Query Execution

Contains slides by Hector Garcia-Molina

Short about query processors

Model for computing costs

✓ Cost of basic operations

Implementation algorithms and their costs

- tuple-at-a-time, unary operations
- Full-relation, unary operations
- Full-relation, binary operations

Query Processors – I

- ✓ So far, we have looked
 - hardware features such as disks and memory
 - data structures allowing fast lookup and efficient execution of basic operations
- ✓ SQL is a declarative language (specifies what to find, not how)
- A query processor must find a plan how to execute the query
 - query compilation
 - query execution
- There might be several ways to implement a query the query compiler should find an appropriate plan
 - parsing translating the query into a parsing tree
 - query rewrite the parse tree is transformed into an expression tree of relational algebra (logical query plan)
 - > physical plan generation translate the logical plan into a physical plan
 - select algorithms to implement each operator
 - choose order of operations

- Next week, we look at how to generate and select a query plan, but first we must know *how to estimate the cost of each operator* performing a specific task in the entire operation:
 - > which algorithm works best under the given circumstances?
 - how to pass data between operators?
 - > ...

Cost Computation Model

Plan Operators

✓ A query consist of several operations of relational algebra

- a physical query plan is implemented by a set of operators corresponding to the relational algebra operators
- additionally, we need basic operators automatically used by other operators like reading (scanning) a relation, sorting a relation, etc.
- To choose a good query plan, we must be able to estimate the cost of each operator:
- ⇒ we will use the number of disk I/O's and we assume (if not specified otherwise) that
 - > parameters to an operator must intially be retrieved from disk
 - output is consumed directly from memory (cost only dependent of output buffer size)
 - we can ignore other costs like CPU cycles, timing, ...

Cost Parameters

 Determining which mechanism to use, i.e., which has lowest costs, is dependent of several factors like

- > number of available memory blocks, M
- > existence of indexes (if so, what kind, size, overhead, ...)
- Jayout on disk and disk characteristics

٠..

- ✓ Additionally, for a relation R, we need
 - number of blocks to store all tuples, B(R)
 - number of tuples in R, T(R)
 - number of distinct values for an attribute a, V(R, a) (average of identical a-value tuples is then T(R)/V(R,a))

Factors Increasing Estimated Disk I/O Cost

- The actual disk I/O costs may be somewhat higher than our estimates:
 - if we use an index, the index itself may not be resident in memory: must retrieve index blocks
 - tuples where condition C holds, might fit on b blocks, but they might not start at the beginning of the first block – read b + 1 blocks
 - data on blocks might not be "compressed" we leave room for data evolution
 - data might be sorted and grouped, and each "collection" may be stored on their own blocks – fragmentation
 - relation R is stored together with other relations clustered file organization
- These factors can influence the costs of several algorithms later in the lecture, but we will *not* use them in our cost estimates

Factors Reducing Overall Time

 Extra buffers can speed up the overall processing time of an operation

- if data is stored consecutively on disk, we can then retrieve or write more blocks at the same time – reducing the number of seeks and rotational delays
- > double buffering saves time waiting for disk I/O
- parallel operations on multiple disks
- But, these mechanisms do not reduce the number of blocks that initially has to be moved between disk and memory – only average time per block

Cost of Basic Operators

Cost of Basic Operators – I

- \checkmark The cost of reading a disk block is 1 disk I/O
- ✓ The cost of writing a disk block is 1 disk I/O (we assume that verifying the write operation is free \rightarrow read I/O = write I/O)
- ⇒ updates cost 2 disk I/Os
- One of the fundamental operations is to read a relation R must read (scan) all blocks which contain records for R
 - \rightarrow cost dependent on storage
 - clustered relation, all records stored together B(R) disk I/Os
 - scattered relation, records on different blocks max T(R) disk I/Os (we must in a worst case scenario read T(R) blocks – all tuples on different blocks)
 - we will assume clustered relations if not specified otherwise (relations that is a result of other operators is almost always clustered)

Note:

- clustered *file organization* interleaves tuples of different relations
- clustered *relation* records of a relation is stored on as few blocks as possible
- clustering *index* index on attribute sorting a clustered relation on disk

Cost of Basic Operators – II

Sorting is another important operation –
 sort-scan reads a relation R and returns R in sorted order

- use an index having a list of sorted pointers, e.g., B-trees, sequential index files
 - cost is dependent of operation, storage, available memory, ...
- if relation fits in memory, use an efficient main-memory sorting algorithm – cost B(R) disk I/Os
- ▶ if relation is too large to fit in main memory, we must use a sorting algorithm making several passes over data
 → two-phase multiway merge sort (TPMMS) is often used

Cost of Basic Operators: TPMMS – I

Two-Phase, Multiway-Merge Sort (TPMMS)

- > phase 1: sort main-memory sized pieces of the relation
 - fill all available memory with blocks containing the relation
 - sort the records in memory
 - write the sorted list back to disk
 - repeat until all blocks are read and all records are sorted in sub-lists
 - ⇒ cost 2B(R), i.e., all blocks are both read and written
- > phase 2: merge all sorted sub-lists into one sorted list
 - read first block of all sub-lists into memory and compare first element in each block
 - place smallest element in new list
 - ⇒ cost B(R) (result is consumed directly from memory)

⇒total cost 3B(R)

Cost of Basic Operators: TPMMS – II

- Example:
 M=2, B(R)=4, T(R)=8
 - > fill memory
 - ➤ sort
 - write back sub-list
 - > repeat
 - read first block of all sub-lists
 - compare first unused element
 - output the smallest element, fetch new block if necessary
 - repeat two last steps

Note 1:

optionally (and usually), we may write the result back to disk, but we assume the result is given to another operator or returned as final result – cost 3B(R)

if R is not clustered, <u>cost</u> T(R)+2B(R)

Cost of Basic Operators: Hash Partitioning – I

- Splitting the relation in sub-groups using hashing is also used for several operators if the data set is too large to fit in memory
 - hash function mapping tuples that should be considered together into same bucket
 - if M available buffers: use M-1 buffers for buckets, 1 for reading disk blocks
 - > algorithm: FOR each block b in relation R { read b into buffer M FOR each tuple t in b { IF NOT room in bucket h(t) { copy bucket h(t) to disk initialize new block for bucket h(t) } FOR each non-empty bucket { write bucket to disk }
 - cost 2B(R) read all data and write it back partitioned (NB This cost includes writing to memory!)

Cost of Basic Operators: Hash Partitioning – II

Query Execution – I

- Having looked at some basic operators, we now begin studying algorithms for the different relational algebra operators
- Mainly, three classes of algorithms:
 - ▹ sorting-based
 - hash-based
 - index-based
- Additionally, the cost and complexity can be divided into different levels
 - one-pass algorithms data fits in memory, reading data only once from disk
 - two-pass algorithms data too large to fit in memory, read data, process, write back, read again
 - n-pass algorithms recursive generalizations of two-pass algorithms for methods needing several passes over the entire data set

Query Execution – II

 In addition to several classes and levels of algorithms, there are also different groups of operators:

- > tuple-at-a-time, unary operations:
 - selection (σ)
 - projection (π)
- Full-relation, unary operations:
 - grouping (γ)
 - duplicate-elimination (δ)
- > full-relation, binary operations:
 - set and bag union (\cup)
 - set and bag intersection (\cap)
 - set and bag difference (-)
 - ∎ joins (⋈)
 - products (×)

we will now look at several ways to implement these operators using different algorithms and number of passes

Unary, Tuple-at-a-Time Operations

Note that only summaries will be lectured from here on!

Tuple–at–a–Time Operators – I

✓ Both selection (σ) and projection (π) have obvious algorithms – regardless of whether the relation fits in memory or not:

read the blocks of relation R one at a time

- perform the operation on each tuple
- move the selected or projected tuples to the output buffer

Tuple–at–a–Time Operators – II

 ✓ Memory requirement is only M ≥ 1 for the input buffer – output buffer is assumed to be part of consuming operator (or application)

- The cost of performing a scan in number of disk I/Os is dependent on how relation R is provided
 - in memory 0
 - on disk, typically
 - B(R) disk I/Os if R is clustered
 - T(R) disk I/Os if R is not clustered (max)

Tuple–at–a–Time Operators – III

✓ Selection (σ) can greatly benefit from an index on R.a

- > single value queries, e.g., $\sigma_{a = v}(R)$
 - clustering index: cost #"a=v"-records/records_per_block disk I/Os , average B(R)/V(R,a) disk I/Os
 - index on non-clustered relation: cost #"a=v"-records disk I/Os , average T(R)/V(R,a) disk I/Os (can be less if several records is on same block)

index on key attribute: 1 disk I/Os (V(R,a) = T(R), B(R) > T(R))

- > range queries, e.g., $\sigma_{a < v}(R)$
 - *clustering* index: cost #"a<v"-records/records_per_block disk I/Os</p>
 - index on non-clustered relation: cost #"a<v"-records disk I/Os (can be less if several records is on same block)
 - index on key attribute:
 - o non-clustered relation: #"a<v"-records disk I/Os</p>
 - o clustered relation: #"a<v"-records/records_per_block disk I/Os</p>
- > complex queries, e.g., $\sigma_{a < v \text{ AND C}}(R)$
 - cost can further be reduced if we can compare pointers before retrieving blocks

Tuple–at–a–Time Operators – IV

- ✓ Worst-case example: T(R) = 20.000, B(R) = 1000, $\sigma_{a = v}(R)$
 - no index
 - R clustered retrieve all blocks \rightarrow 1000 disk I/Os
 - R not clustered each tuple on different blocks \rightarrow 20.000 disk I/Os
 - clustering index (R clustered) retrieve B(R) / V(R, a)
 - V(R, a) = 100 \rightarrow 1000 / 100 = 10 disk I/Os
 - V(R, a) = $10 \rightarrow 1000 / 10 = 100$ disk I/Os
 - index, R not clustered retrieve T(R) / V(R, a)
 - V(R, a) = $100 \rightarrow 20.000 / 100 = 200 \text{ disk I/Os}$
 - V(R, a) = 10 → 20.000 / 10 = 2000 disk I/Os (even more than retrieving the whole file if R is clustered)

> V(R, a) = 20.000, i.e., a is a key
$$\rightarrow$$
 1 disk I/O

Note:

we must add any disk I/Os for index blocks Unary, Full-Relation Operations Duplicate Elimination (δ): One-Pass – I

✓ Duplicate elimination (δ) can be performed by reading one block at a time, and for each tuple we

- copy it to the output buffer if first occurrence
- ignore it if we have seen a duplicate
- To be able to perform this operation, we must keep one copy of all tuples in memory for comparison

Duplicate Elimination (δ): One-Pass – II

- ✓ Memory requirement is $M = 1 + B(\delta(R))$
 - ➢ input buffer − 1
 - > buffers to hold all distinct tuples for comparison $B(\delta(R))$
- \checkmark If M is too low, we will pay significantly due to thrashing
- Another important aspect here choice of main-memory data structure holding comparison tuples
 - > searching sequentially $-O(n^2)$
 - hashing O(n)
- will need some more memory, but usually insignificant
- > binary tree $O(n \log n)$
- \checkmark Number of disk I/Os is B(R)

Duplicate Elimination (δ): Two-Pass Sorting

- To perform duplicate elimination in two passes, we use an algorithm similar to Two-Phase, Multiway-Merge Sort (TPMMS)
 - read M blocks into memory
 - sort these M blocks and write sub-list to disk
 - however, instead of sorting the sub-lists, copy first tuple, eliminate duplicates in front of sub-lists
- ✓ Total cost is 3B(R) disk I/Os
 - > 2 for first phase of TPMMS
 - > 1 for duplicate elimination of first tuples of the sub-lists
- Memory requirement
 - M buffers can make M block long sub-lists (except last which may be smaller)
 - > B(R) \leq M² $\rightarrow \sqrt{B(R)} \leq$ M
 - if B(R) > M² → more than M sub-lists, the algorithm will not work (cannot hold the first block of all sub-lists)

Duplicate Elimination (δ): Two-Pass Hashing

- Hash-based partitioning can be used for duplicate elimination in two passes
 - partition the relation as described before
 - duplicate tuples will hash to same bucket
 - read each bucket into memory and perform the one-pass algorithm removing duplicates
- ✓ Total cost is 3B(R) disk I/Os
 - > 2 for partitioning the relation into hash buckets
 - > 1 for duplicate elimination on each bucket
- Memory requirement:
 - M buffers to make M 1 partitions (buckets)
 - > B(R) ≤ M(M 1) ≈ B(R) ≤ M² → $\sqrt{B(R)}$ ≤ M
 - each partition can be at most M long algorithm will not work otherwise (must be able to read whole bucket into memory)

Duplicate Elimination (δ) : Cost and requirement summary for $\delta(R)$:

Algorithm	Memory Requirement	Disk I/Os
One-Pass	$M \geq 1 + B(\delta(R))$	B _R
Two-Pass Sorting	$M \ge \sqrt{B_R}$	3B _R
Two-Pass Hashing	$M \ge \sqrt{B_R}$	3B _R

Grouping (γ) : One-Pass

- Grouping (γ) gives us tuples consisting of *grouping attributes* and one or more *aggregated attributes*
- One-pass grouping:
 - one main-memory entry per group
 - scan tuples of R, reading one block at a time
 - modify aggregated values using the read value for each tuple belonging to group
 - MAX and MIN: compare stored aggregated value, change if necessary
 - COUNT: add one to the aggregated value for each tuple belonging to group
 - SUM: add value of tuple attribute to the aggregated value
 - AVG: store COUNT and SUM, calculate AVG = SUM/COUNT in the end
- \checkmark Requirements and costs are similar to duplicate elimination
 - B(R) disk I/Os
 - > $M = 1 + B(\gamma(R))$ memory buffers
 - input buffer 1
 - buffers to hold all grouping elements $B(\gamma(R))$
 - as with duplicate elimination one should use a fast main-memory data structure holding grouping elements (hashing, binary trees, ..)

Grouping (γ) : Two-Pass Sorting

- Two-pass grouping can be performed as duplicate elimination in two passes (based on TPMMS)
 - read M blocks into memory
 - sort these M blocks on grouping attribute(s) and write sub-list to disk
 - \succ read first block of all sub-lists, for each smallest, unused sort key ν
 - compute required aggregates for all ν tuples
 - if buffer becomes empty, fetch new block from corresponding sub-list
 - repeat until all ν tuples are used
 - output tuple with sort key ν and associated aggregate values
 - repeat until all sub-lists are empty
- ✓ Total cost is 3B(R) disk I/Os
- Memory requirement is
 - M buffers can make M block long sub-lists (except last which may be smaller)
 - > B(R) ≤ M² → $\sqrt{B(R)}$ ≤ M
 - if B(R) > M² → more than M sub-lists, the algorithm will not work (cannot hold the first block of all sub-lists)

Grouping (γ) : Two-Pass Hashing

✓ Hash-based partitioning can be used for grouping in two-passes

- partition the relation as described before, but use only grouping attributes as search key in hash function
- duplicate tuples will hash to same bucket
- read each bucket into memory and perform the one-pass algorithm removing duplicates
- ✓ Total cost is 3B(R) disk I/Os
- Memory requirement:
 - M buffers to make M 1 partitions (buckets)
 - > B(R) ≤ M(M 1) ≈ B(R) ≤ M² → $\sqrt{B(R)}$ ≤ M
 - each partition can be longer than M and still use one pass per bucket
 - need only 1 record per group in the bucket
 - the algorithm will still work if records for all the groups in the bucket
 - \Rightarrow B(R) might therefore be larger than M², but B(R) \leq M² is a good estimate

Grouping (γ) : Cost and requirement summary for γ(R):

Algorithm	Memory Requirement	Disk I/Os
One-Pass	$M \geq 1 + B(\gamma(R))$	B _R
Two-Pass Sorting	$M \ge \sqrt{B_R}$	3B _R
Two-Pass Hashing	$M \ge \sqrt{B_R}$	3B _R

Binary, Full-Relation Operations

Binary, Full–Relation Operations

A binary operation takes two relations as arguments:

- \succ union: $R \cup S$
- > intersection: $R \cap S$
- ➢ difference: R − S
- > joins R ⋈ S
- products: R × S

it is a difference between the set- and bag-versions > of these operators – we will look at both, but unless specified otherwise, we assume a *bag-version*

we will look at *natural join*, the other operators can be implemented similarly

 In the operations needing a comparison (search), we usually implement a *main-memory search structure*, like binary trees or hashing, which also need resources. However, we will not be counting these buffers in our requirement estimation

Union (\cup) : One-Pass

✓ **Bag union (** \cup **)** can be computed using a very simple one-pass algorithm - R \cup S:

- read and copy every tuple of relation R to the output buffer
- read and copy every tuple of relation S to the output buffer
- Total cost B(R) + B(S) disk I/Os
- Memory requirement 1 (read block directly to output buffer)

Set union must remove duplicates

- read smallest relation into M-1 buffers, say S, and copy every tuple to output
- read the blocks holding R one-by-one into one buffer, and for each tuple see if it exists in S → if not, copy to output

Memory requirement is now 1 + (M-1) = M, B(S) < M
Union (∪) : Two-Pass Sorting

- Bag union works perfectly using the simple one-pass algorithm regardless of size of relations (just output all R and S blocks)
- Set union must remove duplicates
 - > perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
 - use one buffer for each sub-list of R and S
 - repeatedly, find first remaining tuple of all sub-lists
 - output tuple
 - discard duplicates from the front of the list
- Total cost is 3B(R) + 3B(S) disk I/Os
- Memory requirement
 - > M buffers can make M block long sub-lists (in total)
 - > B(R) + B(S) ≤ M² → $\sqrt{(B(R)+B(S))}$ ≤ M
 - ▶ if $B(R) + B(S) > M^2 \rightarrow$ more than M sub-lists, the algorithm will not work

Union (∪) : Two-Pass Hashing

- Set union two-pass hashing algorithm
 - Partition both R and S into M-1 buckets using same hash function
 - for all buckets, perform union on buckets i separately R_i S_i using one-pass set union
 - read smallest relation into M-1 buffers, say S_i, and copy every tuple to output
 - read the blocks holding R_i one-by-one into one buffer, and for each tuple see if it exists in S_i → if not, copy to output
- Total cost: 3B(R) + 3B(S) disk I/Os
 - > 2 for partitioning the relations
 - I for performing union on different buckets
- Memory requirement: M buffers
 - > M buffers can make M-1 buckets for each relation
 - ▶ for each bucket pair, R_i and S_i , either $B(R_i) \le M-1$ or $B(S_i) \le M-1$
 - > approximately min(B(R), B(S)) ≤ M² → $\sqrt{min(B(R), B(S))}$ ≤ M
 - if the smaller bucket of R_i and S_i does not fit in M-1 buffers, the algorithm will not work

BAG-version :

Algorithm	Memory Requirement	Disk I/Os
One-Pass	$M \ge 1$	$B_{R} + B_{S}$

SET-version :

Algorithm	Memory Requirement	Disk I/Os
One-Pass	$B_{S} \leq M - 1$	$B_R + B_S$
Two-Pass Sorting	$M \ge \sqrt{B_R + B_S}$	$3B_R + 3B_S$
Two-Pass Hashing	$M \ge \sqrt{B_S}$	$3B_R + 3B_S$

Intersection (∩) : One-Pass

✓ **Bag intersection** (\cap) can be implemented using a tuple counter:

- read smallest relation, S, into M-1 buffers, but store only distinct tuples and the counter
- > read the blocks of R one-by-one and for each tuple see if it exists in S
 - if not, do nothing
 - otherwise and if counter > 0, copy to output and decrement counter
- Total cost B(R) + B(S) disk I/Os
- Memory requirement 1 + (M-1) = M, B(S) < M (additionally, we may need more memory to hold counters)

Set intersection

- read S into M-1 buffers and R block-by-block
- if tuple t from R exists in S, output
- Same costs and memory requirement as bag-version (except set-version does not need to hold counters)

Intersection (∩) : Two-Pass Sorting

- Two-pass sorting intersection use an algorithm similar to TPMMS:
 - > perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
 - **bag**-version:

output tuple t the minimum number of times it appears in R and in S

- set-version: output tuple t if it occurs in both R and S
- Total cost is 3B(R) + 3B(S) disk I/Os
- Memory requirement
 - > M buffers can make M block long sub-lists (totally)
 - > B(R) + B(S) ≤ M² → $\sqrt{B(R)}$ +B(S) ≤ M
 - bag-version also needs room for counters
 - ▶ if $B(R) + B(S) > M^2 \rightarrow$ more than M sub-lists, the algorithm will not work

Intersection (∩) : Two-Pass Hashing

- Two-pass hashing intersection algorithm
 - Partition both R and S into M-1 buckets using same hash function
 - For all buckets, perform intersection on buckets *i* separately − R_i ∩ S_i − using either bag- or set-version of one-pass intersect
- Total cost: 3B(R) + 3B(S) disk I/Os
 - > 2 for partitioning the relations
 - I for performing intersection on different buckets
- Memory requirement: M buffers
 - > M buffers can make M-1 buckets for each relation
 - ▶ for each bucket pair, R_i and S_i , either $B(R_i) \le M-1$ or $B(S_i) \le M-1$
 - > approximately min(B(R), B(S)) ≤ M² → $\sqrt{\min(B(R), B(S))}$ ≤ M
 - bag-version also needs room for counters
 - if the smaller bucket of R_i and S_i does not fit in M-1 buffers, the algorithm will not work

$\begin{array}{l} \text{Intersection }(\cap):\\ \text{Cost and requirement summary for } R \cap S:\\ \text{If } B_S \leq B_R: \end{array}$

Algorithm	Memory Requirement ¹	Disk I/Os
One-Pass	$B_{S} \leq M - 1$	$B_{R} + B_{S}$
Two-Pass Sorting	$M \ge \sqrt{B_R + B_S}$	$3B_R + 3B_S$
Two-Pass Hashing	$M \ge \sqrt{B_S}$	$3B_R + 3B_S$

¹**BAG**-version additionally needs memory buffers for tuple counters

Difference (–) : One-Pass – I

✓ Bag difference (−) can be implemented using a tuple counter:

- read smallest relation, S, into M-1 buffers, but store only distinct tuples and the counter
- > S R (tuples in S that do not exist in R):
 - read the blocks of R one-by-one and for each tuple existing in S, decrement associated counter
 - at the end, output tuples of which counter > 0 counter number of times
- > R S (tuples in R that do not exist in S):
 - read the blocks of R one-by-one and for each tuple, see if it exists in S
 - if no, copy the tuple to output
 - if yes, look at counter
 - counter > 0, decrement counter
 - counter = 0, output tuple
- Total cost B(R) + B(S) disk I/Os

 Memory requirement 1 + (M-1) = M, B(S) < M (additionally, we may need more memory to hold counters) Difference (–) : One-Pass – II

Set difference

- read smallest relation, S, into M-1 buffers and R block-byblock
- ≻ S R:
 - if tuple t from R exists in S, delete t from S in memory
 - otherwise, do nothing
 - at the end, output all remaining tuples of S
- ≻ R S:
 - if tuple t from R exists in S, do nothing
 - otherwise, output t

 Same costs and memory requirement as bag-version (except set-version does not need to hold counters) Difference (–) : Two-Pass Sorting

- Two-pass sorting difference uses an algorithm similar to TPMMS:
 - > perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
 - ≻ R S:
 - **bag**-version:

output tuple t the number of times it appears in R minus the number of times it appear in S

- set-version: output tuple t if it occurs in R but not in S
- S R similarly (blocks from all sub-lists are in memory)
- Total cost is 3B(R) + 3B(S) disk I/Os
- Memory requirement
 - M buffers can make M block long sub-lists (totally)
 - > B(R) + B(S) ≤ M² → $\sqrt{(B(R)+B(S))}$ ≤ M
 - ▶ if $B(R) + B(S) > M^2 \rightarrow$ more than M sub-lists, the algorithm will not work

Difference (–) : Two-Pass Hashing

- Two-pass hashing difference algorithm
 - > partition both R and S into M-1 buckets using same hash function
 - for all buckets, perform difference on buckets i separately R_i S_i using either bag- or set-version of one-pass difference
- Total cost: 3B(R) + 3B(S) disk I/Os
 - > 2 for partitioning the relations
 - I for performing difference on different buckets
- Memory requirement: M buffers
 - M buffers can make M-1 buckets for each relation
 - ▶ for each bucket pair, R_i and S_i , either $B(R_i) \le M-1$ or $B(S_i) \le M-1$
 - > approximately min(B(R), B(S)) ≤ M² → $\sqrt{\min(B(R), B(S))}$ ≤ M
 - bag-version also needs room for counters
 - if the smaller bucket of R_i and S_i does not fit in M-1 buffers, the algorithm will not work

Difference (–) : Cost and requirement summary for R - S: If $B_S \le B_R$:

Algorithm	Memory Requirement ¹	Disk I/Os
One-Pass	$B_{S} \leq M - 1$	$B_{R} + B_{S}$
Two-Pass Sorting	$M \ge \sqrt{B_R + B_S}$	$3B_R + 3B_S$
Two-Pass Hashing	$M \ge \sqrt{B_S}$	$3B_R + 3B_S$

¹**BAG**-version additionally needs memory buffers for tuple counters

Natural Joins (⋈) : One-Pass

- ✓ Natural join (\bowtie) concatenates tuples from relation R(X,Y) with those tuples in S(Y,Z) where R.Y = S.Y
- One-pass algorithm:
 - read smallest relation, S, into M-1 buffers
 - read relation R block-by-block, and for each tuple t, concatenate t with matching tuples in S
 - \rightarrow move resulting joined tuples to output
- Total cost B(R) + B(S) disk I/Os
- Memory requirement 1 + (M-1) = M, B(S) < M

Natural Joins (⋈) : Nested-Loop Joins – I

Nested-loop joins can be used for relations of any size
 Tuple-based algorithm:

FOR each tuple *s* in relation S FOR each tuple *r* in R IF *r* and *s* join, concatenate to output

Worst case of cost T(R)T(S) disk I/Os
 (can at least manage B(S) + B(S)B(R), more memory)

Memory requirement 2 (hold R block and S block)

Natural Joins (⋈) : Nested-Loop Joins – II

Block-based:

- > use all tuples in a block
- keep as much as possible of the smallest relation, S, in memory, i.e., M-1 blocks
- > algorithm:

```
FOR each M-1 sized partition p of relation S {
actually only
one pass
through the
tuples in R 
FOR each block b of R {
read b into memory
FOR each tuple t in b {
find tuples in p that join with t
join each of these with t to output }}
```

- Total cost B(S) + [B(S)/(M-1)*B(R)] disk I/Os (Read S once, read R once for each partition of S)
- Memory requirement 2 (hold R block and S block)

Natural Joins (⋈) : Two-Pass Sorting – I

- ✓ There are several ways sorting can be used in join
- ✓ *Simple algorithm*, $R \bowtie S$:
 - sort R and S separately using TPMMS on join attribute(s), and write back to disk
 - join (merge) the sorted R and S, by repeatedly
 - If R or S buffers empty, fetch block(s) from disk
 - find tuples which have least value v for joining attribute (also on following blocks)
 - if
 v-value tuples exist in both R and S, join R tuples with S tuples, write
 joined tuples to output
 - otherwise, discard all ν -value tuples
- Total cost: 5B(R) + 5B(S) disk I/Os
 - 4 for TPMMS
 - > 1 of merging the sorted R and S
- Memory requirement: M buffers
 - > must use TPMMS on both relations $B \le M^2$, i.e., $B(R) \le M^2$ AND $B(S) \le M^2$
 - if there exists a collection of v –value tuples that does not fit in M memory blocks, the algorithm does not work

Natural Joins (⋈) : Two-Pass Sorting – II

- ✓ *Sort-join algorithm*, R ⋈ S:
 - make M-sized, sorted sub-lists of R and S separately using first phase of TPMMS on join attribute
 - bring first block of each sub-list into memory
 - > join the sorted R and S, by repeatedly
 - find tuples which have least value v for joining attribute (also on following blocks)
 - if ν -value tuples exist in both R and S, join R tuples with S tuples, write joined tuples to output
 - otherwise, discard all ν -value tuples
 - if a buffer is empty, retrieve new block (if any) from disk
- ✓ Total cost: 3B(R) + 3B(S) disk I/Os
 - > 2 for first phase of TPMMS (making sub-lists)
 - I of merging the sorted R and S (join operation)
- Memory requirement: M buffers
 - ➤ must use first phase of TPMMS on both relations $B \le M^2$, i.e., $B(R) + B(S) \le M^2$ (cannot have more than M sub-lists)
 - the algorithm does not work if
 - there exists a collection of ν -value tuples that does not fit in M memory blocks
 - there are more than M sub-lists totally

Natural Joins (⋈) : Two-Pass Hashing

- Two-pass hashing natural join algorithm
 - partition both R and S into M-1 buckets using same hash function
 - ▶ for all buckets, perform natural join on buckets i separately R_i ⋈ S_i using one-pass join:
 - read smallest relation, S, into M-1 buffers
 - read relation R block-by-block, and for each tuple t, join t with matching tuples in S → move resulting tuples to output
- Total cost: 3B(R) + 3B(S) disk I/Os
 - > 2 for partitioning the relations
 - > 1 for performing join on different buckets
- Memory requirement: M buffers
 - > M buffers can make M-1 buckets for each relation
 - ▶ for each bucket pair, R_i and S_i , either $B(R_i) \le M-1$ or $B(S_i) \le M-1$
 - > approximately min(B(R), B(S)) ≤ M² → $\sqrt{\min(B(R), B(S))}$ ≤ M
 - if the smaller bucket of R_i and S_i does not fit in M-1 buffers, the algorithm will not work

Natural Joins (⋈) : Two-Pass Hybrid Hashing – I

- ✓ If we have more memory on the first pass partitioning the relations we can save some disk I/Os
- Two-pass *hybrid* hashing natural join algorithm
 - create k buckets, k << M</p>
 - partition the smaller relation, S, but
 - keep entire first bucket in memory
 - partition buckets 2 .. k as normally
 - put tuples in corresponding bucket
 - if block full, write to disk
 - at the end, write all non-empty buckets to disk
 - partition the larger relation, R, but
 - tuples going to bucket R₁ are joined with corresponding tuples of S₁ which is kept in memory
 - remaining tuples are partitioned normally using the disk to hold the buckets
 - ▶ make a second pass using the algorithm described previously on buckets *i* separately – $R_i \bowtie S_i$ – using one-pass join on buckets 2 ... *k*

Natural Joins (⋈) : Two-Pass Hybrid Hashing – II

 \checkmark Total cost: 3B(R) + 3B(S) - 2B(R₁) - 2B(S₁) disk I/Os

- two-pass hash joins take 3 disk I/Os per block
- > we save 2 disk I/Os for each block belonging to first bucket
- approximate cost:
 - assume we can make the size of a bucket M (available memory)
 - \rightarrow k = B(S)/M for both R₁ and S₁ (we save about 2k reads, subtract 2/k)

→ 3 (B(R)+B(S)) - (2/k)(B(R) + B(S)) = (3 - 2/k)(B(R)+B(S)) = (3 - (2M/B(S)) (B(R)+B(S)))

- Memory requirement: M buffers
 - > M buffers must hold entire S_1 and k buckets, $M > B(S_1) + (k-1)$
 - ▶ for each bucket pair, R_i and S_i , i > 1, either $B(R_i) \le M-1$ or $B(S_i) \le M-1$
 - > approximately min(B(R), B(S)) ≤ M² → $\sqrt{\min(B(R), B(S))}$ ≤ M
 - if the smaller bucket of R_i and S_i does not fit in M-1 buffers, the algorithm will not work

Natural Joins (⋈) : Index-Based

✓ Index natural join algorithm – $R(X,Y) \bowtie S(Y,Z)$:

- assume index on join attribute Y for relation S
- read each block of relation R, and for each tuple
 - find tuples in S with equal join attribute using the index on S
 - read corresponding blocks and output join of these tuples
- ✓ Total cost: ? disk I/Os
 - if R is clustered, we need B(R) disk I/Os, otherwise, up to T(R) to read all R-tuples
 - additionally, for each tuple in R we need to read corresponding Stuples:
 - if index is clustered and sorted on Y: B(S) / V(S,Y)
 - If S in not sorted on Y: T(S) / V(S,Y)
 - we will use an average T(S) / V(S,Y)

 \Rightarrow thus, reading tuples of S is the dominant cost: T(R)T(S) / V(S,Y)

Natural Joins (⋈) : Zig-Zag Index-Based

✓ Zig-zag index join algorithm – $R(X,Y) \bowtie S(Y,Z)$:

- > assume sorted index on join attribute Y for both relation R and S
- For each value of Y in index of R
 - find tuples in S with equal search key using index on S
 - if no equal tuples exist, just proceed
 - if we have a match on join attribute, retrieve corresponding disk blocks from both relations, and output join tuples

✓ Total cost: ? disk I/Os

- if both R and S are clustered and sorted on Y, we can be able to perform the join in B(R) + B(S) disk I/Os
- complicating factors adding I/Os
 - fractions of R and S with equal Y value do not fit in memory
 - blocks containing several different tuples must be read several times

Natural Joins (\bowtie) : Cost and requirement summary for $\mathbf{R} \bowtie \mathbf{S}$:

If $B_S \leq B_R$:

Algorithm	Memory Requirement	Disk I/Os
One-Pass	$B_{S} \leq M - 1$	$B_{R} + B_{S}$
Tuple-Based Nested-Loop	2 ≤ M	worst case $T_R T_S$, can do at $B_S + B_S B_R$
Block-Based Nested-Loop	2 ≤ M	$B_{S} + [(B_{S} / M-1) \times B_{R}]$
Simple Two-Pass Sorting	$\sqrt{B_R} \le M$	5 B _R + 5 B _S
Sort-Join	$\sqrt{B_R + B_S} \le M$	3 B _R + 3 B _S
Hash-Join	$\sqrt{B_S} \le M$	3 B _R + 3 B _S
Hybrid Hash-Join	$\sqrt{B_S} \le M$	$(3-2M/B_{S})(B_{R} + B_{S})$
Index Join	2 ≤ M	$B_R + (T_R B_S / V_{S,Y})$
Zig-Zag Index Join	$B(T_R/V_{R,a}) + B(T_S/V_{S,a}) \le M$	$B_R + B_S$

Natural Join Example – I

✓ Example:

- > T(R) = 10.000, T(S) = 5.000
- > V(R,a) = 100, V(S,a) = 10
- Both R and S are clustered
- > 4 KB blocks (no block header)
- both R and S records are 512 B (including header)
- clustering index on attribute a for both R and S

⇒ B(S) = 5.000 / 8 = 625 B(R) = 10.000 / 8 = 1250

Natural Join Example – II

- ✓ Example (cont.):
 B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000
 - What is the minimum memory requirement for R(x,a) × S(a,y)?
 - > One-Pass: $\min(B(R), B(S)) \le M - 1$ $\rightarrow 1 + 625 = 626$
 - ➤ Tuple-Based Nested-Loop: 2 ≤ M
 - Block-Based Nested-Loop:
 2 ≤ M
 - Simple Two-Pass Sorting: $\sqrt{\max(B(R), B(S))} \le M$
 - Sort-Join: $\sqrt{B(R)} + B(S) \le M$

$$\rightarrow$$
 2

 $\rightarrow \sqrt{1250} = 35.35 \approx 36$

Natural Join Example – III

- ✓ Example (cont.):
 B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000
 - > What is the minimum memory requirement for $R(x,a) \bowtie S(a,y)$?
 - > Hash-Join:
 √min(B(R), B(S)) ≤ M $\rightarrow \sqrt{625} = 25$
 - ≻ Hybrid Hash-Join: $\sqrt{\min(B(R), B(S))} \le M$ → $\sqrt{625} = 25$
 - ▶ Index Join:
 2 ≤ M

- **→ 2**
- ➤ Zig-Zag Index Join: $B(T(R)/V(R,a))+B(T(S)/V(S,a) \le M \rightarrow 10.000/100/8 + 5.000/10/8 = 12,5 + 62,5 \approx 13 + 63 = 76$

Natural Join Example – IV

✓ Example (cont.): R(x,a) ⋈ S(a,y)

assume now available memory M = 101 blocks

T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101

- what is the cost in disk I/Os for the different algorithms?
- > One-Pass: B(R) + B(S) $\rightarrow 1250 + 625 = 1875$ (but one-pass cannot be performed, because memory requi

(but one-pass cannot be performed, because memory requirement is 626)

- > Tuple-Based Nested-Loop: min(B(R), B(S)) + B(S)B(R) → 625 + 625 * 1250 = 781875
- ➢ Block-Based Nested-Loop: min(B(R), B(S)) + [(min(B(R), B(S)) / (M-1)) * max(B(R), B(S))] → 625 + (625/(101-1) * 1250) = 9375
- Simple Two-Pass Sorting: 5 B(R) + 5 B(S)

→ 1250 * 5 + 625 * 5 = <mark>9375</mark>

Sort-Join: 3 B(R) + 3 B(S)

→ 1250 * 3 + 625 * 3 = <mark>5625</mark>

Natural Join Example – II

✓ Example (cont.): R(x,a) ⋈ S(a,y)
T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101, V(R,a) = 100, V(S,a) = 10

- what is the cost in disk I/Os for the different algorithms?
- > Hash-Join:
 3 B(R) + 3 B(S)
 → 1250 * 3 + 625 * 3 = 5625
- > Hybrid Hash-Join: $(3-2M/min(B(R), B(S)))(B(R) + B(S)) \rightarrow (3 (2*101)/625) * (1250 + 625) = 5019$
- Index Join:
 - index on S: $B(R) + (T(R)B(S) / V(S,a)) \rightarrow 1250 + (10.000 * 625 / 10) = 626250$
 - index on R: $B(S) + (T(S)B(R) / V(R,a)) \rightarrow 625 + (5.000 * 1250 / 100) = 63125$
- > Zig-Zag Index Join (index on both R and S): $B(R) + B(S) \rightarrow 625 + 1250 = 1875$

Natural Join Example – II

Example summary:

T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101

Algorithm	Minimum Memory	Disk I/Os
One-Pass	626	1875
Tuple-Based Nested-Loop	2	781875
Block-Based Nested-Loop	2	9375
Simple Two-Pass Sorting	36	9375
Sort-Join	44	5625
Hash-Join	25	5625
Hybrid Hash-Join	25	5019
Index Join	2	626250 (S-index) 63125 (R-index)
Zig-Zag Index Join	76	1875

Which Algorithm Should I Choose?

- One-Pass algorithms are great if one of the arguments (relations) fits in memory
- Two-Pass algorithms must be used if we have large relations
 - Hash-based algorithms
 - require less memory compared to sorting approaches only dependent of the smallest relation – often used
 - assume approximately equal bucket size (good hash function) in real life there will be a small variation, must assume smaller bucket sizes
 - Sort-based algorithms
 - produce a sorted result, which can be used in successive operators again using sort-based algorithms
 - Index-based algorithms
 - excellent for selections and for joins if both have clustered indexes
- They all benefit from optimized disk block layout reducing seeks and rotational delays, more buffers,

Further Extensions and Other Factors Influencing Cost

N–Pass Algorithms

- Our algorithms so far make one or two passes over the entire data set
- ✓ If a relation gets really big, this is not sufficient
- ✓ Example: B(R) = 1.000.000
 - > TPMMS require that $B(R) < M^2 \rightarrow M > 1000$
 - if 1000 blocks not available, TPMMS does not work
 - ⇒ must add more passes over the data set
- Sort-based algorithms:
 - ▹ if R fits in memory, sort
 - if not, partition R into M groups and recursively sort each R_i
 - merge the sub-lists
 - > total cost: (2k 1)B(R), k is the number of passes needed
 - ▶ we need $\sqrt[k]{B(R)}$ memory buffers, i.e., $B(R) \leq M^k$
- There exists a similar recursive approach using hashing

Buffer Management

✓ The *buffer manager* controls and manages available memory

- if we get too few memory buffers for an algorithm to work properly, we will pay a significant penalty due to "thrashing"
- when a new buffer is needed, the buffer manager replaces an old one according to an appropriate *replacement policy* (often based on reference locality in space and time)
- the query optimizer will select a set of physical operators that will be used to execute the query
 - the amount of available memory might vary from query to query
 - must make an algorithm selection each time
 - "wrong" selection may lead to "thrashing" or "degradation" (e.g., change algorithm from one-pass to two-pass)

Parallel Algorithms

 Database operations can in general benefit from parallel processing

- ✓ Tuple-at-a-time operations:
 - if there are p processors, divide relation R into p equal partitions and distribute
 - each processor performs the operation on its own subset of the tuples
 - processing time: 1/p compared to a single-processor system (but we must add time for shipping data to remote machines)
 - same amount of disk I/Os in total (but more fragmentation)

Parallel Algorithms

- \checkmark Full relation operations (join):
 - > if there are p processors, partition relation R and S using the same hash function on both R ans S' join attributes, hash into p buckets, i.e., all join tuples are sent to same bucket
 - > ship bucket R_i and S_i to processor *i*
 - > perform join on each processor on each pair of buckets using any of the uniprocessor joins we have looked at
 - > total cost:
 - perform hash-partitioning on main machine, but ship full bucket-blocks to corresponding remote machine -B(S) + B(R)
 - store bucket on disk on local or remote machine -B(S) + B(R)
 - perform any two-pass join algorithm 3B(R) + 3B(S)
 - ⇒ total number of disk I/Os: 5B(R) + 5B(S)
 - However, only 1/p of all blocks is at each machine p partitions are retrieved in parallel \rightarrow time: B(R) + B(S) + (4B(R) + 4 B(S))/p
 - Additionally,
 - each bucket may now be small enough to fit in memory
 - \rightarrow does not need any of the remote site disk I/Os: B(R) + B(S)

 - at least one of the buckets may fit in memory \rightarrow store and retrieve the larger bucket, say R: B(R) + B(S) + 2B(R)/p

Summary

Model for computing costs

- \rightarrow counting number of disk I/O according to available memory
- Cost of basic operations
 - table scans
 - sorting
 - bucket-partitioning
- Implementation algorithms and their costs
 - tuple-at-a-time, unary operations
 - Full-relation, unary operations
 - Full-relation, binary operations