
Representing
Data Elements

Contains slides by
Hector Garcia-Molina, Vera Goebel

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 2

Overview

Basic data representation – fields

Records

Data layout on disk

Pointer management moving records

Comparison

Representation of
Basic Data Types

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 4

Data Representation

Attributes need to be represented by fixed- or
variable-length sequences of bytes called fields

Fields are put in fixed- or variable-length collections
called records

Records are stored in physical blocks where design is
dependent on access pattern, modification policy,
having sorted records,

Records belonging together (relation or extent) are
stored together and form a file.

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 5

Basic Data Elements

What do we want to store?
names, addresses, salaries, dates, times, pictures, sounds,
videos,

What is available: bits and bytes (0’s and 1’s)

We must define a bit sequence within a byte (or a consecutive
collection of bytes) that has a certain meaning

Ultimately, all data is represented by sequence of bytes
(operations on single bits is more expensive, makes storage
more complex, ...)

A data element may be of fixed length or variable length
(first, we assume only fixed length)

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 6

Numbers
Numbers are easy – just a binary representation which allows
the machine’s hardware to perform arithmetic operations
Integers:

short: 2 bytes
e.g., 35 can be represented as
(0 x 215 +...+ 1 x 26 + 0 x 25 + 0 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20)

long: 4 bytes
signed: first bit tells whether or not it is a negative number
unsigned: all bits are used for one positive number

Reals:
n bytes for mantissa, m for exponent (e.g., 1 + 1)
e.g., 35.4 can be represented as

00000000 00100011

00100011 00000100

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 7

Characters – I

Single characters - char:
various coding schemes suggested, most popular is ascii
e.g.: A: 01000001

a: 01100001
5: 00110101
LF: 00001010

Fixed-length character strings – char(n):
array of characters, each coded as above, use padding
characters to fill out all fields if string is shorter than n
e.g.:

CHAR(5) x;
x = “cat”; c ta

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 8

Characters – II

“Variable”-length character strings – varchar(n):
actually a fixed length string of n characters, but the text value
has a length that varies

length + content (n + x bytes):

first x bytes indicate the length of the text value

null-terminated (n + 1 bytes):

first bytes is used for the text value, string is ended with
NULL character

c ta3

c ta

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 9

Date and Time

Date, e.g.:
integer, # days since Jan 1, 1900
8 characters – YYYYMMDD
why not YYMMDD?

Time, e.g.:
integer – seconds since midnight
characters – HHMMSS

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 10

Boolean and Enumerated Types

Boolean
TRUE

FALSE

Enumerated types – give a finite set of valid values,
e.g., enum {Mon, Tur, Wed,..., Sun} days;

can be represented by 1, 2, 3, ..., 7

Can we use less than one byte per value
(e.g., boolean as 1 bit, days as 3 bits)?
YES, but it is usually inconvenient
(complex and error-prone operations – use only if storage shortage)

1111 1111

0000 0000

Records

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 12

Records

Records are collections of related values – fields
grouped together (typical values tuples or objects),
e.g.:
Employee: name, gender, department, ...

A record type consists of names and types of the
fields,
e.g.:
name char(10),
gender character,
department char(3), ...

Records may be of
fixed format or variable format

fixed length or variable length

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 13

Fixed Format and Length Records

Easiest approach is to store each field (in its defined
length) sequentially,
e.g.;

IFIM♦NESROVLAH

name
char(10)

department
char(3)

gender
char

padding character

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 14

Schema

The record schema includes the record types and each
field’s offset within the record

The DBS maintains schema information which
is essentially what appears for example in
CREATE TABLE for a relation

attributes and their types (record schema)

order of the attributes (fields)

constraints such as keys, ...

The scheme is consulted when accessing a field

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 15

Data Alignment - I

4- and 8-byte alignment:
some machines require (or are more efficient) if a field
starts at a memory address that is 4- or 8-byte aligned

store data as on previous slide and align data when copying
it to main memory
store data in an aligned form, i.e., each field is a multiple of
the align-number, and just copy block to memory

The last solution is usually preferred, i.e., all field sizes
are rounded up to the next multiple of the align size

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 16

Data Alignment - II

Fixed-length example (4-byte alignment):

IFIM♦NESROVLAH

name
char(10)

department
char(3)

gender
char

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name
char(10)

department
char(3)

gender
char

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 17

Record Headers – I
There is often information about a record that is not a field,
e.g.:

record schema
length of record
timestamps
....

This information is stored in a record header requiring
additional bytes for this additional information
Some of this information is equal for all records of this type,
i.e., provide only a pointer
Still, some information may be equal for each record (and
deducible from schema), but still we might put it into the record
header – why?

for example reducing accesses to slower storage – e.g.:
length of records if using clustering (described later)
...

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 18

Record Headers – II

Example:

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name
char(10)

department
char(3)

gender
char

♦♦♦ I♦♦ M IF♦♦NESROVLAH

name
char(10)

department
char(3)

gender
char

po
int

er
 to

sc
he

ma

tim
es

tam
p

record header
Note:
if we need x-byte alignment, each of the record
header fields also must be a multiple of x

Variable
Fields and Records

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 20

Fixed Records and Variable-Length Fields – I

Data items (stored in a field) where the size varies,
e.g.:

text strings like name, address, ...
e.g., fixed vs variable declaration of names:

large data items like pictures, audio clips, video clips, ...
e.g.: the size of a video may vary according to length, encoding format,
frame rate, color depth, resolution, ...

waste of space to make the field large and fixed size to
hold the largest element, if the average is much less

SNEVETS

ANILOM-AICRAG

RELLIM

NESROVLAH

♦♦♦♦♦♦♦♦SNEVETS

♦♦ANILOM-AICRAG

♦♦♦♦♦♦♦♦♦RELLIM

♦♦♦ ♦ ♦♦NESROVLAH

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 21

Fixed Records and Variable-Length Fields – II

If one or more fields in a record have variable size, the record
header must contain enough information to find any field

add record length in record header
put all fixed length fields first
add pointers (offsets of first byte) to variable-length fields in record
header

Example
Employee: name, gender, department_code

namedepartmentgender

oth
er

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 22

Repeating Record Fields – I

Records may contain a variable number of a field F,
e.g.:

representing a one-many-relationship in ODL objects, e.g., set of
children
(in the relational model we would have a connecting relation)
having a collection type as attribute type, e.g., set of phones

“Solution” 1:
Group all occurrences of F and treat as a variable length field

add pointer (offset to first byte) to first element
if each field F is L bytes long, element i is accessed by
offset + ((i – 1) x L)

the final element is found by comparing with offset of next field or
record length

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 23

Repeating Record Fields – II

Example
Employee: name, gender, department_code, projects

namedepartmentgender

oth
er

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter

pointers to
projectspro

jec
t p

oin
ter

s

(not exactly double
indirection, but close)

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 24

Repeating Record Fields – III
“Solution” 2:
Keep fixed length record and put the variable-length portion on
separate block, add for each variable-length field

a pointer in record header to place where the field starts
either a counter, total length, or end address

Example
Employee: name, gender, department_code, projects

departmentgender

oth
er

hd
r inf

o

rec
ord

 le
ng

th

na
me p

oin
ter

pointers to projects
(double indirection)

pro
jec

t p
oin

ter
s

name additional space

pr
oje

ct
po

int
ers

na
me l

en
gth

x y

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 25

Repeating Record Fields – IV

“Solution” 1 (variable-length record):
☺ less block accesses (possible disk I/O’s) examining all fields

random record access requires reading all headers
more complicated to move records around

“Solution” 2 (fixed-length record + indirection)
☺ eases searching as record i is accessed by (i-1) x record size
☺ easy to move records around

several blocks must be accessed to get whole record

A compromise is to have a fixed-length record holding
some repeating fields
pointer to where additional occurrences can be found
count of how many additional occurrences there are

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 26

Variable-Format Records – I

Records do not necessarily have fixed formats, i.e.,
fields and their orders may vary during run-time

Record itself contains format (“self describing”) –
using tags

name
type
length
value

role of field

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 27

Variable-Format Records – II

For what is variable-format records useful?
information-integration applications, for example using XML
and semi-structured data models, like data warehousing and
mediation
records with a flexible schema, e.g., an attribute may not
appear at all (allowing NULL values)
...

Example: author record with tagged fields

Database Systems: The Complete Book35STUllman6SN

cod
e f

or
na

me

cod
e f

or
str

ing
 ty

pe

len
gth

val
ue

cod
e f

or
bo

ok
titl

e

cod
e f

or
str

ing
 ty

pe

len
gth

val
ue

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 28

Question

We have seen examples for
fixed format and length records
variable format and length records

Does fixed format and variable length make sense?

Does variable format and fixed length make sense?

Does it make sense to have hybrid formats?

Placing Records into Blocks

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 30

Disk Blocks

Records representing tuples of a relation or objects of
an extent of a class are stored on disk

The disk block header is optional and may contain
block ID
directory with offsets of each record
modification and access timestamps
information about which relation(s) the tuples belong to
links to other blocks
...

record n...record 2record 1block
header

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 31

Allocating Disk Blocks

Contiguous allocation:
store file in contiguous blocks on the disk
☺ fast to read whole file

update file difficult
Linked allocation:
each block has a pointer to next block
☺ easy to expand file

slow to read whole file or a random block
Cluster allocation:
several contiguous blocks (segments) and linking several
segments with pointers
Indexed allocation:
having index blocks pointing to actual file blocks (e.g., I-node)

Different combinations of the above schemes ...

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 32

Placing Records into Blocks – I
We have seen different kinds of records
How do we put the records on disk blocks?

♦♦♦ I♦♦ M IF♦♦NESROVLAH

...

records:

logical disk blocks:

physical disk sectors:

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 33

Placing Records into Blocks – II

Some options when storing records in blocks:
separating records within a block
spanned vs unspanned storage
mixed record types – clustering
sequencing
indirection
...

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 34

Separating Blocks

Block

fixed size records – no need to separate

special separation marker

give record lengths (or offsets)
within each record header
in disk block header

R2R1 R3

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 35

Spanned vs Unspanned Records – I

Unspanned records must be within one disk block

☺ easy to find a record
☺ need only to access one block to find a record

introduce fragmentation – wasted space in a disk block
access many blocks to retrieve many records

...

tuples:

disk blocks:

Note:
not enough room in block, choose next

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 36

Spanned vs Unspanned Records – II
Spanned records can be split between two (or more) disk blocks

spanned essential if record size larger than block size
☺ no fragmentation
☺ saves total disk blocks
☺ saves total disk accesses retrieving many records

may need to access two or more blocks to find a record
more complex headers, i.e., fragmentation field, fragment number,
pointers to other fragments

...

tuples:

disk blocks:

Note 1:
not enough room in
one block, split and
store on two blocks

Note 2:
need indication that it is
a partitial record and a
“pointer” to the rest

Note 3:
need indication that it is a
continuation of a record
and a pointer back

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 37

Spanned vs Unspanned Records – III

Unspanned records:
fixed size records:

records per block: blocking factor bfr = ⎣B/R⎦
where B is block size and R is record size
unused space u per block: u = B – (bfr x R)
blocks bunspanned needed for a file with r records: bunspanned = ⎡r/bfr⎤

variable sized records
each block may store a different number of records
bfr, u, b above gives an average if R is average record size

Spanned records:
number of blocks needed for a file, whose size is f, is given
by bspanned = f/B
average record size (and file size) is somewhat larger
compared to unspanned records, because we need some
elements in the headers for pointers, etc.

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 38

Spanned vs Unspanned Records – IV

Example: 106 records, fixed record size = 2050 bytes,
block size = 4096 bytes

unspanned:

bfr = ⎣4096/2050⎦ = 1
total blocks = ⎡106/1⎤ = 106

space used = 2050 x 106 = 1955 MB
total space = 4096 x 106 = 3906 MB

spanned:
each record is larger – say 3 bytes for indicating fragmentation,
fragment number, and pointers
file size f = 106 x (2050 + 3) = 1957 MB
total blocks = 1957 MB / 4 KB ≈ 0.501 x 106

block 1 block 2

2050 bytes wasted 2046 2050 bytes wasted 2046

R1 R2

utilization ≈ 50%

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 39

Mixed Record Types (Clustering) – I
Allow records of different types interleaved on same block –
why?
Records that are frequently accessed together should be in the
same block to minimize disk I/O
Example:
using clustering on customer and account records in a bank DBS

query 1: SELECT c.id, c.name, sum_credit: SUM(a.credit)
FROM customer c, account a
WHERE c.id = a.owner
GROUP BY c.id

if query 1 is frequent, clustering can be efficient

query 2: SELECT c.name, c.address
FROM customer c

if query2 is frequent, clustering can be counter productive

customer n account n...account 1customer 1block header

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 40

Mixed Record Types (Clustering) – II
As different queries will be used, one might need a way to
optimize several different queries
Compromise:
no mixing, but keep related records in adjacent blocks (e.g.,
same cylinder, but different tracks)
Example:
using the compromise on costumer and account records in a bank DBS

Note 1:
read only one record
type within one block
(query 2)

Note 2:
do not need seek time when
reading both costumer and
account record types, only
change head (query 1)

costumer n account n...account 1costumer 1records:

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 41

Sequencing

Ordering records in file (and block) by some key value

Why sequencing?
To make it possible to efficiently read records in order

merge-join
quick lookup using indexes
...

Keeping the records sorted makes insert and
modification operations more complex

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 42

Indirection – I
How do we represent addresses, pointers, or
references?

data on disk
data in main memory

Pure physical: device ID
e.g.: record address = cylinder block ID

track
block
offset

☺ gives exact position of record
☺ no indirection – direct access

long addresses
must update all occurrences of pointers if record moves

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 43

Indirection – II

Indirect:
e.g., record ID arbitrary bit string and using a map table

☺ update only entry in map table in case of modification
one memory reference (or disk access) to read map table

ar

logical physical
record ID = r

physical address = a

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 44

Indirection – III

Which one to choose is a tradeoff: flexibility vs cost

However, many combinations possible
physical block number and record number (fixed size)
physical block number and offset table (variable size)

logical block (file system) and block offset
...

R2free space R3 R3

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 45

File and Record Operations – I

Insertion:
no order : just insert new record in any available space, or
get a new block
sorted : find appropriate block

space in block – slide blocks to the side and insert new,
e.g.: insert record r3.1 between r3 and r4:

header r1 r2 r3 r4 r5

r3.1

r3.1

Note:
references and pointers to a record which
is moved must be updated – depending on
how we manage addresses and pointers

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 46

r4 r5header

File and Record Operations – II
no room in block – find space in a “near-by” block, slide last block(s)
to next block, and insert new
e.g.: insert record r2.1 between r2 and r3

no room in block – create overflow block, add pointer to block
header, if necessary use block sliding as above,
e.g.: insert record r2.1 between r2 and r3

header r1 r2 r3

r2.1

r2.1

r2.1

header r1 r2 r3 headerr2.1

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 47

File and Record Operations – III

Deletion:

remove record r3

slide other records to have one large available space in block

may be able to do away with some blocks – save space

header r1 r2 r4 headerr3

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 48

free space

File and Record Operations – IV

complications – references:
update all references in various records
leave “invalid mark” (tombstones) in old location

o physical addresses

o logical addresses

R1free space R2 R3

Note 1:
space for tombstone is never re-used

Note 2:
tombstone may also go into record header

ar

logical physicalrecord ID = r

physical address = a

Note 3:
neither record ID r nor
place in map is reused

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 49

File and Record Operations – IV

Update:

fixed length records are easy –
just replace old value with new value

if updated record is longer, we need additional space
slide records
overflow block

if updated record is shorter, we can “compress” data

Pointer Management

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 51

Managing Pointers – I

Pointers are often part of a record, i.e., a field is a
reference to another record
If the data block is in memory, it is far more efficient
to use the memory address of the record than the
physical storage address
Translation table:

storage memory
storage address

memory address

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 52

Managing Pointers – II
Pointer swizzling avoid repeated translations

when we move a record from secondary storage to main memory, the
pointers to this record are swizzled (translated)
a pointer then consists of

a swizzled bit
the pointer value, i.e., either a secondary storage address or memory
address as appropriate

example:

header

header

header

header

header

header

disk block

disk block

disk block

header

header

memory block

move to memory

move to memory header

header

disk block
swizzeled

unswizzeled

1

1

set swizzeled bit

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 53

Managing Pointers – III

Automatic swizzling:
locate all pointers to records in newly loaded block and
swizzle the pointers to the new memory address
locate all pointers in records in newly loaded block and
swizzle the pointers to records that are currently in memory

☺ quick accesses to the record’s references
much wasted work if the swizzled references are not used

On-Demand swizzling:
leave all pointers unzwizzled when moving disk block into
memory
if a record is accessed and we follow a reference, we swizzle
the pointer when used

☺ does not waste time swizzling pointers that will not be used
slower first access to referenced record due to swizzling

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 54

Managing Pointers – IV

No swizzling: always use translation table
☺does not waste time swizzling pointers that will not be used
☺ less complex design – no swizzling decisions needed

slower access to referenced records due to lookup in
translation table each time

Programmer-controlled swizzling:
at implementation time, the programmer knows some
records that will be frequently used – swizzle these
use no or on-Demand swizzling on rest

☺speeds up accesses to frequently used records

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 55

Managing Pointers – V

Pointers must be unswizzled when a block is returned
to disk

One might pin certain memory blocks, i.e., it cannot
be moved back to secondary storage

frequently used pages
swizzled pointers to records contained in the block

Comparison

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 57

Many Options – I

There are numerous ways to organize data on disk:
fixed-length vs variable-length fields
fixed-length vs variable-length records
fixed-format vs variable-format records
byte-alignment
which “meta-data” to put in record header, block header, ...
separating records within a block
spanned vs unspanned storage
mixed record types – clustering
sequencing
indirection
different block allocation schemes
...

Which one is best for me?

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 58

Many Options – II

To choose the “best”, there are several issues:

Thus, the “best” design depends on various
parameters like common operations, access patterns,
amount of data, data types, ...

Flexibility Space utilization

PerformanceComplexity

INF3100 – 13.3.2006 – Ellen Munthe-Kaas Page 59

Summary

Basic data representation in fields:
fixed vs variable length

Records:
fixed vs variable length and format

Data layout on disk:
block allocation, record placement, sequencing, clustering, ...

Pointer management moving records: swizzling

Comparison:
the “best” design dependent on various factors

