bit
� the pointer value, i.e., either a secondary storage address or memory 

address as appropriate 

¾ example:

header

header

header

header

header

header

disk block

disk block

disk block

header

header

memory block

move to memory

move to memory header

header

disk block
swizzeled

unswizzeled

1

1

set swizzeled bit



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 53

Managing Pointers – III

9 Automatic swizzling:
¾ locate all pointers to records in newly loaded block and 

swizzle the pointers to the new memory address
¾ locate all pointers in records in newly loaded block and 

swizzle the pointers to records that are currently in memory
☺ quick accesses to the record’s references
/ much wasted work if the swizzled references are not used

9On-Demand swizzling:
¾ leave all pointers unzwizzled when moving disk block into 

memory
¾ if a record is accessed and we follow a reference, we swizzle 

the pointer when used
☺ does not waste time swizzling pointers that will not be used
/ slower first access to referenced record due to swizzling 



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 54

Managing Pointers – IV

9 No swizzling: always use translation table
☺does not waste time swizzling pointers that will not be used
☺ less complex design – no swizzling decisions needed 
/slower access to referenced records due to lookup in    

translation table each time

9 Programmer-controlled swizzling: 
¾ at implementation time, the programmer knows some 

records that will be frequently used – swizzle these
¾ use no or on-Demand swizzling on rest
☺speeds up accesses to frequently used records 



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 55

Managing Pointers – V

9 Pointers must be unswizzled when a block is returned 
to disk

9 One might pin certain memory blocks, i.e., it cannot 
be moved back to secondary storage
¾ frequently used pages
¾ swizzled pointers to records contained in the block



Comparison



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 57

Many Options – I 

9 There are numerous ways to organize data on disk:
¾ fixed-length vs variable-length fields
¾ fixed-length vs variable-length records
¾ fixed-format vs variable-format records
¾ byte-alignment
¾ which “meta-data” to put in record header, block header, ...
¾ separating records within a block
¾ spanned vs unspanned storage
¾ mixed record types – clustering
¾ sequencing
¾ indirection
¾ different block allocation schemes
¾ ...

9 Which one is best for me?



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 58

Many Options – II

9 To choose the “best”, there are several issues:

9 Thus, the “best” design depends on various 
parameters like common operations, access patterns, 
amount of data, data types, ...

Flexibility Space utilization

PerformanceComplexity



INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 59

Summary

9 Basic data representation in fields: 
fixed vs variable length

9 Records: 
fixed vs variable length and format

9 Data layout on disk: 
block allocation, record placement, sequencing, clustering, ...

9 Pointer management moving records: swizzling

9 Comparison:
the “best” design dependent on various factors


