g Query Execution

Contains slides by
Hector Garcia-Molina

i Overview

v" Short about query processors

v Model for computing costs

v" Cost of basic operations

v Implementation algorithms and their costs

> tu
> fu
> fu

ple-at-a-time, unary operations
I-relation, unary operations

I-relation, binary operations

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 2

Query Processors — I

v So far, we have looked
> hardware features such as disks and memory
> data structures allowing fast lookup and efficient execution of basic
operations
v SQL is a declarative language (specifies what to find, not how)

v A query processor must find a plan how to execute the query
> query compilation
» query execution

v There might be several ways to implement a guery -
the query compiler should find an appropriate plan
> parsing — translating the query into a parsing tree

> query rewrite — the parse tree is transformed into an expression tree of
relational algebra (logical query plan)

> physical plan generation — translate the logical plan into a physical plan
= Select algorithms to implement each operator
= choose order of operations

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 3

i Query Processors — 11

v" Making logical and physical query plans are often called

query optimizing query
/ /| \\\
generate plans e ¢ o
pruning l l l l l
estimate cost E L] O O
select best ? ? ? 7

v Next week, we look at how to generate and select a query plan,
but first we must know Aow to estimate the cost of each
operator performing a specific task in the entire operation:

» which algorithm works best under the given circumstances?

» how to pass data between operators?
P aes

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 4

!'_ Cost Computation Model

Plan Operators

v A query consist of several operations of relational algebra

> a physical query plan is implemented by a set of operators
corresponding to the relational algebra operators

> additionally, we need basic operators automatically used by other
operators like reading (scanning) a relation, sorting a relation, etc.
v To choose a good query plan, we must be able to estimate the
cost of each operator:

= we Will use the number of disk I/O’s
and we assume (if not specified otherwise) that
> parameters to an operator must intially be retrieved from disk

> output is consumed directly from memory (cost only dependent of
output buffer size)

> Wwe can ignore other costs like CPU cycles, timing, ...

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 6

i Cost Parameters

v Determining which mechanism to use, i.e., which has
lowest costs, is dependent of several factors like
» number of available memory blocks, M
> existence of indexes (if so, what kind, size, overhead, ...)
> layout on disk and disk characteristics

T

v" Additionally, for a relation R, we need

» num
» num
> num

per of blocks to store all tuples, B(R)
per of tuples in R, T(R)

per of distinct values for an attribute a, V(R, a)

(average of identical a-value tuples is then T(R)/V(R,a))

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 7

Factors Increasing Estimated Disk I/O Cost

v The actual disk I/O costs may be somewhat higher than our
estimates:

> if we use an index, the index itself may not be resident in memory:
must retrieve index blocks

> tuples where condition C holds, might fit on b blocks, but they might not
start at the beginning of the first block — read b + 1 blocks

> data on blocks might not be “compressed” — we leave room for data
evolution

» data might be sorted and grouped, and each “collection” may be stored
on their own blocks — fragmentation

> relation R is stored together with other relations — clustered file
organization

v These factors can influence the costs of several algorithms later
in the lecture, but we will not use them in our cost estimates

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 8

i Factors Reducing Overall Time

v' Extra buffers can speed up the overall processing time
of an operation

> if data is stored consecutively on disk, we can then retrieve
or write more blocks at the same time — reducing the
number of seeks and rotational delays

» double buffering saves time waiting for disk 1/O
» parallel operations on multiple disks

v But, these mechanisms do not reduce the number of

blocks that initially has to be moved between disk and
memory — only average time per block

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 9

!'_ Cost of Basic Operators

Cost of Basic Operators — I

The cost of reading a disk block is 1 disk I/O

The cost of writing a disk block is 1 disk I/O
(we assume that verifying the write operation is free >read I/O = write I/O)

= updates cost 2 disk I/Os

DN

v One of the fundamental operations is to read a relation R - must read (scan)
all blocks which contain records for R
- cost dependent on storage

> clustered relation, all records stored together — B(R) disk I/Os

> scattered relation, records on different blocks — max T(R) disk I/Os
(we must in a worst case scenario read T(R) blocks — all tuples on different
blocks)

> we Will assume clustered relations if not specified otherwise
(relations that is a result of other operators is almost always clustered)

Note:

e clustered file organization — interleaves tuples of different relations

e clustered relation — records of a relation is stored on as few blocks as possible
e clustering /ndex — index on attribute sorting a clustered relation on disk

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 11

iCost of Basic Operators — II

v' Sorting is another important operation —
sort-scan reads a relation R and returns R in sorted order

> use an index having a list of sorted pointers,
e.g., B-trees, sequential index files
— cost is dependent of operation, storage, available memory, ...

> if relation fits in memory, use an efficient main-memory sorting
algorithm — cost B(R) disk I/Os

> if relation is too large to fit in main memory, we must use a
sorting algorithm making several passes over data
- two-phase multiway merge sort (TPMMS) is often used

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 12

i Cost of Basic Operators: TPMMS — 1

v Two-Phase, Multiway-Merge Sort (TPMMS)

> phase 1: sort main-memory sized pieces of the relation
= fill all available memory with blocks containing the relation
= sort the records in memory
= write the sorted list back to disk
= repeat until all blocks are read and all records are sorted in sub-lists
= cost 2B(R), i.e., all blocks are both read and written

> phase 2: merge all sorted sub-lists into one sorted list

= read first block of all sub-lists into memory and compare first element
in each block

= place smallest element in new list
= cost B(R) (result is consumed directly from memory)

= total cost 3B(R)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 13

Cost of Basic Operators: TPMMS — II

Note 1: Note 2:
v Examp|e: optionally (and usually), we may write if R is not
the result back to disk, but we assume clustered,
M=2/ B(R)=4/ T(R)=8 the result is given to another operator cost
> fill memory or returned as final result — cost 3B(R) T(R)+2B(R)
> sort =
> write back sub-list | 8/
»repeat Irr— | BRI

I
113]16]7]! |sub-list 1

> Ll sTs 1 [sub-list 2

> read first block
of all sub-lists

first unused

» compare first | pciintfrsl
unused element \
> output the smallest - B I R
element, fetch new block M buffers reuse the
if necessary M butters
> repeat two last steps 1234567 gm -
INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 14

Cost of Basic Operators: Hash Partitioning — I

v Splitting the relation in sub-groups using hashing is also used
for several operators if the data set is too large to fit in memory

» hash function mapping tuples that should be considered together into
same bucket

» if M available buffers:
use M-1 buffers for buckets, 1 for reading disk blocks

» algorithm:
FOR each block b in relation R {
read b into buffer M
FOR each tupletin b {
IF NOT room in bucket h(t) {
copy bucket h(t) to disk
initialize new block for bucket h(t) }
copy t into bucket hgc) 13
FOR each non-empty bucket { write bucket to disk }

= cost 2B(R) — read all data and write it back partitioned (NB This cost
includes writing to memory!)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 15

i Cost of Basic Operators: Hash Partitioning — II

v Example
M=4, B(R)=4, T(R)=8
~ initialize buffers . oI,
> read block b

» foreach tupletinb
= cCalculate h(t)

= if not room in bucket h(t),
write bucket to disk,
initialize new

= put t in bucket h(t)
> read next block and repeat O
ol

» write all non-empty buckets
to disk &

A

bucket

bucket

» cost 2B(R) disk I/Os S
(actually 4+5, not 4+4) &

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 16

Query Execution — I

v Having looked at some basic operators, we now begin studying
algorithms for the different relational algebra operators

v Mainly, three classes of algorithms:
» sorting-based
» hash-based
» index-based

v Additionally, the cost and complexity can be divided into
different levels

» one-pass algorithms — data fits in memory,
reading data only once from disk

» two-pass algorithms — data too large to fit in memory,
read data, process, write back, read again

» N-pass algorithms — recursive generalizations of two-pass algorithms for
methods needing several passes over the entire data set

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 17

i Query Execution — II

v" In addition to several classes and levels of algorithms,
there are also different groups of operators:

» tuple-at-a-time, unary operations: A

= Selection (o)
= projection (n)
> full-relation, unary operations:
= grouping (y)
= duplicate-elimination (d)
> full-relation, binary operations:
= Set and bag union (U)
= Set and bag intersection (M)
= set and bag difference (-)
= joins (¥)

= products (%) /

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

we will now look at several ways
to implement these operators
using different algorithms and
number of passes

Page 18

Unary, Tuple-at-a-Time
Operations

Note that only summaries will be lectured
from here on!

Tuple—at—a—Time Operators — I

v' Both selection (o) and projection (n) have obvious algorithms —
regardless of whether the relation fits in memory or not:

input buffer output buffer
' ’ ”’ 1 0 ’)
read R perform unary output result
operation

> read the blocks of relation R one at a time
» perform the operation on each tuple

» move the selected or projected tuples to the output buffer

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 20

i Tuple—at—a—Time Operators — II

v Memory requirement is only M > 1 for the input buffer
— output buffer is assumed to be part of consuming
operator (or application)

v The cost of performing a scan in number of disk I/Os
is dependent on how relation R is provided
» in memory — 0

> on disk, typically
= B(R) disk I/Os if R is clustered
= T(R) disk I/Os if R is not clustered (max)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 21

Tuple—at—a—Time Operators — III

v Selection (o) can greatly benefit from an index on R.a

> single value queries, e.g., o, - (R)
= clustering index: cost #"a=v"-records/records_per_block disk I/Os , average
B(R)/V(R,a) disk I/Os
= /ndex on non-clustered relation:
cost #"a=v"-records disk I/Os , average T(R)/V(R,a) disk I/Os
(can be less if several records is on same block)

= index on key attribute: 1 disk I/Os (V(R,a) = T(R), B(R) > T(R))
> range queries, e.g., 6, . ((R)
= clustering index: cost #"a<v”-records/records_per_block disk I/Os
= /ndex on non-clustered relation: cost #"a<v”-records disk I/Os
(can be less if several records is on same block)
= index on key attribute:

o hon-clustered relation: #"a<v”-records disk I/Os
o clustered relation: #"a<v”-records/records_per_block disk I/Os

» complex queries, e.g., 6, <, ap ¢ (R)
= cost can further be reduced if we can compare pointers before retrieving
blocks

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 22

Tuple—at—a—Time Operators — IV

v Worst-case example: T(R) = 20.000, B(R) = 1000, o, - ,(R)
> No index

= R clustered — retrieve all blocks > 1000 disk I/Os
= R not clustered — each tuple on different blocks - 20.000 disk I/Os

» cClustering index (R clustered) — retrieve B(R) / V(R, a)
= V(R, a) = 100 = 1000 / 100 = 10 disk I/Os
= V(R,a) =10 > 1000/ 10 = 100 disk I/Os

> index, R not clustered — retrieve T(R) / V(R, a)
« V(R, a) = 100 > 20.000 / 100 = 200 disk I/Os

= V(R, a) =10 - 20.000 / 10 = 2000 disk I/Os
(even more than retrieving the whole file if R is clustered)

> V(R, a) = 20.000, i.e., aisa key = 1 disk I/O Note:

we must add any disk
I/Os for index blocks

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 23

Unary, Full-Relation

!'_ Operations

Duplicate Elimination (9):
One-Pass — 1

v Duplicate elimination (6) can be performed by reading
one block at a time, and for each tuple we
> copy it to the output buffer if first occurrence
> ignore it if we have seen a duplicate

v To be able to perform this operation, we must keep
one copy of all tuples in memory for comparison

tuples written to output

Y XX}
input buffer I output buffer
o0 NN
8 2 : — > T Noe 1n ol ’?
read R seen before? output result

NO, copy to output and comparison buffer
YES, do nothing
repeat for all blocks holding R

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 25

Duplicate Elimination (9):
One-Pass — 11

v' Memory requirement is M = 1 + B(6(R))
> input buffer — 1
» buffers to hold all distinct tuples for comparison — B(3(R))

v If M is too low, we will pay significantly due to thrashing

v Another important aspect here choice of main-memory data
structure holding comparison tuples
> searching sequentially — O(/7)
> hashing — O(n) } will need some more memory,
> binary tree — O(n71logn) but usually insignificant

v Number of disk I/Os is B(R)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 26

Duplicate Elimination (5):
Two-Pass Sortin

v To perform duplicate elimination in two passes, we use an
algorithm similar to Two-Phase, Multiway-Merge Sort (TPMMS)
> read M blocks into memory
> sort these M blocks and write sub-list to disk

> however, instead of sorting the sub-lists, copy first tuple, eliminate
duplicates in front of sub-lists

v" Total cost is 3B(R) disk I/Os
» 2 for first phase of TPMMS
> 1 for duplicate elimination of first tuples of the sub-lists

v" Memory requirement

» M buffers can make M block long sub-lists
(except last which may be smaller)

> B(R) <M?-> VB(R) <M
> if B(R) > M? = more than M sub-lists, the algorithm will not work
(cannot hold the first block of all sub-lists)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 27

Duplicate Elimination (3):
Two-Pass Hashin

v Hash-based partitioning can be used for duplicate elimination in
two passes
» partition the relation as described before
» duplicate tuples will hash to same bucket

» read each bucket into memory and perform the one-pass algorithm
removing duplicates

v' Total cost is 3B(R) disk I/Os

» 2 for partitioning the relation into hash buckets
> 1 for duplicate elimination on each bucket

v' Memory requirement:
> M buffers to make M - 1 partitions (buckets)
> B(R) < M(M-1)=B(R) <M?>+V/B(R) <M
» each partition can be at most M long — algorithm will not work otherwise
(must be able to read whole bucket into memory)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 28

Duplicate Elimination (9) :

Cost and requirement summary for 6(R):

Memory

Algorithm Requirement Disk 1/0s
One-Pass M 2> 1+ B(8(R)) B
Two-Pass Sorting M > VB, 3B,
Two-Pass Hashing M > VB, 3B

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 29

Grouping (y) :
One-Pass

v Grouping (y) gives us tuples consisting of grouping attributes
and one or more aggregated attributes

v One-pass grouping:
» onhe main-memory entry per group

» scan tuples of R, reading one block at a time

» modify aggregated values using the read value for each tuple belonging
to group
= MAX and MIN: compare stored aggregated value, change if necessary
= COUNT: add one to the aggregated value for each tuple belonging to group
= SUM: add value of tuple attribute to the aggregated value
= AVG: store COUNT and SUM, calculate AVG = SUM/COUNT in the end

v Requirements and costs are similar to duplicate elimination
> B(R) disk I/Os
> M =1+ B(y(R)) memory buffers

= input buffer — 1
= buffers to hold all grouping elements — B(y(R))

> as with duplicate elimination one should use a fast main-memory data
structure holding grouping elements (hashing, binary trees, ..)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 30

Grouping (y) :
Two-Pass Sortin

v Two-pass grouping can be performed as duplicate

elimination in two passes (based on TPMMS

> read M blocks into memory
> sort these M blocks on grouping attribute(s) and write sub-list to disk

> read first block of all sub-lists, for each smallest, unused sort key v
= compute required aggregates for all v tuples
= if buffer becomes empty, fetch new block from corresponding sub-list
= repeat until all v tuples are used
= output tuple with sort key v and associated aggregate values

» repeat until all sub-lists are empty

v" Total cost is 3B(R) disk I/Os

v" Memory requirement is

> M buffers can make M block long sub-lists
(except last which may be smaller)

> B(R) <M?> VB(R) <M

> if B(R) > M? > more than M sub-lists, the algorithm will not work
(cannot hold the first block of all sub-lists)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 31

Grouping (y) :
Two-Pass Hashin

v Hash-based partitioning can be used for grouping in two-passes

» partition the relation as described before, but use only grouping
attributes as search key in hash function

> duplicate tuples will hash to same bucket

> read each bucket into memory and perform the one-pass algorithm
removing duplicates

v" Total cost is 3B(R) disk I/Os

v' Memory requirement:
> M buffers to make M - 1 partitions (buckets)
> B(R) <M(M-1) =B(R) <M*> VB(R) <M
» each partition can be longer than M and still use one pass per bucket
= need only 1 record per group in the bucket

= the algorithm will still work if records for all the groups in the bucket
= B(R) might therefore be larger than M?, but B(R) < M? is a good estimate

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 32

Grouping (y) : _
Cost and requirement summary for y(R):

Algorithm Rezﬂjirrneon%nt Disk 1/0s
One-Pass M 2> 1+ B(y(R)) B
Two-Pass Sorting M > VB, 3B,
Two-Pass Hashing M > VB, 3B

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 33

Binary, Full-Relation

!'_ Operations

iBinary, Full-Relation Operations

v" A binary operation takes two relations as arguments:

. X

g !’mlon' R_U S it is a difference between the set- and bag-versions

> intersection: R M S ;- of these operators — we will look at both, but unless
:] specified otherwise, we assume a bag-version

> difference: R—-S |

> Joins RIS we will look at natural join, the other
> pI’OdUCtS' R xS operators can be implemented similarly

v In the operations needing a comparison (search), we
usually implement a main-memory search structure,
like binary trees or hashing, which also need
resources. However, we will not be counting these
buffers in our requirement estimation

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 35

Union (V) :
One-Pass

v Bag union (u) can be computed using a very simple one-pass
algorithm - R U S:
> read and copy every tuple of relation R to the output buffer
> read and copy every tuple of relation S to the output buffer

v Total cost B(R) + B(S) disk I/Os
v' Memory requirement 1 (read block directly to output buffer)

v Set union must remove duplicates

> read smallest relation into M-1 buffers, say S, and copy every tuple to
output

» read the blocks holding R one-by-one into one buffer, and for each tuple
see if it exists in S = if not, copy to output

v' Memory requirementis now 1 + (M-1) = M, B(S) < M

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 36

Union (V) :
Two-Pass Sortin

v Bag union works perfectly using the simple one-pass algorithm
regardless of size of relations (just output all R and S blocks)

v Set union must remove duplicates
> perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
> use one buffer for each sub-list of R and S

> repeatedly, find first remaining tuple of all sub-lists
= output tuple
= discard duplicates from the front of the list

v" Total cost is 3B(R) + 3B(S) disk I/Os

v" Memory requirement
» M buffers can make M block long sub-lists (in total)
> B(R) + B(S) < M? = V(B(R)+B(S)) < M
> if B(R) + B(S) > M? = more than M sub-lists, the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 37

Union (V) :
Two-Pass Hashin

v Set union two-pass hashing algorithm
» Partition both R and S into M-1 buckets using same hash function

» for all buckets, perform union on buckets / separately — R, o S, — using
one-pass set union

= read smallest relation into M-1 buffers, say S, and copy every tuple to output

= read the blocks holding R. one-by-one into one buffer, and for each tuple see
if it exists in S; = if not, copy to output

v Total cost: 3B(R) + 3B(S) disk I/Os

» 2 for partitioning the relations
» 1 for performing union on different buckets

v Memory requirement: M buffers
» M buffers can make M-1 buckets for each relation
> for each bucket pair, R, and S, either B(R)) < M-1 or B(S,) < M-1
> approximately min(B(R), B(S)) < M? > vmin(B(R), B(S)) < M

> if the smaller bucket of R, and S, does not fit in M-1 buffers,
the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 38

Union (V) :

Cost and requirement summary for R U S:

If B; < By :
BAG-version :
Algorithm ReI;/IL?irrneon%nt Disk 1/0s
One-Pass M21 Bz + Bg
SET-version :
Algorithm Regﬂiirpeor;int Disk 1/0s
One-Pass B < M-1 Bz + Bg
Two-Pass Sorting M > VB, + B¢ 3B, + 3B
Two-Pass Hashing M > VB, 3B, + 3B.

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 39

Intersection (M) :
One-Pass

v Bag intersection (n) can be implemented using a tuple counter:

> read smallest relation, S, into M-1 buffers, but store only distinct tuples
and the counter

> read the blocks of R one-by-one and for each tuple see if it exists in S
= if not, do nothing
= otherwise and if counter > 0, copy to output and decrement counter

v Total cost B(R) + B(S) disk I/Os

v Memory requirement 1 + (M-1) = M, B(S) < M
(additionally, we may need more memory to hold counters)

v Set intersection
> read S into M-1 buffers and R block-by-block
> if tuple t from R exists in S, output

v Same costs and memory requirement as bag-version

except set-version does not need to hold counters)
INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 40

Intersection (n) @
Two-Pass Sortin

v Two-pass sorting intersection use an algorithm similar to

TPMMS:
» perform phase 1 of TPMMS on both R and S (make sorted sub-lists)

» bag-version:
output tuple t the minimum number of times it appearsin R and in S

» set-version:
output tuple t if it occurs in both R and S

v Total cost is 3B(R) + 3B(S) disk I/Os

v' Memory requirement
» M buffers can make M block long sub-lists (totally)
> B(R) + B(S) < M? > vB(R)+B(S) < M
> bag-version also needs room for counters
> if B(R) + B(S) > M?> = more than M sub-lists, the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 41

Intersection () @
Two-Pass Hashin

v Two-pass hashing intersection algorithm
> Partition both R and S into M-1 buckets using same hash function

> for all buckets, perform intersection on buckets / separately — R, ~ S, —
using either bag- or set-version of one-pass intersect

v Total cost: 3B(R) + 3B(S) disk I/Os

» 2 for partitioning the relations
» 1 for performing intersection on different buckets

v Memory requirement: M buffers
» M buffers can make M-1 buckets for each relation
» for each bucket pair, R and S, either B(R,) < M-1 or B(S,) < M-1
> approximately min(B(R), B(S)) < M? = vmin(B(R), B(S)) £ M
> bag-version also needs room for counters
>

if the smaller bucket of R. and S, does not fit in M-1 buffers,
the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 42

Intersection (M) :
Cost and requirement summary for R N S:

If B- < B
Algorithm Reg/lueilr’re]ﬁgntl Disk 1/0s
One-Pass B < M-1 Bz + Bg
Two-Pass Sorting M 2> VBg + Bg 3B; + 3B
Two-Pass Hashing M > VB 3B, + 3B

IBAG-version additionally needs memory buffers for tuple counters

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 43

Difference (-) :
One-Pass — I

v Bag difference (—) can be implemented using a tuple counter:

> read smallest relation, S, into M-1 buffers, but store only distinct tuples
and the counter
» S —R (tuples in S that do not exist in R):

= read the blocks of R one-by-one and for each tuple existing in S, decrement
associated counter

= at the end, output tuples of which counter > 0 — counter number of times
> R—S (tuples in R that do not exist in S):

= read the blocks of R one-by-one and for each tuple, see if it exists in S

= if no, copy the tuple to output

= if yes, look at counter

o counter > 0, decrement counter
o counter = 0, output tuple

v Total cost B(R) + B(S) disk I/Os

v' Memory requirement 1 + (M-1) = M, B(S) < M
(additionally, we may need more memory to hold counters)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 44

Difference (-) :
One-Pass — II

v Set difference

> read smallest relation, S, into M-1 buffers and R block-by-
block

» S —R:
= if tuple t from R exists in S, delete t from S in memory

= otherwise, do nothing
= at the end, output all remaining tuples of S

» R—S:
=« if tuple t from R exists in S, do nothing
= otherwise, output t

v Same costs and memory requirement as bag-version
(except set-version does not need to hold counters)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 45

Difference (-) :
Two-Pass Sortin

v Two-pass sorting difference uses an algorithm similar to
TPMMS:
> perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
> R—S:

= bag-version:
output tuple t the number of times it appears in R minus the number of times

it appear in S

= Set-version:
output tuple t if it occurs in R but notin S

» S — R similarly (blocks from all sub-lists are in memory)

v Total cost is 3B(R) + 3B(S) disk I/Os

v' Memory requirement
> M buffers can make M block long sub-lists (totally)
> B(R) + B(S) < M? = V(B(R)+B(S)) < M
> if B(R) + B(S) > M? = more than M sub-lists, the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 46

Difference (-) :
Two-Pass Hashin

v Two-pass hashing difference algorithm
» partition both R and S into M-1 buckets using same hash function

> for all buckets, perform difference on buckets / separately — R, - S, —
using either bag- or set-version of one-pass difference

v Total cost: 3B(R) + 3B(S) disk I/Os
» 2 for partitioning the relations
» 1 for performing difference on different buckets

v Memory requirement: M buffers
» M buffers can make M-1 buckets for each relation
» for each bucket pair, R and S, either B(R,) < M-1 or B(S,) < M-1
> approximately min(B(R), B(S)) < M? = vmin(B(R), B(S)) < M
> bag-version also needs room for counters
>

if the smaller bucket of R. and S, does not fit in M-1 buffers,
the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 47

Difference (-) :

Cost and requirement summary for R — S:

If B- < B
Algorithm Reg/lueilr’re]ﬁgntl Disk 1/0s
One-Pass B < M-1 Bz + Bg
Two-Pass Sorting M 2> VBg + Bg 3B; + 3B
Two-Pass Hashing M > VB 3B, + 3B

IBAG-version additionally needs memory buffers for tuple counters

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 48

Natural Joins (X) :
One-Pass

v Natural join (x) concatenates tuples from relation
R(X,Y) with those tuples in S(Y,Z) where R.Y = S.Y

v One-pass algorithm:
> read smallest relation, S, into M-1 buffers

> read relation R block-by-block, and for each tuple t,
concatenate t with matching tuples in S
- move resulting joined tuples to output

v Total cost B(R) + B(S) disk I/Os
v Memory requirement 1 + (M-1) = M, B(S) < M

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 49

Natural Joins (X) :
Nested-Loop Joins — 1

v Nested-loop joins can be used for relations of any size
v Tuple-based algorithm:

FOR each tuple s in relation S
FOR each tuple r in R
IF r and s join, concatenate to output

v Worst case of cost T(R)T(S) disk I/Os
(can at least manage B(S) + B(S)B(R), more memory)

v Memory requirement 2 (hold R block and S block)
*wn Munthe-Kaas Page 50

Natural Joins (X) :
Nested-Loop Joins — II
v Block-based:

> use all tuples in a block

> keep as much as possible of the smallest relation, S, in memory, i.e., M-1
blocks

» algorithm:

FOR each M-1 sized partition p of relation S {

~read pinto memory
actually only FOR each block 6 of R {

one pass read binto memory
through the 4 FOR each tuple ¢in 6 {
tuples in R find tuples in p that join with ¢
L join each of these with ¢ to output }}}

v Total cost B(S) + [B(S)/(M-1)*B(R)] disk I/Os
(Read S once, read R once for each partition of S)

v Memory requirement 2 (hold R block and S block)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 51

Natural Joins (X) :
Two-Pass Sorting — I

v There are several ways sorting can be used in join
v Simple algorithm, R X S:
» sort R and S separately using TPMMS on join attribute(s), and
write back to disk

> join (merge) the sorted R and S, by repeatedly
= if R or S buffers empty, fetch block(s) from disk

= find tuples which have least value v for joining attribute
(also on following blocks)

o if v—value tuples exist in both R and S, join R tuples with S tuples, write
joined tuples to output

o otherwise, discard all v—value tuples

v Total cost: 5B(R) + 5B(S) disk I/Os
> 4 for TPMMS
» 1 of merging the sorted R and S

v Memory requirement: M buffers

> must use TPMMS on both reIatlons B < M?
i.e., B(R) < M?AND B(S) < M?

> if there exists a collection of v—value tuples that does not fit in M

* memory blocks, the algorithm does not work
INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 52

Natural Joins (X) :
Two-Pass Sorting — I1

v Sort-join algorithm, R X S:

» make M-sized, sorted sub-lists of R and S separately using first phase of TPMMS
on join attribute

» bring first block of each sub-list into memory

» join the sorted R and S, by repeatedly

= find tuples which have least value v for joining attribute
(also on following blocks)

o if v—value tuples exist in both R and S, join R tuples with S tuples, write joined tuples
to output

o otherwise, discard all v—value tuples
= if a buffer is empty, retrieve new block (if any) from disk

v Total cost: 3B(R) + 3B(S) disk I/Os

» 2 for first phase of TPMMS (making sub-lists)

» 1 of merging the sorted R and S (join operation)
v' Memory requirement: M buffers

» must use first phase of TPMMS on both relations B < < M?,
i.e., B(R) + B(S) < M? (cannot have more than M sub- Ilsts)

> the algorithm does not work if
= there exists a collection of v—value tuples that does not fit in M memory blocks
= there are more than M sub-lists totally

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 53

Natural Joins () :
Two-Pass Hashin

v Two-pass hashing natural join algorithm
» partition both R and S into M-1 buckets using same hash function

> for all buckets, perform natural join on buckets / separately — R x S, —
using one-pass join:
= read smallest relation, S, into M-1 buffers

= read relation R block-by-block, and for each tuple t, join t with matching
tuples in S > move resulting tuples to output

v Total cost: 3B(R) + 3B(S) disk I/Os

» 2 for partitioning the relations
> 1 for performing join on different buckets

v Memory requirement: M buffers
» M buffers can make M-1 buckets for each relation
> for each bucket pair, R, and S, either B(R)) < M-1 or B(S,) < M-1
> approximately min(B(R), B(S)) < M? = vmin(B(R), B(S)) £ M

> iIf the smaller bucket of R, and S, does not fit in M-1 buffers,
the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 54

Natural Joins (X) :
Two-Pass Hybrid Hashing — I

v If we have more memory on the first pass — partitioning the
relations — we can save some disk I/Os

v Two-pass hybrid hashing natural join algorithm
» create k buckets, k<< M

» partition the smaller relation, S, but
= keep entire first bucket in memory
= partition buckets 2 .. & as normally
o put tuples in corresponding bucket
o if block full, write to disk
o at the end, write all non-empty buckets to disk
> partition the larger relation, R, but

= tuples going to bucket R, are joined with corresponding tuples of S, which is
kept in memory

= remaining tuples are partitioned normally using the disk to hold the buckets

» make a second pass using the algorithm described previously on buckets
/ separately — R < S, — using one-pass join on buckets 2 .. k

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 55

Natural Joins (X) :
Two-Pass Hybrid Hashing — II

v Total cost: 3B(R) + 3B(S) — 2B(R,) — 2B(S,) disk I/Os
> two-pass hash joins take 3 disk I/Os per block

> we save 2 disk I/Os for each block belonging to first bucket
> approximate cost:

= assume we can make the size of a bucket M (available memory)
- k = B(S)/M for both R, and S; (we save about 2k reads, subtract 2/k)

~> 3 (B(R)+B(S)) — (2/K)(B(R) + B(S)) = (3 — 2/k)(B(R)+B(S)) =
(3 = (2M/B(S)) (B(R)+B(S))

v Memory requirement: M buffers
> M buffers must hold entire S; and k buckets, M > B(S,) + (k-1)
» for each bucket pair, R.and S, i > 1, either B(R,) < M-1 or B(S)) < M-1
> approximately min(B(R), B(S)) < M? = vVmin(B(R), B(S)) < M

> if the smaller bucket of R. and S, does not fit in M-1 buffers,
the algorithm will not work

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 56

Natural Joins (X) :
Index-Based

v Index natural join algorithm — R(X,Y) x S(Y,Z) :
» assume index on join attribute Y for relation S

» read each block of relation R, and for each tuple
= find tuples in S with equal join attribute using the index on S
= read corresponding blocks and output join of these tuples

v Total cost: ? disk I/Os

> if R is clustered, we need B(R) disk I/Os, otherwise, up to T(R) to
read all R-tuples

» additionally, for each tuple in R we need to read corresponding S-
tuples:
= if index is clustered and sorted on Y: B(S) / V(S,Y)
= if Sin not sorted on Y: T(S) / V(S,Y)
= we will use an average T(S) / V(S,Y)

= thus, reading tuples of S is the dominant cost: T(R)T(S) / V(S,Y)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 57

Natural Joins (X) :
Zig-Zag Index-Based

v' Zig-zag index join algorithm — R(X,Y) X S(Y,Z) :
» assume sorted index on join attribute Y for both relation R and S
» for each value of Y in index of R
= find tuples in S with equal search key using index on S

o if no equal tuples exist, just proceed

o if we have a match on join attribute, retrieve corresponding disk
blocks from both relations, and output join tuples

v Total cost: ? disk I/Os

> if both R and S are clustered and sorted on Y, we can be able to
perform the join in B(R) + B(S) disk I/Os
» complicating factors adding I/0s

= fractions of R and S with equal Y value do not fit in memory
= blocks containing several different tuples must be read several times

> relations are not clustered,?
*WM Manthe-Kass Page 58

Natural Joins (X) :

Cost and requirement summary for R X S:

If Be < B :
Algorithm Relc\q/ljirpeorgent Disk 1/0s
One-Pass B <M-1 Bz + Bg
Tuple-Based Nested-Loop 2 <M worst case T,
can do at B + BB,
Block-Based Nested-Loop 2 <M B. + [(Bs /M-1) x Bg]
Simple Two-Pass Sorting VB; < M 5 Bg + 5 B
Sort-Join VBg + B <M 3B, + 3B
Hash-Join VB, < M 3By + 3 B
Hybrid Hash-Join VB, <M (3-2M/B.)(Bg + By)
Index Join 2<M B + (TrBs / Vsyv)
Zig-Zag Index Join B(Tr/Vr 2a)+B(Ts/Vs,) < M Bz + B

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 59

i Natural Join Example — 1

v Example:
> T(R) = 10.000, T(S) = 5.000
> V(R,a) = 100, V(S,a) = 10
» Both R and S are clustered
> 4 KB blocks (no block header)
» both R and S records are 512 B (including header)
> clustering index on attribute a for both R and S

>B(S) = 5.000 / 8 = 625
B(R) = 10.000 / 8 = 1250

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 60

Natural Join Example — II

v Example (cont.):
B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000

> What is the minimum memory requirement for R(x,a) X S(a,y)?

» One-Pass:
min(B(R), B(S)) < M -1 2> 1+ 625 =626
» Tuple-Based Nested-Loop:
2< M > 2
> Block-Based Nested-Loop:
2< M > 2
» Simple Two-Pass Sorting:
vmax(B(R), B(S)) < M > /1250 = 35.35 = 36
> Sort-Join:
VB(R) + B(S) £ M > V625 + 1250 = 43.30 = 44

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 61

Natural Join Example — III

v Example (cont.):
B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000

>

What is the minimum memory requirement for R(x,a) X S(a,y)?
Hash-Join:

vmin(B(R), B(S)) £ M > V625 = 25

Hybrid Hash-Join:

vmin(B(R), B(S)) £ M > V625 = 25

Index Join:

2 <M > 2

Zig-Zag Index Join:

B(T(R)/V(R,a))+B(T(S)/V(S,a) < M > 10.000/100/8 + 5.000/10/8 =
12,5+ 62,5 =~ 13 + 63 = 76

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 62

Natural Join Example — IV

v EXxample (cont.): R(x,a) X S(a,y)

>

assume now available memory M = 101 blocks
T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101
what is the cost in disk 1/0s for the different algorithms?

One-Pass:
B(R) + B(S) - 1250 + 625 = 1875
(but one-pass cannot be performed, because memory requirement is 626)

Tuple-Based Nested-Loop:
min(B(R), B(S)) + B(S)B(R) > 625 + 625 * 1250 = 781875

Block-Based Nested-Loop:
min(B(R), B(S)) + [(min(B(R), B(S)) / (M-1)) * max(B(R), B(S))]
- 625 + (625/(101-1) * 1250) = 9375

Simple Two-Pass Sorting:
5 B(R) + 5 B(S) - 1250 * 5 + 625 * 5 = 9375

Sort-Join:

3 B(R) + 3 B(S) > 1250 * 3 + 625 * 3 = 5625
*me«aas Page 63

Natural Join Example — II

v Example (cont.): R(x,a) X S(a,y)
T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101, V(R,a) = 100, V(S,a) = 10

» what is the cost in disk 1/0s for the different algorithms?

> Hash-Join:
3 B(R) + 3 B(S) - 1250 * 3 + 625 * 3 = 5625

> Hybrid Hash-Join:
(3-2M/min(B(R), B(S)))(B(R) + B(S)) - (3 - (2*101)/625) * (1250 + 625) = 5019

> Index Join:
= indexon S: B(R) + (T(R)B(S) / V(S,a)) » 1250 + (10.000 * 625/ 10) = 626250
« index on R: B(S) + (T(S)B(R) / V(R,a)) = 625 + (5.000 * 1250 / 100) = 63125

» Zig-Zag Index Join (index on both R and S):
B(R) + B(S) - 625 + 1250 = 1875

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 64

Natural Join Example — II

v Example summary:

T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101

Algorithm Minimum Memory Disk 1/0s
One-Pass 626 1875
Tuple-Based Nested-Loop 2 781875
Block-Based Nested-Loop 2 9375
Simple Two-Pass Sorting 36 9375
Sort-Join 44 5625
Hash-Join 25 5625
Hybrid Hash-Join 25 5019
: e
Zig-Zag Index Join 76 1875

‘ INF3100 — 28.3.2006 — Ellen Munthe-Kaas

Page 65

Which Algorithm Should I Choose?

v One-Pass algorithms are great if one of the arguments
(relations) fits in memory

v Two-Pass algorithms must be used if we have large relations

» Hash-based algorithms

= require less memory compared to sorting approaches —
only dependent of the smallest relation — often used

= assume approximately equal bucket size (good hash function) —
in real life there will be a small variation, must assume smaller bucket sizes

» Sort-based algorithms
= produce a sorted result, which can be used in successive operators again
using sort-based algorithms

» Index-based algorithms
= excellent for selections and for joins if both have clustered indexes

v They all benefit from optimized disk block layout reducing seeks
and rotational delays, more buffers,

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 66

Further Extensions and Other

!'_ Factors Influencing Cost

N—Pass Algorithms

v' Our algorithms so far make one or two passes over the entire
data set

v If a relation gets really big, this is not sufficient

v Example: B(R) = 1.000.000
> TPMMS require that B(R) < M2 > M > 1000
> if 1000 blocks not available, TPMMS does not work
= must add more passes over the data set

v' Sort-based algorithms:
> if R fits in memory, sort
> if not, partition R into M groups and recursively sort each R
> merge the sub-lists
> total cost: (24— 1)B(R), kis the number of passes needed
> we need VB(R) memory buffers, i.e., B(R) < M¥

v There exists a similar recursive approach using hashing

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 68

Buffer Management

v The buffer manager controls and manages available memory

~ if we get too few memory buffers for an algorithm to work properly, we
will pay a significant penalty due to “thrashing”

> when a new buffer is needed, the buffer manager replaces an old one
according to an appropriate replacement policy (often based on
reference locality in space and time)

> the query optimizer will select a set of physical operators that will be
used to execute the query
= the amount of available memory might vary from query to query
= Mmust make an algorithm selection each time

= 'wrong” selection may lead to “thrashing” or “degradation” (e.g., change
algorithm from one-pass to two-pass)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 69

i Parallel Algorithms

v Database operations can in general benefit from
parallel processing

v Tuple-at-a-time operations:
> if there are p processors, divide relation R into p equal
partitions and distribute

> each processor performs the operation on its own subset of
the tuples

» processing time: 1/p compared to a single-processor system
(but we must add time for shipping data to remote machines)

» same amount of disk I/Os in total
(but more fragmentation)

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 70

Parallel Algorithms

v Full relation operations (join):

> if there are p processors, partition relation R and S using the same hash
function on both R ans S’ join attributes, hash into p buckets, i.e., all join
tuples are sent to same bucket

> ship bucket R;and S; to processor /

> perform join on each processor on each pair of buckets using any of the
uniprocessor joins we have looked at
> total cost:

= perform hash-partitioning on main machine, but ship full bucket-blocks to
corresponding remote machine — B(S) + B(R)

= store bucket on disk on local or remote machine — B(S) + B(R)
= perform any two-pass join algorithm — 3B(R) + 3B(S)
= total number of disk I/Os: 5B(R) + 5B(S)

= However, only 1/p of all blocks is at each machine — p partitions are retrieved
in parallel > time: B(R) + B(S) + (4B(R) + 4 B(S))/p
= Additionally,

o each bucket may now be small enough to fit in memor
- does not need any of the remote site disk I/Os: B(R) + B(S)

o at least one of the buckets may fit in memory
- store and retrieve the larger bucket, say R: B(R) + B(S) + 2B(R)/p

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 71

Summary

v Model for computing costs
- counting number of disk I/O according to available memory

v" Cost of basic operations
> table scans
> sorting
> bucket-partitioning

v Implementation algorithms and their costs
> tuple-at-a-time, unary operations
> full-relation, unary operations
> full-relation, binary operations

| INF3100 — 28.3.2006 — Ellen Munthe-Kaas Page 72

