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Overview

Conventional indexes

B-trees

Hashing schemes

Multidimensional indexes
tree-like structures 
hash-like structures 
bitmap-indexes
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Search - I
How do you represent a relation or an extent?

just scatter records among the blocks 
order records
clustering
...

Today: 
How do we find an element quickly?

Example 1 – linear search: 
SELECT * FROM R WHERE a = 40

read the records one-by-one
we must in average read 50 % of the records 
and thus 50 % of the disk blocks
expensive
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Search - II

Example 2 – linear search: 
SELECT * FROM R,S WHERE a = d

for each tuple in R, 
we read on average 
50 % of the tuples 
in S
expensive

We need a mechanism to 
speed up the search for a tuple with a particular value of an 
attribute ...
... INDEXES
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Conventional Indexes
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Indexes – I 

An index on an attribute A is a data structure that makes it easy to find 
those elements that have a fixed value for attribute A

Each index is specified on field(s) of a file
search key (indexing field/attribute)
the index stores each value of the search key ordered along with a list of pointers 
to the corresponding records
search an index to find a list of addresses 

We still may need to read many index fields to find a given search 
key, but indexes are more efficient than it may seem:

the index fields are usually much smaller than the records, i.e., less data blocks 
must be accessed – may even be small enough to pin in memory
the keys are sorted, e.g., make a binary search to find the key
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Indexes – II

A file (e.g., relation or extent) can have several indexes 
Selection of indexes is a tradeoff
☺ improve searches and number of block accesses, e.g., in queries

increase complexity, e.g., modifications are harder and more time consuming as 
the indexes also must be updated
increase storage requirement

One must analyze the typical usage pattern, i.e., if a set of elements are 
more frequently ...

... queried than modified, then an index is useful

... modified than queried, then the cost of also modifying the index must be 
considered

Indexes are specially useful for attributes that are used in the WHERE
clause of queries and for attributes that are used in join
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Indexes – III

An index can be dense or sparse

Different types of indexes:
primary indexes: 
specified on ordering key field of an ordered file
NB! not the same as index on primary key
clustering indexes: 
specified on ordering field of an ordered file, but ordering field is 
not a key field (i.e., search key not unique - multiple records with 
same value of field may exist)
secondary indexes: 
can be specified on any non-ordering field

Note:
can at most have one primary or one
clustering index, not both or many of 
one kind. Why?
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Dense Indexes – I 

A dense index has one index entry for every search key 
value

every data record is represented in the index
an existence search of a record may be done via index only
the record is directly found in a block using the pointer, i.e., no 
search within the block 
if index fits in memory, a record can be found using a given search 
key with a maximum one disk I/O
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Dense Indexes – II
Example:

1.000.000 records of 300 B (including header)
the search key is a 4 byte integer and a pointer requires 4 bytes
4 KB blocks, no block header, random placement, 
average retrieval time ~5.6 ms (Seagate Cheetah X15)
no time to find a record within a block when in memory

13.6 records per block 76924 blocks (unspanned) to store data
512 indexes per block 1954 blocks (unspanned) to store index

no index: 
(76924 / 2) = 38462 block accesses (average)
time to find a record = 38462 * 5.6 ms = 215.4 s

dense index, binary search:
⎡log2(1954)⎤ + 1 = 11 + 1 = 12 block accesses (maximum)
time to find a record = 12 * 5.6 ms = 67.2 ms
using a dense index is 3205 times faster
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Sparse Indexes – I 
A sparse index has one 
index entry for every 
data block, i.e., the 
key of the first record

only one index field per block, i.e., less index data
cannot find out if a record exists only using the index
to find a record K 

search the index for the largest key less than or equal to K
retrieve the block pointed to by the index field
search within the block for the record 
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Sparse Indexes – II
Example: 

SELECT * 
FROM   R 
WHERE  a = 60

Example (cont.):
in our previous dense index example, we needed 1954 blocks for the index 
(#records / # index fields per block)
using a sparse index we need only 151
(#data blocks / # index fields per block)

sparse index, binary search:

⎡log2(151)⎤ + 1 = 8 + 1 = 9 block accesses (maximum) 
time to find a record = 9 * 5.6 ms = 50.4 ms
using a sparse index is 4272 times faster than using no indexes, 
1.33 times faster than dense indexes
However, sparse indexes must access the data block to see if a record exists
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Multi-Level Indexes
An index itself can span many blocks, i.e.,  still many block accesses
Using a multi-level index is one approach to increase efficiency, 
i.e., using an index on the index

Example (cont.):
need only 1954 / 512 = 4
for 2. level index blocks

need only 
⎡log2(4)⎤ + 1 + 1 =
2 + 1 + 1 = 4
block accesses

time to find a record = 
4 * 5.6 ms = 22.4 ms

2.25 times faster than 
one-level sparse, 3 times faster 
than one-level dense

Any levels of indexes may be applied, 
but the idea has its limits
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Questions
Can we build a dense, second level index for a dense index?

YES, 
but it does not
make sense

Does it make sense to use a sparse index on an unsorted file?
NO, 
how can one find records 
that are not in the index
BUT, 
one might use a sparse index on 
a dense index on an unsorted file
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Modifications
An index file is a sequential file and must be treated in a similar way 
as a file of sorted records:

use overflow blocks
insert new blocks
slide elements to adjacent blocks

A dense index points to the records, i.e.:
modified if a record is created, deleted, or moved
no actions must be done on block operations

A sparse index points to the blocks, i.e.:
may be modified if a record is created, deleted or moved
no action must be done managing overflow blocks (pointers to primary blocks 
only)
must insert (delete) pointer to new (deleted) sequential block
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Modifications: Deletion Example 1

Example – deletions using a sparse index:
delete record a = 60

delete record a = 40

...c zba
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Note 1:
as a sparse index points to the block, no 
action is required

Note 2:
the first record of the block has been 
updated, i.e., the index must also be 
updated

50

50
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Modifications: Deletion Example 2

Example – deletions using a dense index:
delete record a = 60

delete record a = 40

delete record a = 50
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50 50 
Note 1:
in many cases it is convenient to 
“compress” data in the blocks (optional) 

Note 2:
one might compress the whole data set, but 
one usually keep some free space for future 
evolution of the data

?
Note 3:
the data block being empty might be 
deallocated or kept to enable faster 
insertions of new records 



INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 18

Modifications: Insertion Example 1

Example – insertions using a sparse index:
insert record a = 60

insert record a = 25

...c zba
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60 

Note 1:
we are lucky – free space where we need it

60
40

...30

25 

Note 2:
record a = 25 should go into first block, has 
to move record a = 30 to second block 
where we have room 

Note 3:
first record of block 2 has changes, must 
also update index 

30 

Note 4:
instead of sliding record a = 30, we might 
have inserted a new block or an overflow 
block  
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Modifications: Insertion Example 2

Example – insertions using a sparse index:
insert record a = 95

overflow block

new sequential (primary) block

Dense indexes manage insertions
similarly – but must be updated 
each time 
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Note 1:
no available room – insert overflow 
block or new sequential block

...95

Note 2:
no actions are required in the index, 
sparse indexes only have pointers to 
primary blocks

Note 3:
must update index

95 
100 
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Dense vs. Sparse Indexes

SparseDense

one index field per data blockone index field per recordspace

must search within blockdirect accessrecord access

must always access blockuse index only“exist queries”

not on unordered elementsanywhere (not dense-dense)use

“few”“many”block accesses

updated only if first record in 
block is changed

always updated if the order 
of records changemodification
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Duplicate Search Keys (Cluster Indexes) – I 

So far we have looked at indexes where the search key has 
been unique – if records also are sorted, the index is called a 
primary index
Indexes are also used on non-key attributes where duplicate 
values are allowed – if records in addition are sorted, the 
index is called a cluster index
In general, if the records are sorted by the search key, the 
previous ideas may be applied
Many ways to implement such an index:

dense index with one index field
per record (pointer to all duplicates)
unique search key (pointer to only the first record)

sparse index
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Duplicate Search Keys (Cluster Indexes) – II

Example 1 – dense index:

one index field per record

☺ easy to find records and how 
many

more fields than necessary?? –
index itself spans more disk 
blocks
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Duplicate Search Keys (Cluster Indexes) – III

Example 2 – dense index:

only one index field per unique 
search key

☺ smaller index – quick search

more complicated to find 
successive records
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Duplicate Search Keys (Cluster Indexes) – IV

Example 3 – sparse index:

index field is first record in each 
block, pointer to block

☺ small index – fast search 

complicated to find records

e.g., must be careful if 
looking for 30
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Duplicate Search Keys (Cluster Indexes) – V

Example 4 – sparse index:

index field is first new record 
in each block, pointer to block

☺ small index – fast search 

complicated to find records

can we even remove the second 
index entry of 30
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Unsorted Record Indexes (Secondary Indexes) – I

Both primary and cluster indexes work on sorted files, i.e., 
underlying file is sorted on the search key
What if we want several indexes on same file?
Secondary indexes 

works on unsorted records, i.e., 
does not determine placement of records in file
works like any other index – find a record fast
first level is always dense – any higher levels are sparse
duplicates are allowed
index itself is sorted on the search key value – easy to search
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Unsorted Record Indexes (Secondary Indexes) – II

Example:
duplicates are allowed
first level is dense
higher levels
are sparse 
index is sorted
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Unsorted Record Indexes (Secondary Indexes) – III

Duplicate search keys may 
introduce overhead, both 
space and search time

Variable sizes index fields
☺ saves space in index

complex design and search

Chain records with same 
search key
☺ simple index, easy search

add fields to records header
follow chain to successive  
records
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Unsorted Record Indexes (Secondary Indexes) – IV

Buckets are a convenient way to avoid repeating values, by 
using indirection

designated bucket file

index entry for K
points to first
element in bucket 
for K

manage bucket file
as other sorted files
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Inverted Indexes – I 

Indexes so far uses whole attribute as search key

Do we need indexes on single elements within an attribute?
SELECT * FROM R WHERE a LIKE ‘%cat%’

searching for documents containing specific keywords, e.g.,
web search engines like Google, Altavista, Excite, Infoseek, Lycos, 
Fast (AllTheWeb), etc.

How can one make such indexes?
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Inverted Indexes – II
Approach 1 – true/false table:

define “all” keywords
make table with one boolean attribute for each keyword
make one tuple per document/text attribute
make index on all attributes including only TRUE values

Example: allowed keywords – computer, printer, laptop, disk, ...

... connected the printer to
the computer ...

... stored the file on the 
disk before sending it to the 
printer ...

... the laptop has a 50 GB 
disk ...

computer
index

printer
index

laptop
index

disk
index

...TTFF

...TFTF

...FFTT
...

has laptop
has printer

has computer

has disk
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Inverted Indexes – III

Approach 2 – inverted index:
make one (inverted) index for keywords
use indirection putting pointers in buckets

Example:

... connected the printer to
the computer ...

... stored the file on the 
disk before sending it to the 
printer ...

... the laptop has a 50 GB 
disk ...

printer
laptop
disk
computer

buckets
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Conventional Indexes

Conventional indexes:

☺ simple

☺ index is a sequential file, good for scans

inserts and movements expensive

no balance – varying number of operations to find a record

Conventional indexes – one or two levels – are often helpful 
speeding up queries, but they are usually not used in 
commercial systems....



B-Trees
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B-Trees

B-trees is a general structure which is frequently used
automatically maintains an appropriate number of levels
manages the space in a block (usually between half used and full), i.e., no 
overflow blocks needed
balanced – all leaves at the same level

Many different types of B-trees – B+-tree
in a B-tree, all search keys and corresponding data pointers are represented 
somewhere in the tree, but in a B+-tree, all data pointers appear in the leaves 
(sorted from left to right)
nodes have n search keys and n + 1 pointers

in intermediate nodes, all pointers are to other sub-nodes
in a leaf node, there are n data pointers and 1 next pointer

nodes are not allowed to be empty, use at least 
intermediate node: ⎡(n+1)/2⎤ pointers to subnodes
leaf node: ⎣(n+1)/2⎦ pointers to data
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B+-Trees – I 
Intermediate node (n = 3)
(all pointers to sub-nodes)

left side pointer of key is pointer 
to sub-node with smaller keys
right side pointer of key is 
pointer to sub-node with equal or 
larger keys 

Leaf node (n = 3)
(n data pointers, 1 next pointer)

left side pointer of key is 
pointer to the key’s record
last pointer is a pointer to 
next leaf in the sequence

302010

to keys k < 10
to keys 10 ≤ k < 20

to keys 20 ≤ k < 30
to keys 30 ≤ k

302010 to next leaf 
in sequence

cba

1y10
2x20
1z30

pointers to records

pointer from non-leaf node
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B+-Trees – II

Total tree (n = 3):

2311

...a

...1

...2

...7

...11

...17

...23

...25

1711 2523721

Note 1:
this tree has only two levels, but any 
number of levels are allowed

Note 2:
since the leaves are linked it is 
easy to read sequences 

Note 3:
all leaves (and data pointers) are 
at the same level 
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B+-Trees: Operations

Lookup:
intermediate: use the pointer rules recursively to next child, i.e., left 
key pointer < K, right key pointer ≤ K
leaf:

dense index: 
o if the i-th key is K, then the i-th pointer points to requested record
o if key K is not present, the record with search key K does not exist

sparse index:
o find the largest search key less than or equal to K
o retrieve the block pointed to by the index field
o search within the block for the record

Insertion/deletion (see textbook for details):
split/merge nodes if necessary to keep minimum requirement of 
pointers in each node



INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 39

B+-Trees: Duplicates

Allowing duplicates:
2311-

17117 252377

Note 2:
pointer Ki will now be the smallest “new” key that 
appear in the sub-tree pointed to by pointer i + 1

721

Note 3:
in some situations, pointer Ki can be null, 
e.g., cannot put 7 in first pointer in root 

Note 4:
a node may not be full – even in a sequence of 
duplicate search keys

Note 1:
an intermediate node points to the first 
occurrence of a duplicate search key, 
subsequent occurrences are found reading 
next node (leaves are sorted)  
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B+-Trees: Applications

B+-trees may be used several ways - the sequence of 
pointers in the leaves can “implement” all the index types 
we have looked at so far

Leaf nodes can for example act as a
dense or sparse primary index
dense or sparse cluster index – allowing duplicates
(dense) secondary index – unsorted records
...

Intermediate nodes are used to speed up search
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B+-Trees: Efficiency – I 
B+-trees:

a search always needs to go from root to leaf, i.e., 
number of block accesses is the height of tree plus accesses for record 
manipulation

☺ number of levels usually small – 3 is a typical number

☺ range queries are very fast – find first, read sequentially

☺ if n is large, splitting and merging will be rare, i.e., 
can usually neglect reorganization costs

☺ disk I/O’s may be reduced by pinning index blocks in memory, e.g., root is 
always available in main memory

Only a few disk I/O’s (or block accesses) are needed for an operation 
on a record
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B+-Trees: Efficiency – II

Example 1: 
assume integer keys (4 B) and 8 B pointers
storage system uses 4 KB blocks – no headers
how many values may be stored in each node?
4n + 8(n+1) ≤ 4096 n = 340

Example 2:
a node is on average 75 % filled
how many records does a 3-level B+-tree hold?
(340 * 75 %)3 = 165813375 ≈ 16.6 million records



Hash Tables
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Hash Tables – I 
Hash tables is a another structure useful for indexes

a fixed size array containing the search keys-pointer pairs

secondary storage hash tables often have one bucket per block with 
“support” for overflow blocks

often main memory array of pointers to the bucket blocks

size of array usually a prime number

uses a hash function to map search key value to array index
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Hash Tables – II

A good hash functions is important

should be easy to compute (fast)

should distribute the search keys evenly – each bucket should have 
approximately the same number of elements

common function examples:
integer keys: 
mod(key value, array size)

character keys: 
mod(sum characters as integer, array size)

best function varies between different uses
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Hash Tables – III

Example:
array size B = 5
h(key) = mod(key, B)

4
3
2
1
0

10
5

buckets

6
1

bucket-pointers
in memory

7
2

8
3

9
4

29
24
19

44
39
34

insert: 11
14

15

16

11h(11) = 1
h(14) = 4

14

h(15) = 0

15

h(16) = 1

no room, create 
overflow block  

16

Note:
a problem occurs if most keys map to same 
bucket, e.g., adding 19, 24, 29, 34, 39, 44, ...   
not an appropriate hash function
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Hash Tables – IV
Should records be sorted within a bucket?

YES, if search time (CPU time) is critical
NO, if records are frequently inserted/deleted

Operations are “straight forward” – calculate hash value, and ...
... insert into corresponding bucket - manage overflow if needed
... delete from corresponding bucket – may optionally consolidate blocks if 
possible

Ideally, the array size is large enough to keep all elements in one 
bucket-block per hash value, i.e., size and hash function must be 
carefully chosen
☺ if so, the number of disk I/O’s significantly better compared to straightforward 

indexes and B-trees
☺ fast on queries selecting one particular key value

however, as the number of records increase, we might have several blocks per 
bucket
range queries will be slow as subsequent keys go to subsequent buckets 
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Dynamic Hash Tables

Hard to keep all elements within one bucket-block if file 
grows and hash table is static

Dynamic hash tables allow the size of the table to vary, i.e., 
may keep one block per bucket for performance 

extensible hashing

linear hashing
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Extensible Hashing – I 
Extensible hashing:

always an array of pointers
pointer array may grow

length is power of 2
double size when more space needed

certain buckets may share a block to reduce space –
if so, block header contains an indication of this
hash function computes a hash value which is a static bit-sequence 
of b bits– the number if used bits i, however, varies dynamically 
after the size of the pointer array
e.g.:

h(key) 1 1 0 1 0 1 0 1

b

i

Note 1:
b is static and in this example 8, i.e., we may 
maximum have an array size of 28. 
Note 2:
i is dynamic and in this example 4, i.e., we currently using 
an array size of 24. However, if more buckets are needed, 
we double the size and increase i to 5. 
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Extensible Hashing – II

Example:
b = 4, i = 1
insert record with key k,
h(k) 0 0 1 0
insert record with key l,
h(l) 1 1 0 0
insert record with key n,
h(n) 1 1 0 1

bucket 10 and 11 may 
share a block to save space

11
10
01
00

c
a

buckets

j
f

bucket-pointers
l

k

1
0

no room, create 
overflow block?  

NO, add 
buckets  

“clean up”
l

insert new  

increase i
2

n
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Extensible Hashing – III

Extensible hashing:

☺manage growing files

☺ still one block per bucket (fast)

indirection expensive if pointer array is on disk

doubling size
much work to be done, especially if i is large
as size increases, it may no longer fit in memory
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Linear Hashing – I 

Linear hashing:
number of buckets  are determined by the average fill level
hash function similar to extensible hashing, but using the low order 
bits, i.e., 
the ⎡log2n⎤ low order bits where n is number of buckets
inserts: 

find correct bucket and insert – use overflow block if necessary  
if block do not exist, put element in bucket m – 2i-1, i.e., change the first bit 
to 0, m is the value of the used bits form the hash value
if average fill level reaches limit, add one bucket (not related to inserted 
item)
if now n exceeds 2i, i is incremented by one
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Linear Hashing – II

Linear hashing:

☺manage growing files 

☺do not need indirection

can still have overflow chains

some work moving elements from “re-directed” bucket when 
creating a new
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Sequential vs Hash Indexes

Sequential indexes like B+-trees is good for range queries: 
SELECT * FROM R WHERE R.A > 5

Hash indexes are good for probes given specific key:
SELECT * FROM R WHERE R.A = 5
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Indexes in SQL
Syntax:

CREATE INDEX name ON relation_name (attribute)
CREATE UNIQUE INDEX name ON relation_name (attribute)

defines a candidate key

DROP INDEX name

Note: cannot specify 
type of index, e.g., B-tree, hashing, etc.
parameters such as load factor, hash size, etc. 

index type is chosen by the people implementing the system
... at least in SQL...

But, IBM’s DB2 have some choices  (not according to the SQL standard) 
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Using Indexes in Queries – I 
Indexes are used to quickly find a record
Some queries may even be solved without reading the records from disk, 
e.g., find the number of elements

count the number of pointers in the index (dense)
Index structures discussed so far are one dimensional

one single search key
good for queries like 
SELECT ... FROM R WHERE a = 17,
e.g.: using a B+-tree index on a

what about
SELECT ... FROM R WHERE a = 17 AND b < 5?

2311

...a

......

...11

...17

...23

......
1711 2523721

Note:
in a range query, we may just 
read subsequent elements in 
the B+-tree, or if records are 
sorted, read rest of file 

a ≥ 17
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Using Indexes in Queries – II

Strategy 1: 
SELECT ... FROM R WHERE a = 30 AND b < 5

use one index, say on a
find and retrieve all records where a = 30 using the index
search these records for b values less than 5

☺ simple and easy approach
may read a lot of records not needed from disk
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Using Indexes in Queries – III

Strategy 2: 
SELECT ... FROM R WHERE a = 30 AND b < 5

use two dense indexes – on a and b
find all pointers in the first index where a = 30 
find all pointers in the second index where b < 5
manipulate pointers – compare (intersect) pointers and retrieve the 
records where the pointers match

☺may reduce data block accesses compared to strategy 1
search two indexes (or more if more conditions)
cannot sort records on two attributes (for two indexes)
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Using Indexes in Queries - IV 

Example - strategy 2, using pointer buckets:
SELECT c FROM R WHERE a=30 AND b=‘x’

find records  where a is 30 using index on a

find records 
where b is ‘x’
using index on b

have two set of 
record-pointers 

compare (intersect) 
pointers and retrieve 
the records requested

select specified attributes 

cba

1y20
2x10
1z30

2x30
1z30
2y10

1x30
2z20
1y30

30
20
10

buckets
for a

a index

z
y
x

b index

buckets
for b
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Using Indexes in Queries - V

One dimensional indexes can be uses many places, but in 
case of operations with several search conditions, it may be 
....

... many indexes to search  

... hard to keep efficient record order on disk for several indexes

...  

This has lead to the idea of ...

... MULTIDIMENSIONAL INDEXES



Multidimensional Indexes
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Multidimensional Indexes – I 

A multidimensional index combines several dimensions into 
one index

One simple tree-like approach:

I1

I2

(key1, key2 , key3 , ...) I2

I2

I3

I3

I3
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Multidimensional Indexes – II

Example – multidimensional, dense index: 
SELECT ... FROM R WHERE a = 30 AND b =‘x’

search key = (30, x)

read a-dimension

search for 30, find
corresponding 
b-dimension index 

search for x, read 
corresponding disk 
block and get record

select requested attributes

cba

1y20
2x10
1z30

2x20
1z30
2y10

1x30
2z20
1y30

...
40
30
20
10

a index

y
x
...

b index

z
y
x
...

z
z
y
x
...

(30, x)
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Multidimensional Indexes – III
For which queries is this index good?

find records where a = 10 AND b = ‘x’
find records where a = 10 AND b ≥ ‘x’
find records where a = 10
find records where b = ‘x’
find records where a ≥ 10 AND b = ‘x’

may search several indexes in next dimension
better if dimensions changed order

Several other approaches....
other tree-like structures 
hash-like structures 
(bitmap-indexes)

Ia

Ib

Ib

Ib

☺

☺

?
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Map View

A multidimensional index may have several dimensions
If we assume only two (as in our previous example), we can 
imagine that our index is a geographical map: 

Now our search is similar to searching the map for:
points: a1 and b1

lines: a2 and <b2,b3>
areas: <a3 ,a4> and <b4,b5>

a

b

a1

b1

a2

b2

b3

a3 a4

b4

b5
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Tree Structures

There are several tree structures that works in a similar way 
to finding map-areas, e.g., 

kd-trees
quad-trees
R-trees

However, these approaches give up at least one of the 
following important properties of B-trees:

balance of tree – all nodes at same level
correspondence of tree nodes and disk blocks
performance of modification operations



INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 67

kd - trees – I 
A kd-tree (k-dimensional tree) is a binary tree having nodes 
with

an attribute a 
a value V splitting the remaining data points in two
data points are placed in nodes as in a traditional binary tree

We will look at modification of the kd-tree where 
interior nodes only have the V value

left child is have values less than V
right child have values equal or larger than V

leaves are blocks with room for as 
many record the block can hold

The different dimensions are 
interleaved: 

......

...

level n+1

level n

level 1

level 0

...

b-dimension

a-dimension

b-dimension

a-dimension
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kd - trees – II

Example:
50

7030

35 25

8080

h
b

i
a

c

d

g

f

m

l

k
a

b

50 80

30

70

3525

80

k

m

80

g
c

l
h

f
i

b

d a

Find record b = (70, 75)

Note 1:
values on left and right side are not “related”
to node right above, e.g., here we can have 
any value as long as it is below 50 

Note 2:
may have empty buckets 

Note 3:
an easy extension is to have multiple 
values in each node – multiple 
branches 
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kd - trees – III

Some “problems”:
may have to check both branches of the root, e.g., 
for b-dimension condition
may have to check both branches of the sub-tree in range queries, 
e.g., want values <10,30> and node value is 20
higher trees compared to B-trees

storing each node in an own block is expensive
much more block accesses compared to B-trees

number of block accesses is reduced if we  
use multiway branches
group interior nodes into one block, 
e.g., node and several sub-levels of the tree in one block
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Quad - trees
Quad-trees: 

the interior nodes corresponds to a k-dimensional cube in k dimensions and it has 
2k children
the data pointers is in the leaf nodes

In our 2-dimensional example, a quad-tree’s interior node divide the area in 
four equal square regions
Example:

h
b

a

c

d

g
m

l

k
a

b

50,50

100

100

m
k

SW NW NE
SE

50

50l
h

d

g
c

b

75,75

Note 1:
divide area further if no room in 
bucket - we have 2-element buckets 
and NE-square has 3 elements 

a

SW NW NE SE

Note 2:
the value range of index attributes 
does not need to be the same

Find record a = (85, 90)

75

75
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R - Trees
An R-tree (region-tree) divide the k-dimensional region, into a varying 
number of sub-regions
The regions may be of any shape (usually rectangles) and are allowed 
to overlap
2-dimensional example:

h

b a

c

d

g

m

k

a

b

100

100
[(5,10),(90,50)],   [(40,60),(80,95)]

Note 1:
in this example the 
coordinates denote SW, NE 
corner of rectangle

Note 2:
all the area do not have to be 
covered as long as all elements are 
included into a region

d
b
a

[(5,10),(50,40)],   [(55,10),(80,40)]

m
k
g

h
c

Note 3:
if not all elements fits in a 
bucket, divide further

Find record 
g = (30, 35)
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Hash-Like Structures: Grid Files – I 

Grid files extend traditional hashing indexes 
hash values for each attribute in a multidimensional index
usually does not hash values, but regions – h(key) = <x,y>
grid lines partition the space into stripes

2-dimensional example:
find record (22, 31)

h1(22) = <ax, ay>
h2(31) = <bm, bn>

record f

h
b

i
a

c

d

g

f

m

l

k
a

b

h1(a-key)

h2(b-key)
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Hash-Like Structures: Grid Files – II

How do we represent grid file on disk?
one bucket per sub-space 

may waste lot of space

array in one direction
bad for range queries in 
“other” direction

areas
may chose appropriate 
areas

use indirection, as areas, but use
buckets
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Hash-Like Structures: Grid Files – III

What can we do if a block does not have more room?
allow overflow blocks
add more grids

Grid files can quickly find records with
key 1 = Vi AND Key 2 = Xj

key 1 = Vi

key 2 = Xj

key 1 ≥ Vi AND key 2 < Xj 

Grid files are
☺good for multiple-key search

space, management overhead
partitioning ranges evenly split keys
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Hash-Like Structures: Partitioned – I 

Partitioned hash functions ...
...allow several arguments 
...produce a single hash value
h(key1, key2, key3, ...) = x

☺maps a multi-dimensional index to a single-dimension array
only useful for searches involving all keys

A more useful approach is to let the hash function produce a 
bit-string where each search key is represented by some of 
the bits
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Hash-Like Structures: Partitioned – II
Example – bit-string:

index on both department and salary of employees
h(...) produces a 3-bit string

h1(keydepartment) produce the first bit
h2(keysalary) produce the two last bits
h(keydepartment, keysalary) = h1(keydepartment) + h2(keysalary)

......
0shoes
1music
1admin
0clothes
0toys

......
11500.000
10400.000
10300.000
00200.000
01100.000

h1() h2()
Note:
several key values can map to 
the same bit-string

examples:
h(toys, 100000) = 0 01
h(toys, 500000) = 0 11
h(music, 300000) = 1 10
h(admin, 500000) = 1 11
h(shoes, 100000) = 0 01
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Hash-Like Structures: Partitioned – III

Example (cont.):
insert:
p = (toys, 100000)
q = (music, 200000)

find employees with:
department = music and 
salary = 500.000

department = toys

salary = 500.000

1 11
1 10
1 01
1 00
0 11
0 10
0 01
0 00

i
buckets

b

g
c

a

j
f q

p

m

d

e

......
11500.000
10400.000
10300.000
00200.000
01100.000h2

......
0shoes
1music
1admin
0clothes
0toysh1

Note 1:
if no room left in block, create overflow 
block or extend hash size (more buckets)

Note 2:
as several key values can map to the same 
bit-string, we must search the bucket for 
matching values
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Summary

Searching is expensive
Indexes
☺minimize the search costs and block accesses 

increased storage requirements 
more complex operations on inserts/updates/deletions of records

Conventional indexes
B-trees (B+-trees)
Hashing schemes
Multidimensional indexes

tree-like structures 
hash-like structures 


