
Indexing

Contains slides by
Hector Garcia-Molina, Vera Goebel

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 2

Overview

Conventional indexes

B-trees

Hashing schemes

Multidimensional indexes
tree-like structures
hash-like structures
bitmap-indexes

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 3

Search - I
How do you represent a relation or an extent?

just scatter records among the blocks
order records
clustering
...

Today:
How do we find an element quickly?

Example 1 – linear search:
SELECT * FROM R WHERE a = 40

read the records one-by-one
we must in average read 50 % of the records
and thus 50 % of the disk blocks
expensive

cba

30
10
50

60
20
40

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 4

Search - II

Example 2 – linear search:
SELECT * FROM R,S WHERE a = d

for each tuple in R,
we read on average
50 % of the tuples
in S
expensive

We need a mechanism to
speed up the search for a tuple with a particular value of an
attribute ...
... INDEXES

cba

60
10
40

fed

30
20
10

60
50
40

Conventional Indexes

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 6

Indexes – I

An index on an attribute A is a data structure that makes it easy to find
those elements that have a fixed value for attribute A

Each index is specified on field(s) of a file
search key (indexing field/attribute)
the index stores each value of the search key ordered along with a list of pointers
to the corresponding records
search an index to find a list of addresses

We still may need to read many index fields to find a given search
key, but indexes are more efficient than it may seem:

the index fields are usually much smaller than the records, i.e., less data blocks
must be accessed – may even be small enough to pin in memory
the keys are sorted, e.g., make a binary search to find the key

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 7

Indexes – II

A file (e.g., relation or extent) can have several indexes
Selection of indexes is a tradeoff
☺ improve searches and number of block accesses, e.g., in queries

increase complexity, e.g., modifications are harder and more time consuming as
the indexes also must be updated
increase storage requirement

One must analyze the typical usage pattern, i.e., if a set of elements are
more frequently ...

... queried than modified, then an index is useful

... modified than queried, then the cost of also modifying the index must be
considered

Indexes are specially useful for attributes that are used in the WHERE
clause of queries and for attributes that are used in join

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 8

Indexes – III

An index can be dense or sparse

Different types of indexes:
primary indexes:
specified on ordering key field of an ordered file
NB! not the same as index on primary key
clustering indexes:
specified on ordering field of an ordered file, but ordering field is
not a key field (i.e., search key not unique - multiple records with
same value of field may exist)
secondary indexes:
can be specified on any non-ordering field

Note:
can at most have one primary or one
clustering index, not both or many of
one kind. Why?

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 9

Dense Indexes – I

A dense index has one index entry for every search key
value

every data record is represented in the index
an existence search of a record may be done via index only
the record is directly found in a block using the pointer, i.e., no
search within the block
if index fits in memory, a record can be found using a given search
key with a maximum one disk I/O

...c zba

...30

...20

...10

...60

...50

...40

60
50
40
30
20
10

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 10

Dense Indexes – II
Example:

1.000.000 records of 300 B (including header)
the search key is a 4 byte integer and a pointer requires 4 bytes
4 KB blocks, no block header, random placement,
average retrieval time ~5.6 ms (Seagate Cheetah X15)
no time to find a record within a block when in memory

13.6 records per block 76924 blocks (unspanned) to store data
512 indexes per block 1954 blocks (unspanned) to store index

no index:
(76924 / 2) = 38462 block accesses (average)
time to find a record = 38462 * 5.6 ms = 215.4 s

dense index, binary search:
⎡log2(1954)⎤ + 1 = 11 + 1 = 12 block accesses (maximum)
time to find a record = 12 * 5.6 ms = 67.2 ms
using a dense index is 3205 times faster

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 11

Sparse Indexes – I
A sparse index has one
index entry for every
data block, i.e., the
key of the first record

only one index field per block, i.e., less index data
cannot find out if a record exists only using the index
to find a record K

search the index for the largest key less than or equal to K
retrieve the block pointed to by the index field
search within the block for the record

...c zba

...30

...20

...10

...60

...50

...40

70
40
10

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 12

Sparse Indexes – II
Example:

SELECT *
FROM R
WHERE a = 60

Example (cont.):
in our previous dense index example, we needed 1954 blocks for the index
(#records / # index fields per block)
using a sparse index we need only 151
(#data blocks / # index fields per block)

sparse index, binary search:

⎡log2(151)⎤ + 1 = 8 + 1 = 9 block accesses (maximum)
time to find a record = 9 * 5.6 ms = 50.4 ms
using a sparse index is 4272 times faster than using no indexes,
1.33 times faster than dense indexes
However, sparse indexes must access the data block to see if a record exists

...c zba

...30

...20

...10

...60

...50

...40

70
100

40
10

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 13

Multi-Level Indexes
An index itself can span many blocks, i.e., still many block accesses
Using a multi-level index is one approach to increase efficiency,
i.e., using an index on the index

Example (cont.):
need only 1954 / 512 = 4
for 2. level index blocks

need only
⎡log2(4)⎤ + 1 + 1 =
2 + 1 + 1 = 4
block accesses

time to find a record =
4 * 5.6 ms = 22.4 ms

2.25 times faster than
one-level sparse, 3 times faster
than one-level dense

Any levels of indexes may be applied,
but the idea has its limits

...c zba

...30

...20

...10

...60

...50

...40

60
50
40
30
20
10

...90

...80

...70

...120

...110

...100

120
110
100
90
80
70400

300
200
130
70
10

dense
1. levelsparse

2. level

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 14

Questions
Can we build a dense, second level index for a dense index?

YES,
but it does not
make sense

Does it make sense to use a sparse index on an unsorted file?
NO,
how can one find records
that are not in the index
BUT,
one might use a sparse index on
a dense index on an unsorted file

...c zba

...30

...20

...10

...60

...50

...40

60
50
40
30
20
10

60
50
40
30
20
10

...c zba

...80

...50

...10

...90

...20

...40

70
40
10

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 15

Modifications
An index file is a sequential file and must be treated in a similar way
as a file of sorted records:

use overflow blocks
insert new blocks
slide elements to adjacent blocks

A dense index points to the records, i.e.:
modified if a record is created, deleted, or moved
no actions must be done on block operations

A sparse index points to the blocks, i.e.:
may be modified if a record is created, deleted or moved
no action must be done managing overflow blocks (pointers to primary blocks
only)
must insert (delete) pointer to new (deleted) sequential block

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 16

Modifications: Deletion Example 1

Example – deletions using a sparse index:
delete record a = 60

delete record a = 40

...c zba

...30

...20

...10

...60

...50

...40

160
130
100
70
40
10

...90

...80

...70

...120

...110

...100

Note 1:
as a sparse index points to the block, no
action is required

Note 2:
the first record of the block has been
updated, i.e., the index must also be
updated

50

50

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 17

Modifications: Deletion Example 2

Example – deletions using a dense index:
delete record a = 60

delete record a = 40

delete record a = 50

...c zba

...30

...20

...10

...60

...50

...40

60
50
40
30
20
10

...90

...80

...70

...120

...110

...100

120
110
100
90
80
70

50 50
Note 1:
in many cases it is convenient to
“compress” data in the blocks (optional)

Note 2:
one might compress the whole data set, but
one usually keep some free space for future
evolution of the data

?
Note 3:
the data block being empty might be
deallocated or kept to enable faster
insertions of new records

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 18

Modifications: Insertion Example 1

Example – insertions using a sparse index:
insert record a = 60

insert record a = 25

...c zba

...30

...20

...10

...40

160
130
100
70
40
10

...90

...80

...70

...120

...110

...100

60

Note 1:
we are lucky – free space where we need it

60
40

...30

25

Note 2:
record a = 25 should go into first block, has
to move record a = 30 to second block
where we have room

Note 3:
first record of block 2 has changes, must
also update index

30

Note 4:
instead of sliding record a = 30, we might
have inserted a new block or an overflow
block

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 19

Modifications: Insertion Example 2

Example – insertions using a sparse index:
insert record a = 95

overflow block

new sequential (primary) block

Dense indexes manage insertions
similarly – but must be updated
each time

...c zba

...30

...20

...10

60
50

...40100
70
40
10

...90

...80

...70

...120

...110

...100

Note 1:
no available room – insert overflow
block or new sequential block

...95

Note 2:
no actions are required in the index,
sparse indexes only have pointers to
primary blocks

Note 3:
must update index

95
100

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 20

Dense vs. Sparse Indexes

SparseDense

one index field per data blockone index field per recordspace

must search within blockdirect accessrecord access

must always access blockuse index only“exist queries”

not on unordered elementsanywhere (not dense-dense)use

“few”“many”block accesses

updated only if first record in
block is changed

always updated if the order
of records changemodification

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 21

Duplicate Search Keys (Cluster Indexes) – I

So far we have looked at indexes where the search key has
been unique – if records also are sorted, the index is called a
primary index
Indexes are also used on non-key attributes where duplicate
values are allowed – if records in addition are sorted, the
index is called a cluster index
In general, if the records are sorted by the search key, the
previous ideas may be applied
Many ways to implement such an index:

dense index with one index field
per record (pointer to all duplicates)
unique search key (pointer to only the first record)

sparse index

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 22

Duplicate Search Keys (Cluster Indexes) – II

Example 1 – dense index:

one index field per record

☺ easy to find records and how
many

more fields than necessary?? –
index itself spans more disk
blocks

...c zba

...10

...10

...10

...30

...20

...10
30
20
10
10
10
10

...40

...40

...30
40
40
30

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 23

Duplicate Search Keys (Cluster Indexes) – III

Example 2 – dense index:

only one index field per unique
search key

☺ smaller index – quick search

more complicated to find
successive records

...c zba

...10

...10

...10

...30

...20

...10

40
30
20
10

...40

...40

...30

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 24

Duplicate Search Keys (Cluster Indexes) – IV

Example 3 – sparse index:

index field is first record in each
block, pointer to block

☺ small index – fast search

complicated to find records

e.g., must be careful if
looking for 30

...c zba

...10

...10

...10

...30

...20

...10

30
10
10

...40

...40

...30

30

30

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 25

Duplicate Search Keys (Cluster Indexes) – V

Example 4 – sparse index:

index field is first new record
in each block, pointer to block

☺ small index – fast search

complicated to find records

can we even remove the second
index entry of 30

...c zba

...10

...10

...10

...30

...30

...10

40
30
30
10

...30

...30

...30

30

...40

...40

...40

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 26

Unsorted Record Indexes (Secondary Indexes) – I

Both primary and cluster indexes work on sorted files, i.e.,
underlying file is sorted on the search key
What if we want several indexes on same file?
Secondary indexes

works on unsorted records, i.e.,
does not determine placement of records in file
works like any other index – find a record fast
first level is always dense – any higher levels are sparse
duplicates are allowed
index itself is sorted on the search key value – easy to search

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 27

Unsorted Record Indexes (Secondary Indexes) – II

Example:
duplicates are allowed
first level is dense
higher levels
are sparse
index is sorted

...c zba

...20

...10

...30

...30

...30

...10
30
30
20
20
10
10

...30

...20

...30

30
30
30

30
10

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 28

Unsorted Record Indexes (Secondary Indexes) – III

Duplicate search keys may
introduce overhead, both
space and search time

Variable sizes index fields
☺ saves space in index

complex design and search

Chain records with same
search key
☺ simple index, easy search

add fields to records header
follow chain to successive
records

...c zba

...20

...10

...30

...30

...30

...10
30
30
20
20
10
10

...30

...20

...30

30
30
30

30
20
10

x

x

x

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 29

Unsorted Record Indexes (Secondary Indexes) – IV

Buckets are a convenient way to avoid repeating values, by
using indirection

designated bucket file

index entry for K
points to first
element in bucket
for K

manage bucket file
as other sorted files

...c zba

...20

...10

...30

...30

...30

...10

...30

...20

...30

30
20
10

buckets

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 30

Inverted Indexes – I

Indexes so far uses whole attribute as search key

Do we need indexes on single elements within an attribute?
SELECT * FROM R WHERE a LIKE ‘%cat%’

searching for documents containing specific keywords, e.g.,
web search engines like Google, Altavista, Excite, Infoseek, Lycos,
Fast (AllTheWeb), etc.

How can one make such indexes?

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 31

Inverted Indexes – II
Approach 1 – true/false table:

define “all” keywords
make table with one boolean attribute for each keyword
make one tuple per document/text attribute
make index on all attributes including only TRUE values

Example: allowed keywords – computer, printer, laptop, disk, ...

... connected the printer to
the computer ...

... stored the file on the
disk before sending it to the
printer ...

... the laptop has a 50 GB
disk ...

computer
index

printer
index

laptop
index

disk
index

...TTFF

...TFTF

...FFTT
...

has laptop
has printer

has computer

has disk

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 32

Inverted Indexes – III

Approach 2 – inverted index:
make one (inverted) index for keywords
use indirection putting pointers in buckets

Example:

... connected the printer to
the computer ...

... stored the file on the
disk before sending it to the
printer ...

... the laptop has a 50 GB
disk ...

printer
laptop
disk
computer

buckets

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 33

Conventional Indexes

Conventional indexes:

☺ simple

☺ index is a sequential file, good for scans

inserts and movements expensive

no balance – varying number of operations to find a record

Conventional indexes – one or two levels – are often helpful
speeding up queries, but they are usually not used in
commercial systems....

B-Trees

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 35

B-Trees

B-trees is a general structure which is frequently used
automatically maintains an appropriate number of levels
manages the space in a block (usually between half used and full), i.e., no
overflow blocks needed
balanced – all leaves at the same level

Many different types of B-trees – B+-tree
in a B-tree, all search keys and corresponding data pointers are represented
somewhere in the tree, but in a B+-tree, all data pointers appear in the leaves
(sorted from left to right)
nodes have n search keys and n + 1 pointers

in intermediate nodes, all pointers are to other sub-nodes
in a leaf node, there are n data pointers and 1 next pointer

nodes are not allowed to be empty, use at least
intermediate node: ⎡(n+1)/2⎤ pointers to subnodes
leaf node: ⎣(n+1)/2⎦ pointers to data

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 36

B+-Trees – I
Intermediate node (n = 3)
(all pointers to sub-nodes)

left side pointer of key is pointer
to sub-node with smaller keys
right side pointer of key is
pointer to sub-node with equal or
larger keys

Leaf node (n = 3)
(n data pointers, 1 next pointer)

left side pointer of key is
pointer to the key’s record
last pointer is a pointer to
next leaf in the sequence

302010

to keys k < 10
to keys 10 ≤ k < 20

to keys 20 ≤ k < 30
to keys 30 ≤ k

302010 to next leaf
in sequence

cba

1y10
2x20
1z30

pointers to records

pointer from non-leaf node

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 37

B+-Trees – II

Total tree (n = 3):

2311

...a

...1

...2

...7

...11

...17

...23

...25

1711 2523721

Note 1:
this tree has only two levels, but any
number of levels are allowed

Note 2:
since the leaves are linked it is
easy to read sequences

Note 3:
all leaves (and data pointers) are
at the same level

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 38

B+-Trees: Operations

Lookup:
intermediate: use the pointer rules recursively to next child, i.e., left
key pointer < K, right key pointer ≤ K
leaf:

dense index:
o if the i-th key is K, then the i-th pointer points to requested record
o if key K is not present, the record with search key K does not exist

sparse index:
o find the largest search key less than or equal to K
o retrieve the block pointed to by the index field
o search within the block for the record

Insertion/deletion (see textbook for details):
split/merge nodes if necessary to keep minimum requirement of
pointers in each node

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 39

B+-Trees: Duplicates

Allowing duplicates:
2311-

17117 252377

Note 2:
pointer Ki will now be the smallest “new” key that
appear in the sub-tree pointed to by pointer i + 1

721

Note 3:
in some situations, pointer Ki can be null,
e.g., cannot put 7 in first pointer in root

Note 4:
a node may not be full – even in a sequence of
duplicate search keys

Note 1:
an intermediate node points to the first
occurrence of a duplicate search key,
subsequent occurrences are found reading
next node (leaves are sorted)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 40

B+-Trees: Applications

B+-trees may be used several ways - the sequence of
pointers in the leaves can “implement” all the index types
we have looked at so far

Leaf nodes can for example act as a
dense or sparse primary index
dense or sparse cluster index – allowing duplicates
(dense) secondary index – unsorted records
...

Intermediate nodes are used to speed up search

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 41

B+-Trees: Efficiency – I
B+-trees:

a search always needs to go from root to leaf, i.e.,
number of block accesses is the height of tree plus accesses for record
manipulation

☺ number of levels usually small – 3 is a typical number

☺ range queries are very fast – find first, read sequentially

☺ if n is large, splitting and merging will be rare, i.e.,
can usually neglect reorganization costs

☺ disk I/O’s may be reduced by pinning index blocks in memory, e.g., root is
always available in main memory

Only a few disk I/O’s (or block accesses) are needed for an operation
on a record

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 42

B+-Trees: Efficiency – II

Example 1:
assume integer keys (4 B) and 8 B pointers
storage system uses 4 KB blocks – no headers
how many values may be stored in each node?
4n + 8(n+1) ≤ 4096 n = 340

Example 2:
a node is on average 75 % filled
how many records does a 3-level B+-tree hold?
(340 * 75 %)3 = 165813375 ≈ 16.6 million records

Hash Tables

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 44

Hash Tables – I
Hash tables is a another structure useful for indexes

a fixed size array containing the search keys-pointer pairs

secondary storage hash tables often have one bucket per block with
“support” for overflow blocks

often main memory array of pointers to the bucket blocks

size of array usually a prime number

uses a hash function to map search key value to array index

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 45

Hash Tables – II

A good hash functions is important

should be easy to compute (fast)

should distribute the search keys evenly – each bucket should have
approximately the same number of elements

common function examples:
integer keys:
mod(key value, array size)

character keys:
mod(sum characters as integer, array size)

best function varies between different uses

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 46

Hash Tables – III

Example:
array size B = 5
h(key) = mod(key, B)

4
3
2
1
0

10
5

buckets

6
1

bucket-pointers
in memory

7
2

8
3

9
4

29
24
19

44
39
34

insert: 11
14

15

16

11h(11) = 1
h(14) = 4

14

h(15) = 0

15

h(16) = 1

no room, create
overflow block

16

Note:
a problem occurs if most keys map to same
bucket, e.g., adding 19, 24, 29, 34, 39, 44, ...
not an appropriate hash function

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 47

Hash Tables – IV
Should records be sorted within a bucket?

YES, if search time (CPU time) is critical
NO, if records are frequently inserted/deleted

Operations are “straight forward” – calculate hash value, and ...
... insert into corresponding bucket - manage overflow if needed
... delete from corresponding bucket – may optionally consolidate blocks if
possible

Ideally, the array size is large enough to keep all elements in one
bucket-block per hash value, i.e., size and hash function must be
carefully chosen
☺ if so, the number of disk I/O’s significantly better compared to straightforward

indexes and B-trees
☺ fast on queries selecting one particular key value

however, as the number of records increase, we might have several blocks per
bucket
range queries will be slow as subsequent keys go to subsequent buckets

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 48

Dynamic Hash Tables

Hard to keep all elements within one bucket-block if file
grows and hash table is static

Dynamic hash tables allow the size of the table to vary, i.e.,
may keep one block per bucket for performance

extensible hashing

linear hashing

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 49

Extensible Hashing – I
Extensible hashing:

always an array of pointers
pointer array may grow

length is power of 2
double size when more space needed

certain buckets may share a block to reduce space –
if so, block header contains an indication of this
hash function computes a hash value which is a static bit-sequence
of b bits– the number if used bits i, however, varies dynamically
after the size of the pointer array
e.g.:

h(key) 1 1 0 1 0 1 0 1

b

i

Note 1:
b is static and in this example 8, i.e., we may
maximum have an array size of 28.
Note 2:
i is dynamic and in this example 4, i.e., we currently using
an array size of 24. However, if more buckets are needed,
we double the size and increase i to 5.

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 50

Extensible Hashing – II

Example:
b = 4, i = 1
insert record with key k,
h(k) 0 0 1 0
insert record with key l,
h(l) 1 1 0 0
insert record with key n,
h(n) 1 1 0 1

bucket 10 and 11 may
share a block to save space

11
10
01
00

c
a

buckets

j
f

bucket-pointers
l

k

1
0

no room, create
overflow block?

NO, add
buckets

“clean up”
l

insert new

increase i
2

n

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 51

Extensible Hashing – III

Extensible hashing:

☺manage growing files

☺ still one block per bucket (fast)

indirection expensive if pointer array is on disk

doubling size
much work to be done, especially if i is large
as size increases, it may no longer fit in memory

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 52

Linear Hashing – I

Linear hashing:
number of buckets are determined by the average fill level
hash function similar to extensible hashing, but using the low order
bits, i.e.,
the ⎡log2n⎤ low order bits where n is number of buckets
inserts:

find correct bucket and insert – use overflow block if necessary
if block do not exist, put element in bucket m – 2i-1, i.e., change the first bit
to 0, m is the value of the used bits form the hash value
if average fill level reaches limit, add one bucket (not related to inserted
item)
if now n exceeds 2i, i is incremented by one

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 53

Linear Hashing – II

Linear hashing:

☺manage growing files

☺do not need indirection

can still have overflow chains

some work moving elements from “re-directed” bucket when
creating a new

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 54

Sequential vs Hash Indexes

Sequential indexes like B+-trees is good for range queries:
SELECT * FROM R WHERE R.A > 5

Hash indexes are good for probes given specific key:
SELECT * FROM R WHERE R.A = 5

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 55

Indexes in SQL
Syntax:

CREATE INDEX name ON relation_name (attribute)
CREATE UNIQUE INDEX name ON relation_name (attribute)

defines a candidate key

DROP INDEX name

Note: cannot specify
type of index, e.g., B-tree, hashing, etc.
parameters such as load factor, hash size, etc.

index type is chosen by the people implementing the system
... at least in SQL...

But, IBM’s DB2 have some choices (not according to the SQL standard)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 56

Using Indexes in Queries – I
Indexes are used to quickly find a record
Some queries may even be solved without reading the records from disk,
e.g., find the number of elements

count the number of pointers in the index (dense)
Index structures discussed so far are one dimensional

one single search key
good for queries like
SELECT ... FROM R WHERE a = 17,
e.g.: using a B+-tree index on a

what about
SELECT ... FROM R WHERE a = 17 AND b < 5?

2311

...a

......

...11

...17

...23

......
1711 2523721

Note:
in a range query, we may just
read subsequent elements in
the B+-tree, or if records are
sorted, read rest of file

a ≥ 17

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 57

Using Indexes in Queries – II

Strategy 1:
SELECT ... FROM R WHERE a = 30 AND b < 5

use one index, say on a
find and retrieve all records where a = 30 using the index
search these records for b values less than 5

☺ simple and easy approach
may read a lot of records not needed from disk

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 58

Using Indexes in Queries – III

Strategy 2:
SELECT ... FROM R WHERE a = 30 AND b < 5

use two dense indexes – on a and b
find all pointers in the first index where a = 30
find all pointers in the second index where b < 5
manipulate pointers – compare (intersect) pointers and retrieve the
records where the pointers match

☺may reduce data block accesses compared to strategy 1
search two indexes (or more if more conditions)
cannot sort records on two attributes (for two indexes)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 59

Using Indexes in Queries - IV

Example - strategy 2, using pointer buckets:
SELECT c FROM R WHERE a=30 AND b=‘x’

find records where a is 30 using index on a

find records
where b is ‘x’
using index on b

have two set of
record-pointers

compare (intersect)
pointers and retrieve
the records requested

select specified attributes

cba

1y20
2x10
1z30

2x30
1z30
2y10

1x30
2z20
1y30

30
20
10

buckets
for a

a index

z
y
x

b index

buckets
for b

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 60

Using Indexes in Queries - V

One dimensional indexes can be uses many places, but in
case of operations with several search conditions, it may be
....

... many indexes to search

... hard to keep efficient record order on disk for several indexes

...

This has lead to the idea of ...

... MULTIDIMENSIONAL INDEXES

Multidimensional Indexes

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 62

Multidimensional Indexes – I

A multidimensional index combines several dimensions into
one index

One simple tree-like approach:

I1

I2

(key1, key2 , key3 , ...) I2

I2

I3

I3

I3

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 63

Multidimensional Indexes – II

Example – multidimensional, dense index:
SELECT ... FROM R WHERE a = 30 AND b =‘x’

search key = (30, x)

read a-dimension

search for 30, find
corresponding
b-dimension index

search for x, read
corresponding disk
block and get record

select requested attributes

cba

1y20
2x10
1z30

2x20
1z30
2y10

1x30
2z20
1y30

...
40
30
20
10

a index

y
x
...

b index

z
y
x
...

z
z
y
x
...

(30, x)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 64

Multidimensional Indexes – III
For which queries is this index good?

find records where a = 10 AND b = ‘x’
find records where a = 10 AND b ≥ ‘x’
find records where a = 10
find records where b = ‘x’
find records where a ≥ 10 AND b = ‘x’

may search several indexes in next dimension
better if dimensions changed order

Several other approaches....
other tree-like structures
hash-like structures
(bitmap-indexes)

Ia

Ib

Ib

Ib

☺

☺

?

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 65

Map View

A multidimensional index may have several dimensions
If we assume only two (as in our previous example), we can
imagine that our index is a geographical map:

Now our search is similar to searching the map for:
points: a1 and b1

lines: a2 and <b2,b3>
areas: <a3 ,a4> and <b4,b5>

a

b

a1

b1

a2

b2

b3

a3 a4

b4

b5

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 66

Tree Structures

There are several tree structures that works in a similar way
to finding map-areas, e.g.,

kd-trees
quad-trees
R-trees

However, these approaches give up at least one of the
following important properties of B-trees:

balance of tree – all nodes at same level
correspondence of tree nodes and disk blocks
performance of modification operations

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 67

kd - trees – I
A kd-tree (k-dimensional tree) is a binary tree having nodes
with

an attribute a
a value V splitting the remaining data points in two
data points are placed in nodes as in a traditional binary tree

We will look at modification of the kd-tree where
interior nodes only have the V value

left child is have values less than V
right child have values equal or larger than V

leaves are blocks with room for as
many record the block can hold

The different dimensions are
interleaved:

......

...

level n+1

level n

level 1

level 0

...

b-dimension

a-dimension

b-dimension

a-dimension

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 68

kd - trees – II

Example:
50

7030

35 25

8080

h
b

i
a

c

d

g

f

m

l

k
a

b

50 80

30

70

3525

80

k

m

80

g
c

l
h

f
i

b

d a

Find record b = (70, 75)

Note 1:
values on left and right side are not “related”
to node right above, e.g., here we can have
any value as long as it is below 50

Note 2:
may have empty buckets

Note 3:
an easy extension is to have multiple
values in each node – multiple
branches

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 69

kd - trees – III

Some “problems”:
may have to check both branches of the root, e.g.,
for b-dimension condition
may have to check both branches of the sub-tree in range queries,
e.g., want values <10,30> and node value is 20
higher trees compared to B-trees

storing each node in an own block is expensive
much more block accesses compared to B-trees

number of block accesses is reduced if we
use multiway branches
group interior nodes into one block,
e.g., node and several sub-levels of the tree in one block

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 70

Quad - trees
Quad-trees:

the interior nodes corresponds to a k-dimensional cube in k dimensions and it has
2k children
the data pointers is in the leaf nodes

In our 2-dimensional example, a quad-tree’s interior node divide the area in
four equal square regions
Example:

h
b

a

c

d

g
m

l

k
a

b

50,50

100

100

m
k

SW NW NE
SE

50

50l
h

d

g
c

b

75,75

Note 1:
divide area further if no room in
bucket - we have 2-element buckets
and NE-square has 3 elements

a

SW NW NE SE

Note 2:
the value range of index attributes
does not need to be the same

Find record a = (85, 90)

75

75

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 71

R - Trees
An R-tree (region-tree) divide the k-dimensional region, into a varying
number of sub-regions
The regions may be of any shape (usually rectangles) and are allowed
to overlap
2-dimensional example:

h

b a

c

d

g

m

k

a

b

100

100
[(5,10),(90,50)], [(40,60),(80,95)]

Note 1:
in this example the
coordinates denote SW, NE
corner of rectangle

Note 2:
all the area do not have to be
covered as long as all elements are
included into a region

d
b
a

[(5,10),(50,40)], [(55,10),(80,40)]

m
k
g

h
c

Note 3:
if not all elements fits in a
bucket, divide further

Find record
g = (30, 35)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 72

Hash-Like Structures: Grid Files – I

Grid files extend traditional hashing indexes
hash values for each attribute in a multidimensional index
usually does not hash values, but regions – h(key) = <x,y>
grid lines partition the space into stripes

2-dimensional example:
find record (22, 31)

h1(22) = <ax, ay>
h2(31) = <bm, bn>

record f

h
b

i
a

c

d

g

f

m

l

k
a

b

h1(a-key)

h2(b-key)

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 73

Hash-Like Structures: Grid Files – II

How do we represent grid file on disk?
one bucket per sub-space

may waste lot of space

array in one direction
bad for range queries in
“other” direction

areas
may chose appropriate
areas

use indirection, as areas, but use
buckets

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 74

Hash-Like Structures: Grid Files – III

What can we do if a block does not have more room?
allow overflow blocks
add more grids

Grid files can quickly find records with
key 1 = Vi AND Key 2 = Xj

key 1 = Vi

key 2 = Xj

key 1 ≥ Vi AND key 2 < Xj

Grid files are
☺good for multiple-key search

space, management overhead
partitioning ranges evenly split keys

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 75

Hash-Like Structures: Partitioned – I

Partitioned hash functions ...
...allow several arguments
...produce a single hash value
h(key1, key2, key3, ...) = x

☺maps a multi-dimensional index to a single-dimension array
only useful for searches involving all keys

A more useful approach is to let the hash function produce a
bit-string where each search key is represented by some of
the bits

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 76

Hash-Like Structures: Partitioned – II
Example – bit-string:

index on both department and salary of employees
h(...) produces a 3-bit string

h1(keydepartment) produce the first bit
h2(keysalary) produce the two last bits
h(keydepartment, keysalary) = h1(keydepartment) + h2(keysalary)

......
0shoes
1music
1admin
0clothes
0toys

......
11500.000
10400.000
10300.000
00200.000
01100.000

h1() h2()
Note:
several key values can map to
the same bit-string

examples:
h(toys, 100000) = 0 01
h(toys, 500000) = 0 11
h(music, 300000) = 1 10
h(admin, 500000) = 1 11
h(shoes, 100000) = 0 01

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 77

Hash-Like Structures: Partitioned – III

Example (cont.):
insert:
p = (toys, 100000)
q = (music, 200000)

find employees with:
department = music and
salary = 500.000

department = toys

salary = 500.000

1 11
1 10
1 01
1 00
0 11
0 10
0 01
0 00

i
buckets

b

g
c

a

j
f q

p

m

d

e

......
11500.000
10400.000
10300.000
00200.000
01100.000h2

......
0shoes
1music
1admin
0clothes
0toysh1

Note 1:
if no room left in block, create overflow
block or extend hash size (more buckets)

Note 2:
as several key values can map to the same
bit-string, we must search the bucket for
matching values

INF3100 – 14.3.2006 – Ellen Munthe-Kaas Page 78

Summary

Searching is expensive
Indexes
☺minimize the search costs and block accesses

increased storage requirements
more complex operations on inserts/updates/deletions of records

Conventional indexes
B-trees (B+-trees)
Hashing schemes
Multidimensional indexes

tree-like structures
hash-like structures

