
Query Execution

Contains slides by
Hector Garcia-Molina

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 2

Overview

Short about query processors

Model for computing costs

Cost of basic operations

Implementation algorithms and their costs
tuple-at-a-time, unary operations
full-relation, unary operations
full-relation, binary operations

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 3

Query Processors – I

So far, we have looked
hardware features such as disks and memory
data structures allowing fast lookup and efficient execution of basic
operations

SQL is a declarative language (specifies what to find, not how)
A query processor must find a plan how to execute the query

query compilation
query execution

There might be several ways to implement a query -
the query compiler should find an appropriate plan

parsing – translating the query into a parsing tree
query rewrite – the parse tree is transformed into an expression tree of
relational algebra (logical query plan)
physical plan generation – translate the logical plan into a physical plan

select algorithms to implement each operator
choose order of operations

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 4

Making logical and physical query plans are often called
query optimizing

Next week, we look at how to generate and select a query plan,
but first we must know how to estimate the cost of each
operator performing a specific task in the entire operation:

which algorithm works best under the given circumstances?
how to pass data between operators?
...

Query Processors – II

query

generate plans

pruning

estimate cost

select best ? ? ? ?

Cost Computation Model

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 6

Plan Operators

A query consist of several operations of relational algebra
a physical query plan is implemented by a set of operators
corresponding to the relational algebra operators
additionally, we need basic operators automatically used by other
operators like reading (scanning) a relation, sorting a relation, etc.

To choose a good query plan, we must be able to estimate the
cost of each operator:
we will use the number of disk I/O’s
and we assume (if not specified otherwise) that

parameters to an operator must intially be retrieved from disk
output is consumed directly from memory (cost only dependent of
output buffer size)
we can ignore other costs like CPU cycles, timing, ...

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 7

Cost Parameters

Determining which mechanism to use, i.e., which has
lowest costs, is dependent of several factors like

number of available memory blocks, M
existence of indexes (if so, what kind, size, overhead, ...)
layout on disk and disk characteristics
...

Additionally, for a relation R, we need
number of blocks to store all tuples, B(R)
number of tuples in R, T(R)
number of distinct values for an attribute a, V(R, a)
(average of identical a-value tuples is then T(R)/V(R,a))

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 8

Factors Increasing Estimated Disk I/O Cost

The actual disk I/O costs may be somewhat higher than our
estimates:

if we use an index, the index itself may not be resident in memory:
must retrieve index blocks
tuples where condition C holds, might fit on b blocks, but they might not
start at the beginning of the first block – read b + 1 blocks
data on blocks might not be “compressed” – we leave room for data
evolution
data might be sorted and grouped, and each “collection” may be stored
on their own blocks – fragmentation
relation R is stored together with other relations – clustered file
organization

These factors can influence the costs of several algorithms later
in the lecture, but we will not use them in our cost estimates

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 9

Factors Reducing Overall Time

Extra buffers can speed up the overall processing time
of an operation

if data is stored consecutively on disk, we can then retrieve
or write more blocks at the same time – reducing the
number of seeks and rotational delays
double buffering saves time waiting for disk I/O
parallel operations on multiple disks

But, these mechanisms do not reduce the number of
blocks that initially has to be moved between disk and
memory – only average time per block

Cost of Basic Operators

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 11

Cost of Basic Operators – I
The cost of reading a disk block is 1 disk I/O
The cost of writing a disk block is 1 disk I/O
(we assume that verifying the write operation is free read I/O = write I/O)
updates cost 2 disk I/Os

One of the fundamental operations is to read a relation R - must read (scan)
all blocks which contain records for R

cost dependent on storage
clustered relation, all records stored together – B(R) disk I/Os
scattered relation, records on different blocks – max T(R) disk I/Os
(we must in a worst case scenario read T(R) blocks – all tuples on different
blocks)

we will assume clustered relations if not specified otherwise
(relations that is a result of other operators is almost always clustered)

Note:
• clustered file organization – interleaves tuples of different relations
• clustered relation – records of a relation is stored on as few blocks as possible
• clustering index – index on attribute sorting a clustered relation on disk

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 12

Cost of Basic Operators – II

Sorting is another important operation –
sort-scan reads a relation R and returns R in sorted order

use an index having a list of sorted pointers,
e.g., B-trees, sequential index files
– cost is dependent of operation, storage, available memory, ...

if relation fits in memory, use an efficient main-memory sorting
algorithm – cost B(R) disk I/Os

if relation is too large to fit in main memory, we must use a
sorting algorithm making several passes over data

two-phase multiway merge sort (TPMMS) is often used

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 13

Cost of Basic Operators: TPMMS – I

Two-Phase, Multiway-Merge Sort (TPMMS)
phase 1: sort main-memory sized pieces of the relation

fill all available memory with blocks containing the relation
sort the records in memory
write the sorted list back to disk
repeat until all blocks are read and all records are sorted in sub-lists
cost 2B(R), i.e., all blocks are both read and written

phase 2: merge all sorted sub-lists into one sorted list
read first block of all sub-lists into memory and compare first element
in each block
place smallest element in new list
cost B(R) (result is consumed directly from memory)

total cost 3B(R)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 14

Cost of Basic Operators: TPMMS – II
Example:
M=2, B(R)=4, T(R)=8

fill memory
sort
write back sub-list
repeat

read first block
of all sub-lists
compare first
unused element
output the smallest
element, fetch new block
if necessary
repeat two last steps

6 7

5 8

1 67 3

5 24 8

1 3

2 4

3 17 63 61 78 54 24 52 8

sub-list 1

M buffers

7 85 63 41 2R

sub-list 2

3 21 4

reuse the
M buffers

first unused
pointers

1 2 3

7 26 4

4

7 56 8

5 6 7 8

Note 1:
optionally (and usually), we may write
the result back to disk, but we assume
the result is given to another operator
or returned as final result – cost 3B(R)

?

Note 2:
if R is not
clustered,
cost
T(R)+2B(R)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 15

Cost of Basic Operators: Hash Partitioning – I

Splitting the relation in sub-groups using hashing is also used
for several operators if the data set is too large to fit in memory

hash function mapping tuples that should be considered together into
same bucket

if M available buffers:
use M-1 buffers for buckets, 1 for reading disk blocks

algorithm:
FOR each block b in relation R {

read b into buffer M
FOR each tuple t in b {

IF NOT room in bucket h(t) {
copy bucket h(t) to disk
initialize new block for bucket h(t) }

copy t into bucket h(t) }}
FOR each non-empty bucket { write bucket to disk }

cost 2B(R) – read all data and write it back partitioned (NB This cost
includes writing to memory!)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 16

Cost of Basic Operators: Hash Partitioning – II

Example
M=4, B(R)=4, T(R)=8

initialize buffers
read block b
for each tuple t in b

calculate h(t)
if not room in bucket h(t),
write bucket to disk,
initialize new
put t in bucket h(t)

read next block and repeat
write all non-empty buckets
to disk

cost 2B(R) disk I/Os
(actually 4+5, not 4+4)

bucket

bucket

relation R

bucket

dis
k

blo
ck

 b
uf

fe
r

RE
D

bu
ck

et
BL

UE
bu

ck
et

GR
EE

N
bu

ck
et

h(x)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 17

Query Execution – I

Having looked at some basic operators, we now begin studying
algorithms for the different relational algebra operators
Mainly, three classes of algorithms:

sorting-based
hash-based
index-based

Additionally, the cost and complexity can be divided into
different levels

one-pass algorithms – data fits in memory,
reading data only once from disk
two-pass algorithms – data too large to fit in memory,
read data, process, write back, read again
n-pass algorithms – recursive generalizations of two-pass algorithms for
methods needing several passes over the entire data set

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 18

Query Execution – II

In addition to several classes and levels of algorithms,
there are also different groups of operators:

tuple-at-a-time, unary operations:
selection (σ)
projection (π)

full-relation, unary operations:
grouping (γ)
duplicate-elimination (δ)

full-relation, binary operations:
set and bag union (∪)
set and bag intersection (∩)
set and bag difference (–)
joins (⋈)
products (×)

we will now look at several ways
to implement these operators
using different algorithms and
number of passes

Unary, Tuple-at-a-Time
Operations

Note that only summaries will be lectured
from here on!

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 20

Tuple–at–a–Time Operators – I

Both selection (σ) and projection (π) have obvious algorithms –
regardless of whether the relation fits in memory or not:

read the blocks of relation R one at a time

perform the operation on each tuple

move the selected or projected tuples to the output buffer

read R
?

perform unary
operation

output result

input buffer output buffer

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 21

Tuple–at–a–Time Operators – II

Memory requirement is only M ≥ 1 for the input buffer
– output buffer is assumed to be part of consuming
operator (or application)

The cost of performing a scan in number of disk I/Os
is dependent on how relation R is provided

in memory – 0
on disk, typically

B(R) disk I/Os if R is clustered
T(R) disk I/Os if R is not clustered (max)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 22

Tuple–at–a–Time Operators – III
Selection (σ) can greatly benefit from an index on R.a

single value queries, e.g., σa = v(R)
clustering index: cost #”a=v”-records/records_per_block disk I/Os , average
B(R)/V(R,a) disk I/Os
index on non-clustered relation:
cost #”a=v”-records disk I/Os , average T(R)/V(R,a) disk I/Os
(can be less if several records is on same block)
index on key attribute: 1 disk I/Os (V(R,a) = T(R), B(R) > T(R))

range queries, e.g., σa < v(R)
clustering index: cost #”a<v”-records/records_per_block disk I/Os
index on non-clustered relation: cost #”a<v”-records disk I/Os
(can be less if several records is on same block)
index on key attribute:

o non-clustered relation: #”a<v”-records disk I/Os
o clustered relation: #”a<v”-records/records_per_block disk I/Os

complex queries, e.g., σa < v AND C (R)
cost can further be reduced if we can compare pointers before retrieving
blocks

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 23

Tuple–at–a–Time Operators – IV

Worst-case example: T(R) = 20.000, B(R) = 1000, σa = v(R)
no index

R clustered – retrieve all blocks 1000 disk I/Os
R not clustered – each tuple on different blocks 20.000 disk I/Os

clustering index (R clustered) – retrieve B(R) / V(R, a)
V(R, a) = 100 1000 / 100 = 10 disk I/Os
V(R, a) = 10 1000 / 10 = 100 disk I/Os

index, R not clustered – retrieve T(R) / V(R, a)
V(R, a) = 100 20.000 / 100 = 200 disk I/Os
V(R, a) = 10 20.000 / 10 = 2000 disk I/Os
(even more than retrieving the whole file if R is clustered)

V(R, a) = 20.000, i.e., a is a key 1 disk I/O Note:
we must add any disk
I/Os for index blocks

Unary, Full-Relation
Operations

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 25

Duplicate elimination (δ) can be performed by reading
one block at a time, and for each tuple we

copy it to the output buffer if first occurrence
ignore it if we have seen a duplicate

To be able to perform this operation, we must keep
one copy of all tuples in memory for comparison

read R
?

seen before? output result

input buffer output buffer

tuples written to output

NO, copy to output and comparison buffer
YES, do nothing

repeat for all blocks holding R

Duplicate Elimination (δ):
One-Pass – I

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 26

Duplicate Elimination (δ):
One-Pass – II

Memory requirement is M = 1 + B(δ(R))
input buffer – 1
buffers to hold all distinct tuples for comparison – B(δ(R))

If M is too low, we will pay significantly due to thrashing

Another important aspect here choice of main-memory data
structure holding comparison tuples

searching sequentially – O(n2)
hashing – O(n)
binary tree – O(n logn)

Number of disk I/Os is B(R)

will need some more memory,
but usually insignificant

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 27

To perform duplicate elimination in two passes, we use an
algorithm similar to Two-Phase, Multiway-Merge Sort (TPMMS)

read M blocks into memory
sort these M blocks and write sub-list to disk
however, instead of sorting the sub-lists, copy first tuple, eliminate
duplicates in front of sub-lists

Total cost is 3B(R) disk I/Os
2 for first phase of TPMMS
1 for duplicate elimination of first tuples of the sub-lists

Memory requirement
M buffers can make M block long sub-lists
(except last which may be smaller)
B(R) ≤ M2 √B(R) ≤ M
if B(R) > M2 more than M sub-lists, the algorithm will not work
(cannot hold the first block of all sub-lists)

Duplicate Elimination (δ):
Two-Pass Sorting

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 28

Hash-based partitioning can be used for duplicate elimination in
two passes

partition the relation as described before
duplicate tuples will hash to same bucket
read each bucket into memory and perform the one-pass algorithm
removing duplicates

Total cost is 3B(R) disk I/Os
2 for partitioning the relation into hash buckets
1 for duplicate elimination on each bucket

Memory requirement:
M buffers to make M - 1 partitions (buckets)
B(R) ≤ M(M - 1) ≈ B(R) ≤ M2 √B(R) ≤ M
each partition can be at most M long – algorithm will not work otherwise
(must be able to read whole bucket into memory)

Duplicate Elimination (δ):
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 29

Duplicate Elimination (δ) :
Cost and requirement summary for δ(R):

3BRM ≥ √BRTwo-Pass Hashing

3BRM ≥ √BRTwo-Pass Sorting

BRM ≥ 1 + B(δ(R))One-Pass

Disk I/OsMemory
RequirementAlgorithm

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 30

Grouping (γ) gives us tuples consisting of grouping attributes
and one or more aggregated attributes
One-pass grouping:

one main-memory entry per group
scan tuples of R, reading one block at a time
modify aggregated values using the read value for each tuple belonging
to group

MAX and MIN: compare stored aggregated value, change if necessary
COUNT: add one to the aggregated value for each tuple belonging to group
SUM: add value of tuple attribute to the aggregated value
AVG: store COUNT and SUM, calculate AVG = SUM/COUNT in the end

Requirements and costs are similar to duplicate elimination
B(R) disk I/Os
M = 1 + B(γ(R)) memory buffers

input buffer – 1
buffers to hold all grouping elements – B(γ(R))

as with duplicate elimination one should use a fast main-memory data
structure holding grouping elements (hashing, binary trees, ..)

Grouping (γ) :
One-Pass

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 31

Two-pass grouping can be performed as duplicate
elimination in two passes (based on TPMMS)

read M blocks into memory
sort these M blocks on grouping attribute(s) and write sub-list to disk
read first block of all sub-lists, for each smallest, unused sort key v

compute required aggregates for all v tuples
if buffer becomes empty, fetch new block from corresponding sub-list
repeat until all v tuples are used
output tuple with sort key v and associated aggregate values

repeat until all sub-lists are empty

Total cost is 3B(R) disk I/Os
Memory requirement is

M buffers can make M block long sub-lists
(except last which may be smaller)
B(R) ≤ M2 √B(R) ≤ M
if B(R) > M2 more than M sub-lists, the algorithm will not work
(cannot hold the first block of all sub-lists)

Grouping (γ) :
Two-Pass Sorting

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 32

Hash-based partitioning can be used for grouping in two-passes
partition the relation as described before, but use only grouping
attributes as search key in hash function
duplicate tuples will hash to same bucket
read each bucket into memory and perform the one-pass algorithm
removing duplicates

Total cost is 3B(R) disk I/Os

Memory requirement:
M buffers to make M - 1 partitions (buckets)
B(R) ≤ M(M - 1) ≈ B(R) ≤ M2 √B(R) ≤ M
each partition can be longer than M and still use one pass per bucket

need only 1 record per group in the bucket
the algorithm will still work if records for all the groups in the bucket
B(R) might therefore be larger than M2, but B(R) ≤ M2 is a good estimate

Grouping (γ) :
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 33

Grouping (γ) :
Cost and requirement summary for γ(R):

3BRM ≥ √BRTwo-Pass Hashing

3BRM ≥ √BRTwo-Pass Sorting

BRM ≥ 1 + B(γ(R))One-Pass

Disk I/OsMemory
RequirementAlgorithm

Binary, Full-Relation
Operations

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 35

Binary, Full–Relation Operations

A binary operation takes two relations as arguments:
union: R ∪ S
intersection: R ∩ S
difference: R – S
joins R ⋈ S
products: R × S

In the operations needing a comparison (search), we
usually implement a main-memory search structure,
like binary trees or hashing, which also need
resources. However, we will not be counting these
buffers in our requirement estimation

we will look at natural join, the other
operators can be implemented similarly

it is a difference between the set- and bag-versions
of these operators – we will look at both, but unless
specified otherwise, we assume a bag-version

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 36

Bag union (∪) can be computed using a very simple one-pass
algorithm - R ∪ S:

read and copy every tuple of relation R to the output buffer
read and copy every tuple of relation S to the output buffer

Total cost B(R) + B(S) disk I/Os
Memory requirement 1 (read block directly to output buffer)

Set union must remove duplicates
read smallest relation into M-1 buffers, say S, and copy every tuple to
output
read the blocks holding R one-by-one into one buffer, and for each tuple
see if it exists in S if not, copy to output

Memory requirement is now 1 + (M-1) = M, B(S) < M

Union (∪) :
One-Pass

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 37

Bag union works perfectly using the simple one-pass algorithm
regardless of size of relations (just output all R and S blocks)
Set union must remove duplicates

perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
use one buffer for each sub-list of R and S
repeatedly, find first remaining tuple of all sub-lists

output tuple
discard duplicates from the front of the list

Total cost is 3B(R) + 3B(S) disk I/Os
Memory requirement

M buffers can make M block long sub-lists (in total)
B(R) + B(S) ≤ M2 √(B(R)+B(S)) ≤ M
if B(R) + B(S) > M2 more than M sub-lists, the algorithm will not work

Union (∪) :
Two-Pass Sorting

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 38

Set union two-pass hashing algorithm
Partition both R and S into M-1 buckets using same hash function
for all buckets, perform union on buckets i separately – Ri ∪ Si – using
one-pass set union

read smallest relation into M-1 buffers, say Si, and copy every tuple to output
read the blocks holding Ri one-by-one into one buffer, and for each tuple see
if it exists in Si if not, copy to output

Total cost: 3B(R) + 3B(S) disk I/Os
2 for partitioning the relations
1 for performing union on different buckets

Memory requirement: M buffers
M buffers can make M-1 buckets for each relation
for each bucket pair, Ri and Si, either B(Ri) ≤ M-1 or B(Si) ≤ M-1
approximately min(B(R), B(S)) ≤ M2 √min(B(R), B(S)) ≤ M
if the smaller bucket of Ri and Si does not fit in M-1 buffers,
the algorithm will not work

Union (∪) :
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 39

Union (∪) :
Cost and requirement summary for R ∪ S:

BR + BSM ≥ 1 One-Pass

Disk I/OsMemory
RequirementAlgorithm

If BS ≤ BR :

3BR + 3BSM ≥ √BSTwo-Pass Hashing

3BR + 3BSM ≥ √BR + BSTwo-Pass Sorting

BR + BSBS ≤ M – 1One-Pass

Disk I/OsMemory
RequirementAlgorithm

BAG-version :

SET-version :

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 40

Bag intersection (∩) can be implemented using a tuple counter:
read smallest relation, S, into M-1 buffers, but store only distinct tuples
and the counter
read the blocks of R one-by-one and for each tuple see if it exists in S

if not, do nothing
otherwise and if counter > 0, copy to output and decrement counter

Total cost B(R) + B(S) disk I/Os
Memory requirement 1 + (M-1) = M, B(S) < M
(additionally, we may need more memory to hold counters)

Set intersection
read S into M-1 buffers and R block-by-block
if tuple t from R exists in S, output

Same costs and memory requirement as bag-version
(except set-version does not need to hold counters)

Intersection (∩) :
One-Pass

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 41

Two-pass sorting intersection use an algorithm similar to
TPMMS:

perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
bag-version:
output tuple t the minimum number of times it appears in R and in S
set-version:
output tuple t if it occurs in both R and S

Total cost is 3B(R) + 3B(S) disk I/Os
Memory requirement

M buffers can make M block long sub-lists (totally)
B(R) + B(S) ≤ M2 √B(R)+B(S) ≤ M
bag-version also needs room for counters
if B(R) + B(S) > M2 more than M sub-lists, the algorithm will not work

Intersection (∩) :
Two-Pass Sorting

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 42

Two-pass hashing intersection algorithm
Partition both R and S into M-1 buckets using same hash function
for all buckets, perform intersection on buckets i separately – Ri ∩ Si –
using either bag- or set-version of one-pass intersect

Total cost: 3B(R) + 3B(S) disk I/Os
2 for partitioning the relations
1 for performing intersection on different buckets

Memory requirement: M buffers
M buffers can make M-1 buckets for each relation
for each bucket pair, Ri and Si, either B(Ri) ≤ M-1 or B(Si) ≤ M-1
approximately min(B(R), B(S)) ≤ M2 √min(B(R), B(S)) ≤ M
bag-version also needs room for counters
if the smaller bucket of Ri and Si does not fit in M-1 buffers,
the algorithm will not work

Intersection (∩) :
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 43

Intersection (∩) :
Cost and requirement summary for R ∩ S:
If BS ≤ BR :

3BR + 3BSM ≥ √BSTwo-Pass Hashing

3BR + 3BSM ≥ √BR + BSTwo-Pass Sorting

BR + BSBS ≤ M – 1One-Pass

Disk I/OsMemory
Requirement1Algorithm

1BAG-version additionally needs memory buffers for tuple counters

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 44

Bag difference (–) can be implemented using a tuple counter:
read smallest relation, S, into M-1 buffers, but store only distinct tuples
and the counter
S – R (tuples in S that do not exist in R):

read the blocks of R one-by-one and for each tuple existing in S, decrement
associated counter
at the end, output tuples of which counter > 0 – counter number of times

R – S (tuples in R that do not exist in S):
read the blocks of R one-by-one and for each tuple, see if it exists in S
if no, copy the tuple to output
if yes, look at counter

o counter > 0, decrement counter
o counter = 0, output tuple

Total cost B(R) + B(S) disk I/Os
Memory requirement 1 + (M-1) = M, B(S) < M
(additionally, we may need more memory to hold counters)

Difference (–) :
One-Pass – I

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 45

Set difference
read smallest relation, S, into M-1 buffers and R block-by-
block
S – R:

if tuple t from R exists in S, delete t from S in memory
otherwise, do nothing
at the end, output all remaining tuples of S

R – S:
if tuple t from R exists in S, do nothing
otherwise, output t

Same costs and memory requirement as bag-version
(except set-version does not need to hold counters)

Difference (–) :
One-Pass – II

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 46

Two-pass sorting difference uses an algorithm similar to
TPMMS:

perform phase 1 of TPMMS on both R and S (make sorted sub-lists)
R – S:

bag-version:
output tuple t the number of times it appears in R minus the number of times
it appear in S
set-version:
output tuple t if it occurs in R but not in S

S – R similarly (blocks from all sub-lists are in memory)

Total cost is 3B(R) + 3B(S) disk I/Os
Memory requirement

M buffers can make M block long sub-lists (totally)
B(R) + B(S) ≤ M2 √(B(R)+B(S)) ≤ M
if B(R) + B(S) > M2 more than M sub-lists, the algorithm will not work

Difference (–) :
Two-Pass Sorting

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 47

Two-pass hashing difference algorithm
partition both R and S into M-1 buckets using same hash function
for all buckets, perform difference on buckets i separately – Ri - Si –
using either bag- or set-version of one-pass difference

Total cost: 3B(R) + 3B(S) disk I/Os
2 for partitioning the relations
1 for performing difference on different buckets

Memory requirement: M buffers
M buffers can make M-1 buckets for each relation
for each bucket pair, Ri and Si, either B(Ri) ≤ M-1 or B(Si) ≤ M-1
approximately min(B(R), B(S)) ≤ M2 √min(B(R), B(S)) ≤ M
bag-version also needs room for counters
if the smaller bucket of Ri and Si does not fit in M-1 buffers,
the algorithm will not work

Difference (–) :
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 48

Difference (–) :
Cost and requirement summary for R – S:
If BS ≤ BR :

3BR + 3BSM ≥ √BSTwo-Pass Hashing

3BR + 3BSM ≥ √BR + BSTwo-Pass Sorting

BR + BSBS ≤ M – 1One-Pass

Disk I/OsMemory
Requirement1Algorithm

1BAG-version additionally needs memory buffers for tuple counters

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 49

Natural join (⋈) concatenates tuples from relation
R(X,Y) with those tuples in S(Y,Z) where R.Y = S.Y
One-pass algorithm:

read smallest relation, S, into M-1 buffers
read relation R block-by-block, and for each tuple t,
concatenate t with matching tuples in S

move resulting joined tuples to output

Total cost B(R) + B(S) disk I/Os
Memory requirement 1 + (M-1) = M, B(S) < M

Natural Joins (⋈) :
One-Pass

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 50

Nested-loop joins can be used for relations of any size
Tuple-based algorithm:

FOR each tuple s in relation S
FOR each tuple r in R

IF r and s join, concatenate to output

Worst case of cost T(R)T(S) disk I/Os
(can at least manage B(S) + B(S)B(R), more memory)

Memory requirement 2 (hold R block and S block)

Natural Joins (⋈) :
Nested-Loop Joins – I

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 51

Block-based:
use all tuples in a block
keep as much as possible of the smallest relation, S, in memory, i.e., M-1
blocks
algorithm:

FOR each M-1 sized partition p of relation S {
read p into memory
FOR each block b of R {

read b into memory
FOR each tuple t in b {

find tuples in p that join with t
join each of these with t to output }}}

Total cost B(S) + [B(S)/(M-1)*B(R)] disk I/Os
(Read S once, read R once for each partition of S)
Memory requirement 2 (hold R block and S block)

Natural Joins (⋈) :
Nested-Loop Joins – II

actually only
one pass

through the
tuples in R

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 52

There are several ways sorting can be used in join
Simple algorithm, R ⋈ S:

sort R and S separately using TPMMS on join attribute(s), and
write back to disk
join (merge) the sorted R and S, by repeatedly

if R or S buffers empty, fetch block(s) from disk
find tuples which have least value v for joining attribute
(also on following blocks)

o if v –value tuples exist in both R and S, join R tuples with S tuples, write
joined tuples to output

o otherwise, discard all v –value tuples

Total cost: 5B(R) + 5B(S) disk I/Os
4 for TPMMS
1 of merging the sorted R and S

Memory requirement: M buffers
must use TPMMS on both relations B ≤ M2,
i.e., B(R) ≤ M2 AND B(S) ≤ M2

if there exists a collection of v –value tuples that does not fit in M
memory blocks, the algorithm does not work

Natural Joins (⋈) :
Two-Pass Sorting – I

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 53

Sort-join algorithm, R ⋈ S:
make M-sized, sorted sub-lists of R and S separately using first phase of TPMMS
on join attribute
bring first block of each sub-list into memory
join the sorted R and S, by repeatedly

find tuples which have least value v for joining attribute
(also on following blocks)

o if v –value tuples exist in both R and S, join R tuples with S tuples, write joined tuples
to output

o otherwise, discard all v –value tuples
if a buffer is empty, retrieve new block (if any) from disk

Total cost: 3B(R) + 3B(S) disk I/Os
2 for first phase of TPMMS (making sub-lists)
1 of merging the sorted R and S (join operation)

Memory requirement: M buffers
must use first phase of TPMMS on both relations B ≤ M2,
i.e., B(R) + B(S) ≤ M2 (cannot have more than M sub-lists)
the algorithm does not work if

there exists a collection of v –value tuples that does not fit in M memory blocks
there are more than M sub-lists totally

Natural Joins (⋈) :
Two-Pass Sorting – II

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 54

Two-pass hashing natural join algorithm
partition both R and S into M-1 buckets using same hash function
for all buckets, perform natural join on buckets i separately – Ri ⋈ Si –
using one-pass join:

read smallest relation, S, into M-1 buffers
read relation R block-by-block, and for each tuple t, join t with matching
tuples in S move resulting tuples to output

Total cost: 3B(R) + 3B(S) disk I/Os
2 for partitioning the relations
1 for performing join on different buckets

Memory requirement: M buffers
M buffers can make M-1 buckets for each relation
for each bucket pair, Ri and Si, either B(Ri) ≤ M-1 or B(Si) ≤ M-1
approximately min(B(R), B(S)) ≤ M2 √min(B(R), B(S)) ≤ M
if the smaller bucket of Ri and Si does not fit in M-1 buffers,
the algorithm will not work

Natural Joins (⋈) :
Two-Pass Hashing

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 55

If we have more memory on the first pass – partitioning the
relations – we can save some disk I/Os
Two-pass hybrid hashing natural join algorithm

create k buckets, k << M
partition the smaller relation, S, but

keep entire first bucket in memory
partition buckets 2 .. k as normally

o put tuples in corresponding bucket
o if block full, write to disk
o at the end, write all non-empty buckets to disk

partition the larger relation, R, but
tuples going to bucket R1 are joined with corresponding tuples of S1 which is
kept in memory
remaining tuples are partitioned normally using the disk to hold the buckets

make a second pass using the algorithm described previously on buckets
i separately – Ri ⋈ Si – using one-pass join on buckets 2 .. k

Natural Joins (⋈) :
Two-Pass Hybrid Hashing – I

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 56

Total cost: 3B(R) + 3B(S) – 2B(R1) – 2B(S1) disk I/Os
two-pass hash joins take 3 disk I/Os per block
we save 2 disk I/Os for each block belonging to first bucket
approximate cost:

assume we can make the size of a bucket M (available memory)
k = B(S)/M for both R1 and S1 (we save about 2k reads, subtract 2/k)

3 (B(R)+B(S)) – (2/k)(B(R) + B(S)) = (3 – 2/k)(B(R)+B(S)) =
(3 – (2M/B(S)) (B(R)+B(S))

Memory requirement: M buffers
M buffers must hold entire S1 and k buckets, M > B(S1) + (k-1)
for each bucket pair, Ri and Si, i > 1, either B(Ri) ≤ M-1 or B(Si) ≤ M-1
approximately min(B(R), B(S)) ≤ M2 √min(B(R), B(S)) ≤ M
if the smaller bucket of Ri and Si does not fit in M-1 buffers,
the algorithm will not work

Natural Joins (⋈) :
Two-Pass Hybrid Hashing – II

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 57

Index natural join algorithm – R(X,Y) ⋈ S(Y,Z) :
assume index on join attribute Y for relation S
read each block of relation R, and for each tuple

find tuples in S with equal join attribute using the index on S
read corresponding blocks and output join of these tuples

Total cost: ? disk I/Os
if R is clustered, we need B(R) disk I/Os, otherwise, up to T(R) to
read all R-tuples
additionally, for each tuple in R we need to read corresponding S-
tuples:

if index is clustered and sorted on Y: B(S) / V(S,Y)
if S in not sorted on Y: T(S) / V(S,Y)
we will use an average T(S) / V(S,Y)

thus, reading tuples of S is the dominant cost: T(R)T(S) / V(S,Y)

Natural Joins (⋈) :
Index-Based

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 58

Zig-zag index join algorithm – R(X,Y) ⋈ S(Y,Z) :
assume sorted index on join attribute Y for both relation R and S
for each value of Y in index of R

find tuples in S with equal search key using index on S
o if no equal tuples exist, just proceed
o if we have a match on join attribute, retrieve corresponding disk

blocks from both relations, and output join tuples

Total cost: ? disk I/Os
if both R and S are clustered and sorted on Y, we can be able to
perform the join in B(R) + B(S) disk I/Os
complicating factors adding I/Os

fractions of R and S with equal Y value do not fit in memory
blocks containing several different tuples must be read several times

relations are not clustered,?

Natural Joins (⋈) :
Zig-Zag Index-Based

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 59

Natural Joins (⋈) :
Cost and requirement summary for R ⋈ S:

BR + BSB(TR/VR,a)+B(TS/VS,a) ≤ MZig-Zag Index Join

BR + (TRBS / VS,Y)2 ≤ M Index Join

(3–2M/BS)(BR + BS)√BS ≤ M Hybrid Hash-Join

3 BR + 3 BS√BS ≤ MHash-Join

3 BR + 3 BS√BR + BS ≤ M Sort-Join

5 BR + 5 BS√BR ≤ M Simple Two-Pass Sorting

BS + [(BS /M-1) x BR]2 ≤ MBlock-Based Nested-Loop

worst case TRTS,
can do at BS + BSBR

2 ≤ M Tuple-Based Nested-Loop

BR + BSBS ≤ M – 1 One-Pass

Disk I/OsMemory
RequirementAlgorithm

If BS ≤ BR :

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 60

Natural Join Example – I

Example:
T(R) = 10.000, T(S) = 5.000
V(R,a) = 100, V(S,a) = 10
Both R and S are clustered
4 KB blocks (no block header)
both R and S records are 512 B (including header)
clustering index on attribute a for both R and S

B(S) = 5.000 / 8 = 625
B(R) = 10.000 / 8 = 1250

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 61

Natural Join Example – II
Example (cont.):
B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000

What is the minimum memory requirement for R(x,a) ⋈ S(a,y)?

One-Pass:
min(B(R), B(S)) ≤ M -1 1 + 625 = 626

Tuple-Based Nested-Loop:
2 ≤ M 2

Block-Based Nested-Loop:
2 ≤ M 2

Simple Two-Pass Sorting:
√max(B(R), B(S)) ≤ M √1250 = 35.35 ≈ 36

Sort-Join:
√B(R) + B(S) ≤ M √625 + 1250 = 43.30 ≈ 44

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 62

Natural Join Example – III
Example (cont.):
B(S) = 625, B(R) = 1250, V(R,a) = 100, V(S,a) = 10, T(R) = 10.000, T(S) = 5.000

What is the minimum memory requirement for R(x,a) ⋈ S(a,y)?

Hash-Join:
√min(B(R), B(S)) ≤ M √625 = 25

Hybrid Hash-Join:
√min(B(R), B(S)) ≤ M √625 = 25

Index Join:
2 ≤ M 2

Zig-Zag Index Join:
B(T(R)/V(R,a))+B(T(S)/V(S,a) ≤ M 10.000/100/8 + 5.000/10/8 =

12,5 + 62,5 ≈ 13 + 63 = 76

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 63

Natural Join Example – IV
Example (cont.): R(x,a) ⋈ S(a,y)

assume now available memory M = 101 blocks

T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101

what is the cost in disk I/Os for the different algorithms?

One-Pass:
B(R) + B(S) 1250 + 625 = 1875
(but one-pass cannot be performed, because memory requirement is 626)

Tuple-Based Nested-Loop:
min(B(R), B(S)) + B(S)B(R) 625 + 625 * 1250 = 781875

Block-Based Nested-Loop:
min(B(R), B(S)) + [(min(B(R), B(S)) / (M-1)) * max(B(R), B(S))]

625 + (625/(101-1) * 1250) = 9375

Simple Two-Pass Sorting:
5 B(R) + 5 B(S) 1250 * 5 + 625 * 5 = 9375

Sort-Join:
3 B(R) + 3 B(S) 1250 * 3 + 625 * 3 = 5625

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 64

Natural Join Example – II
Example (cont.): R(x,a) ⋈ S(a,y)
T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101, V(R,a) = 100, V(S,a) = 10

what is the cost in disk I/Os for the different algorithms?

Hash-Join:
3 B(R) + 3 B(S) 1250 * 3 + 625 * 3 = 5625

Hybrid Hash-Join:
(3–2M/min(B(R), B(S)))(B(R) + B(S)) (3 – (2*101)/625) * (1250 + 625) = 5019

Index Join:

index on S: B(R) + (T(R)B(S) / V(S,a)) 1250 + (10.000 * 625 / 10) = 626250

index on R: B(S) + (T(S)B(R) / V(R,a)) 625 + (5.000 * 1250 / 100) = 63125

Zig-Zag Index Join (index on both R and S):
B(R) + B(S) 625 + 1250 = 1875

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 65

Natural Join Example – II
Example summary:
T(R) = 10.000, T(S) = 5.000, B(R) = 1250, B(S) = 625, M = 101

7818752Tuple-Based Nested-Loop

187576Zig-Zag Index Join

626250 (S-index)
63125 (R-index)2Index Join

501925Hybrid Hash-Join

562525Hash-Join

562544Sort-Join

937536Simple Two-Pass Sorting

93752Block-Based Nested-Loop

1875626One-Pass

Disk I/OsMinimum MemoryAlgorithm

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 66

Which Algorithm Should I Choose?

One-Pass algorithms are great if one of the arguments
(relations) fits in memory
Two-Pass algorithms must be used if we have large relations

Hash-based algorithms
require less memory compared to sorting approaches –
only dependent of the smallest relation – often used
assume approximately equal bucket size (good hash function) –
in real life there will be a small variation, must assume smaller bucket sizes

Sort-based algorithms
produce a sorted result, which can be used in successive operators again
using sort-based algorithms

Index-based algorithms
excellent for selections and for joins if both have clustered indexes

They all benefit from optimized disk block layout reducing seeks
and rotational delays, more buffers,

Further Extensions and Other
Factors Influencing Cost

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 68

N–Pass Algorithms

Our algorithms so far make one or two passes over the entire
data set
If a relation gets really big, this is not sufficient
Example: B(R) = 1.000.000

TPMMS require that B(R) < M2 M > 1000
if 1000 blocks not available, TPMMS does not work
must add more passes over the data set

Sort-based algorithms:
if R fits in memory, sort
if not, partition R into M groups and recursively sort each Ri

merge the sub-lists
total cost: (2k – 1)B(R), k is the number of passes needed
we need √B(R) memory buffers, i.e., B(R) ≤ Mk

There exists a similar recursive approach using hashing

k

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 69

Buffer Management

The buffer manager controls and manages available memory

if we get too few memory buffers for an algorithm to work properly, we
will pay a significant penalty due to “thrashing”

when a new buffer is needed, the buffer manager replaces an old one
according to an appropriate replacement policy (often based on
reference locality in space and time)

the query optimizer will select a set of physical operators that will be
used to execute the query

the amount of available memory might vary from query to query
must make an algorithm selection each time
“wrong” selection may lead to “thrashing” or “degradation” (e.g., change
algorithm from one-pass to two-pass)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 70

Parallel Algorithms

Database operations can in general benefit from
parallel processing

Tuple-at-a-time operations:
if there are p processors, divide relation R into p equal
partitions and distribute
each processor performs the operation on its own subset of
the tuples
processing time: 1/p compared to a single-processor system
(but we must add time for shipping data to remote machines)

same amount of disk I/Os in total
(but more fragmentation)

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 71

Parallel Algorithms
Full relation operations (join):

if there are p processors, partition relation R and S using the same hash
function on both R ans S’ join attributes, hash into p buckets, i.e., all join
tuples are sent to same bucket
ship bucket Ri and Si to processor i
perform join on each processor on each pair of buckets using any of the
uniprocessor joins we have looked at
total cost:

perform hash-partitioning on main machine, but ship full bucket-blocks to
corresponding remote machine – B(S) + B(R)
store bucket on disk on local or remote machine – B(S) + B(R)
perform any two-pass join algorithm – 3B(R) + 3B(S)
total number of disk I/Os: 5B(R) + 5B(S)

However, only 1/p of all blocks is at each machine – p partitions are retrieved
in parallel time: B(R) + B(S) + (4B(R) + 4 B(S))/p
Additionally,

o each bucket may now be small enough to fit in memory
does not need any of the remote site disk I/Os: B(R) + B(S)

o at least one of the buckets may fit in memory
store and retrieve the larger bucket, say R: B(R) + B(S) + 2B(R)/p

INF3100 – 28.3.2006 – Ellen Munthe-Kaas Page 72

Summary

Model for computing costs
counting number of disk I/O according to available memory

Cost of basic operations
table scans
sorting
bucket-partitioning

Implementation algorithms and their costs
tuple-at-a-time, unary operations
full-relation, unary operations
full-relation, binary operations

