
Query Compilation

Contains slides by
Hector Garcia-Molina

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 2

Overview

Query processors

Parsing

Converting to logical query plans in relational algebra

Query rewrite

Estimate size of a intermediate relation

Consider physical query plans

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 3

Example – I
Example:
SELECT B,C,Y
FROM R,S
WHERE W = X AND A = 3 AND Z = “a”

5...7h1
8...5f8
3...3e7
9...5t3
3...0j2
4...9n4

W...CBA

7...8r3
2...6c2

1z 4...1

ce9
bi8
cg7
ae6
ak7
bb4

ZYX

bt3
cf2
aa 1

Relation R Relation S
YCB
k8 r

Answer

But, how is the
query executed?

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 4

Example – II
Example: idea 1 – cartesian product, select tuples, project attributes

πB,C,Y (σW=X ^ A=3 ^ Z=“a” (R x S))

5...7h1
8...5f8
3...3e7
9...5t3
3...0j2
4...9n4

W...CBA

7...8r3
2...6c2

1z 4...1

ce9
bi8
cg7
ae6
ak7
bb4

ZYX

bt3
cf2
aa 1

Relation R Relation S

YCB
k8 r

Answer

πB,C,Y

σ...

x

SR

ak77...8r3

cf2...............
v.....................

cf2...............
........................

cc2...............
........................

cf2...............
v.....................

cf2...............
........................

cf2...............
........................

........................
cf2...............

...

1

1

1

1

1

1

1
X

...

3

9

3

4

7

2

4
W

...

a

a

a

a

a

a

a
Y

...............

a...3e7

a...5t3

a...0j2

a...9n4

Z...CBA

a...8r3

a...6c2

1z a...1

NOTE:
#attributes = #R-attributes + #S-attributes
#tuples = #R-tuples * #S-tuples

SELECT B,C,Y
FROM R,S
WHERE W=X AND A=3 AND Z=“a”

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 5

Example – III
Example: idea 2 –select tuples, equijoin, project attributes

πB,C,Y ((σA=3 (R)) ⋈W=X (σW=X(S)))

5...7h1
8...5f8
3...3e7
9...5t3
3...0j2
4...9n4

W...CBA

7...8r3
2...6c2

1z 4...1

ce9
bi8
cg7
ae6
ak7
bb4

ZYX

bt3
cf2
aa 1

Relation R Relation S

YCB
k8 r

πB,C,Y

⋈W=X

SR

SELECT B,C,Y
FROM R,S
WHERE W=X AND A=3 AND Z=“a”

σA=3 σZ=“a”

9...5t3

W...CBA
7...8r3

ae6
ak7

ZYX
aa 1

7
X

k
Y

7
W Z...CBA

a...8r3

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 6

Example – IV
Example: idea 3 – use indexes on R.A and S.C

use R.A index to select R tuples with R.A = 3
for each R.C value found, use S.X index to
find matching tuples to R.W
eliminate S tuples Z ≠ ”a”
join matching R and S tuples
project B,C,Y and output

5...7h1
8...5f8
3...3e7
9...5t3
3...0j2
4...9n4

W...CBA

7...8r3
2...6c2

1z 4...1

ce9
bi8
cg7
ae6
ak7
bb4

ZYX

bt3
cf2
aa 1

Relation R Relation S

YCB
k8 r

SELECT B,C,Y
FROM R,S
WHERE W=X AND A=3 AND Z=“a”

9...5t3

W...CBA
7...8r3

ce9
cg7

ZYX
ak 7

7
X

k
Y

7
W Z...CBA

a...8r3

IR.A

IS.X

3

7,9

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 7

Query Processors
A query processor must find a plan how to execute the query

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

PQPi

answer

SQL query

parse tree

logical query plans (LQPs)

“improved” LQPs

{(LQP1, size1), …}

physical query plans (PQPs)

{(PQP1, cost1), …}

NOTE:
when we have executed the query, it might be wise to
give statistics back to LQP-rewrite components or
components estimating size to perform later
operations like join in a cost-efficient order

Parsing
parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 9

Parsing

The job of the parser is to take a query written in a
language like SQL and convert it to a parse tree

In a parse tree, each node is either
atoms – lexical elements such as keywords, names,
constants, parentheses, and operators
(cannot have children)
syntactic categories – names of query sub-parts
(represented by triangular brackets around descriptor)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 10

Simple Grammar – I
Queries:

<Query> ::= <SFW>
<Query> ::= (<Query>)
a complete grammar will also consist operations such as UNION, JOIN, …
the second rule is typically used in sub-queries

Select-From-Where:
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
a complete grammar must include GROUP BY, HAVING, ORDER BY, …

Select list:
<SelList> ::= <Attribute>
<SelList> ::= <Attribute>, <SelList>
a complete grammar must include expressions and aggregate functions

From list:
<FromList> ::= <Relation>
<FromList> ::= <Relation>, <FromList>
a complete grammar must include aliasing and expressions like R JOIN S

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 11

Simple Grammar – II
Conditions:

<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <Tuple> IN <Query>
<Condition> ::= <Attribute> = <Attribute>
<Condition> ::= <Attribute> LIKE <Pattern>
a complete grammar must include operators like OR, NOT, etc. and all other
comparison operators

Tuple:
<Tuple> ::= <Attribute>
a complete grammar must include tuples of several attributes, …

Basic syntactic categories like <Relation>, <Attribute>, <Pattern>, etc.
does not have a rule, but are replaced by a name or a quoted string

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 12

Simple Grammar: Example

Example: Find the movies with stars born in 1960

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthDate LIKE ‘%1960’);

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 13

Simple Grammar: Example
Example: Find the movies with stars born in 1960

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthDate LIKE ‘%1960’);

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute>

title

<Relation>

StarsIn

<Tuple> IN <Query>

<Attribute>

starName

(<Query>)

<Attribute>

name

<Relation>

MovieStar

<Attribute> LIKE <Pattern>

birthDate ‘%1960’

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 14

Preprocessor

The preprocessor checks whether the query is
semantically correct, e.g.:

relations – every relation in FROM must be a relation or view
in the schema on which the query is executed. If it is a view
it must again be replaced by a new (sub-)parse tree.
attributes – every attribute must be part of one of the
relations in the current scope of the query
types – all attributes must be of a type appropriate to their
uses

If the query (parse tree) passes the tests from the
preprocessor, is is said to be valid
send to logical query plan (LQP) generator

Logical Query
Plan (LQP) Generation

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 16

Conversion into Relational Algebra – I

When the query is expressed as a valid parse tree, we can
generate a LQP expressed by relational algebra operators

SFW without sub-queries:
replace the relations in the <FromList> by the product, x, of all relations

this product is the argument of a selection, σC, where C is the
<Condition> expression being replaced

this selection is in turn the argument of a projection, πL, where L is the
list of attributes in the <SelList>

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 17

Conversion into Relational Algebra – II

Example:
SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’

product of relations in <FromList>
select tuples using expression in <Condition>
project wanted attributes in the <SelList> <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Query>

<Attribute>

name

<Relation>

MovieStar birthDate ‘%1960’

<Attribute> LIKE <Pattern>

MovieStar

σbirthDate LIKE ‘%1960’

πname

NOTE:
we have only one relation. If we would
have two, the lower part of the tree would
look something like: SR

X

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 18

Conversion into Relational Algebra – III

If we have sub-queries, we must remove them by
using an intermediate operator – two argument
select σ :

left child represent relation upon which the selection is
performed

right child is an expression for the condition applied to each
tuple of the relation

Relation

σ

<Condition>

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 19

Conversion into Relational Algebra – IV

Example:
SELECT title FROM StarsIn WHERE starName IN (<Query>)

product of relations in <FromList>
select tuples using expression in <Condition>,
but use the two-argument select on sub-query
project wanted attributes in the <SelList>

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE

<Attribute>

title

<Relation>

StarsIn

<Tuple> IN <Query>

StarsIn <Condition>

σ

<Condition>

<Tuple> IN <Query>

πtitle

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 20

Conversion into Relational Algebra – IV

Example (cont.):
SELECT title FROM StarsIn WHERE starName IN (<Query>)

<Tuple> is represented by
<Attribute> -- starName
the sub-query <Query> is the query
we converted earlier

This tree needs further
transformation

StarsIn <Condition>

σ

IN

πtitle

<Attribute>

starName

<Tuple> <Query>

MovieStar

σbirthDate LIKE ‘%1960’

πname

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 21

Conversion into Relational Algebra – V

Replace two-argument select:
different conditions require different rules
we will look at t IN S:

replace <Condition> with the tree
representing S. If S may have duplicates
we must include a δ–operator at the top

replace the two-argument selection by a
one-argument selection σC, where C is the
condition that equates each component of
tuple t to the corresponding attribute in S

give σC an argument that is the product
of R and S

R <Condition>

σ

INt S

R

σC

S

x

δ

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 22

Conversion into Relational Algebra – VI

Example (cont.):
SELECT title FROM StarsIn WHERE starName IN (...)

replace <Condition> with the tree representing the sub-query

replace the two-argument selection by a one-argument selection σC,
where C is starName = name

give σC an argument that is the product of StarsIn and MovieStar

StarsIn <Condition>

σ

IN

πtitle

<Attribute>

starName

<Tuple>

MovieStar

σbirthDate LIKE ‘%1960’

πname
StarsIn

σstarName = name

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

x

σstarName = name

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 23

Conversion into Relational Algebra – VII

Translating sub-queries can be more complex if the sub-query
is correlated to values defined outside its scope

we must produce a relation with some extra attributes for comparison
with external attributes
the extra attributes are later removed using projections
any duplicate tuples must be removed

Translating the parse tree into expressions in algebra may give
several equivalent LQP using different operators or just
changing the order of the operators

query

LQPs

Algebraic Laws for
Improving LQP

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 25

Query Rewrite

When we have translated the parse tree to a relational
algebra expression, the next step is to optimize the
expression:

possibly giving smaller temporary relations

possibly reducing the number of disk I/Os

The query is rewritten applying algebraic laws turning
the expression into an equivalent expression that will
have a more efficient physical query plan

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 26

Algebraic Laws

The most common laws used for simplifying
expressions are:

the commutative law allowing operators to be performed in
any sequence, e.g.,
x ω y = y ω x
(where ω is an operator)

the associate law allowing operators to be grouped either
from left or right, e.g.,
x ω (y ω z) = (x ω y) ω z

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 27

Algebraic Laws: Joins and Products – I

Natural joins and product are both associative and commutative
R ⋈ S = S ⋈ R; R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
R x S = S x R; R x (S x T) = (R x S) x T

will give the same attributes and concatenated tuples regardless of order
(the attributes are named so the order of these does not matter)

What about theta-join?

Commutative (R ⋈c S = S ⋈c R), but not always associative,
e.g.,

R(a,b), S(b,c), and T(c,d)

(R ⋈R.b < S.bS) ⋈a < dT ≠ R ⋈R.b < S.b (S ⋈a < dT)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 28

Algebraic Laws: Joins and Products – II
Does it matter in which order join or product are performed with respect to
performance, e.g., R x S x T x …?

YES, it may be very important

if only one of the relations fits in memory, we should perform the operation using
this relation first – one-pass operation reducing the number of disk I/Os

if joining or taking product of two of the relations in a large expression give a
temporary relation which fits in memory, one should join these first to save both
memory and disk I/Os

one should try to make the temporary result as small as possible to save
memory, result from final join or product may be final result going out to user

if we can estimate (using statistics) the amount of tuples being joined, we can
save a lot of operations by joining the two relations giving fewest tuples first
(does not apply to products)

BUT, the final result will be the same

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 29

Algebraic Laws: Union and Intersect

Union and intersection are both associative and
commutative:

R ∪ S = S ∪ R; R ∪ (S ∪ T) = (R ∪ S) ∪ T
R ∩ S = S ∩ R; R ∩ (S ∩ T) = (R ∩ S) ∩ T

Note that laws for sets and bags can differ, e.g.,
(distributive law of intersection over union)

R ∩S (S ∪S T) = (R ∩S S) ∪S (R ∩S T), but
R ∩B (S ∪B T) ≠ (R ∩B S) ∪B (R ∩B T),

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 30

Algebraic Laws: Select – I

Select is a very important operator in terms of query
optimization

reduces the number of tuples (size of relation)
an important general rule in optimization is to push selects as far down
the tree as possible

“Splitting” (AND and OR) laws:
σa AND b(R) = σa(σb(R))

σa OR b(R) = (σa(R)) ∪S (σb(R))

(works only for R a set, a bag-version will include a tuple twice in the last
expression if both conditions are fulfilled)

“Flexibility” (ordering) law:
σa(σb(R)) = σb(σa(R))

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 31

Algebraic Laws: Select – II

Laws for pushing select – if pushing select, select …
… must be pushed through both arguments

union: σa(R ∪ S) = σa(R) ∪ σa(S)

cartesian product: σa(R x S) = σa(R) x σa(S)

… must be pushed through first arguments, optionally
second

difference: σa(R - S) = σa(R) - S = σa(R) - σa(S)

… may be pushed through either one or both arguments
intersection: σa(R ∩ S) = σa(R) ∩ σa(S) = R ∩ σa(S) = σa(R) ∩ S

join: σa(R ⋈ S) = σa(R) ⋈ σa(S) = R ⋈ σa(S) = σa(R) ⋈ S

theta-join: σa(R ⋈b S) = σa(R) ⋈b σa(S) = R ⋈b σa(S) = σa(R) ⋈b S
NOTE:
for products and join it may not make sense to push select through both
arguments, and even if it does, it may not improve the plan

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 32

Algebraic Laws: Select – III

Example: each attribute is 1 byte
σA=2(R ⋈ S)

perform join:
combine 4 * 4 elements = 16 operations
store relation R ⋈ S = 52 bytes
perform select:
checks tuple-by-tuple: 2 operations

σA=2(R) ⋈ S
perform select:
checks tuple-by-tuple: 4 operations
store relation σA=2(R) = 24 bytes
perform join:
combine 1 * 4 elements = 4 operations

R ⋈ σA=2(S)
does not make sense, a is not an attribute of S

4...9n4

X...CBA

7...8r3
2...6c2

1z 4...1

ce9
cg7

ZYX

bt3
cf2

Relation R Relation S

g
f
Y

7
2
X Z...CBA

c...8r3
c...6c2

Relation R ⋈ S

X...CBA
2...6c2

Relation σA=2(R)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 33

Algebraic Laws: Select – IV

Sometimes it is useful to push selection the other way, i.e., up
in the tree, using the law σa(R ⋈ S) = R ⋈ σa(S) backwards
Example:
StarsIn(title, year, starName); Movies(title, year, studio …)

CREATE VIEW Movies96 AS
SELECT *
FROM Movies
WHERE year = 1996;

SELECT starName, studio FROM Movies96 NATURAL JOIN StarsIn;

Relational algebra tree:

Movies96

πstarName, studio

⋈
starsIn

σyear = 1996

πstarName, studio

⋈
starsInMovies

σyear = 1996

πstarName, studio

starsIn

⋈

Movies

σyear = 1996σyear = 1996

Movies

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 34

Algebraic Laws: Project – I

Projections can be pushed down through many operators:
a projection may be introduced anywhere as long as it does not remove
any attributes used above in the tree
the projection operator is thus often not moved, we introduce a new

examples:
πL(R ⋈ S) = πL(πM(R) ⋈ πN(S)), if

o M = join attribute or part of L in R
o N = join attribute or part of L in S

πL(R ⋈C S) = πL(πM(R) ⋈C πN(S)), if
o M = join attribute (part of C) or part of L in R
o N = join attribute (part of C) or part of L in S

πL(R x S) = πL(πM(R) x πN(S)), if
o M = part of L in R
o N = part of L in S

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 35

Algebraic Laws: Project – II

Additionally, projections …
… can be pushed through a bag-union, but not set-union
… cannot be pushed through intersect or difference

… may be pushed through selections
πL(σC(R)) = πL(σC(πM(R))), if M is all attributes in L or part of condition C

We usually wish to push projections as far down as possible as
it reduces size of each tuple, but there are examples where this
may cost time and resources, e.g.,

move before a select and we have an index on the stored relation
…

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 36

Algebraic Laws: Join, Product, Select, Project - I

There are two laws that are important with respect to
performance following from the definition of join

σC(R x S) = R ⋈C S

πL(σC(R x S)) = R ⋈ S, if
condition C equates each pair of tuples from R and S with the same name
L is a list of attributes including all distinct attributes from R and S

If one has the opportunity to apply these rules, it generally will
increase performance, because the algorithms for computing a
join are much faster than computing the product followed by a
selection on a very large relation

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 37

Algebraic Laws: Join, Product, Select, Project - II

Example: πL(σR.a = S.a(R x S)) vs. R ⋈ S

R(a,b,c,d,e,…, k), T(R) = 10.000, S(a,l,m,n,o,…,z) , T(S) = 100
each attribute is 1 byte, a-attribute is key in both R and S
result: 100 tuples from S concatenated with tuples in R with matching a-attribute
(assuming all tuples in S find a match)

πL(σC(R x S)):
perform product:
combine 10.000 * 100 elements = 1.000.000 operations
store relation R x S = 1.000.000 * (11 + 16) = 27.000.000 bytes
perform select:
checks tuple-by-tuple: 1.000.000 operations
store relation σR.a = S.a(R x S) = 100 * 27 = 2700 bytes
perform project:
checks tuple-by-tuple: 100 operations

R ⋈ S:
perform join:
check 10.000 * 100 elements = 1.000.000 operations

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 38

Algebraic Laws: Duplicate Elimination

Duplicate elimination can reduce size of intermediate relations
when pushed through

cartesian product: δ(R x S) = δ(R) x δ(S)

join: δ(R ⋈ S) = δ(R) ⋈ δ(S)

theta-join: δ(R ⋈C S) = δ(R) ⋈C δ(S)

select: δ(σC(R)) = σC(δ(R))

bag-intersection: δ(R ∩B S) = δ(R) ∩B δ(S) = δ(R) ∩B S = R ∩B δ(S)

However, duplicate elimination cannot be pushed through
set-operations (make no sense)
bag-union and difference
projects

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 39

Algebraic Laws: Grouping and Aggregation

Whether or not the grouping operator can be pushed depends
on details of the aggregate operator used

cannot state general rules

MAX and MIN are not dependent on duplicates
γ(R) = γ(δ(R))

SUM, COUNT, and AVG is dependent on duplicates
cannot push

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 40

Improving LQPs – I

The described relational algebraic laws are used to improve – or
rewrite – the LQPs generated from the parse tree to improve
performance

The most commonly used in query optimizers are:
push selects as far down as possible
If the select condition consists of several parts, we often split the
operation in several selects and push each select as far down as possible
in tree
push projects as far down as possible
Projects can be added anywhere as long as attributes used above in the
tree is included
duplicate eliminations can sometimes be removed (e.g., if on key)
if possible, combine select with cartesian products to form a type of join

But, no transformation is always good

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 41

Improving LQPs – II

Example:
StarsIn(title, year, starName)
MovieStar(name, address, gender, birthDate);

SELECT title FROM StarsIn WHERE starName IN (...)

combine select and cartesian product into a join

Question:
can we push πtitle to StarsIn?

Question:
can we push πname before σbirthDate LIKE ‘%1960’?

StarsIn

σstarName = name

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

x
⋈starName = name

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 42

Grouping Operators

To allow the query optimizer to reorder the operands in for a
operator that is both associative and commutative, we may
group nodes that have the same operator into one node with
many children:

⋈
⋈ ⋈

UTSR

⋈

UTSR

Estimating the Result
Size of an Operator

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 44

Estimating Sizes – I

The PQP is selected to minimize the estimated cost of the query

The size of intermediate relations will have a large influence on
costs as the choice of algorithm used for executing the operator
is dependent on the amount of data and the amount of
available memory

Size estimation can be difficult, and ideally, the rules used
should be:

accurate – a small error may result in choosing an inappropriate
algorithm in the PQP
easy to compute – the overhead choosing a PQP should be minimal
logically consistent – not dependent how a operator is executed

BUT, no universally algorithms exists for computing sizes

Fortunately, even inaccurate estimates helps picking a PQP

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 45

Estimating Sizes – II

Notation reminder:
for a relation R

B(R) denotes the number of blocks to store all tuples
T(R) denotes the number of tuples in R
V(R, a) denotes the number of distinct values for attribute a
(average identical a-value tuples is then T(R)/V(R,a))

additionally, we now add
S(R) denoting the size of a tuple in R

For now, we will not count record headers, but when
storing tuples on blocks, the size of these must be
added to the size of each tuple

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 46

Size of a Projection – I

The size of a projection (π) is computable

produces one tuple for each argument tuple

change the size of the tuple only, removing attributes
(or adding new components that are combinations of other)

sizeof[πA, B, …(R)] = T(R) * [sizeof(R.A) + sizeof(R.B) + …]

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 47

Size of a Projection – II

Example: sizeof[πA,B, …(R)] = T(R) * [sizeof(R.A) + sizeof(R.B) + …]

sizeof(R) = T(R) * S(R) = 5 * 58 = 290 byte

sizeof[πA(R)] = 5 * 4 = 20 byte

sizeof[πB, C(R)] = 5 * (20 + 4) = 120 byte

sizeof[πA, B, C, D, (A+10) E(R)] = 5 * (4 + 20 + 4 + 30 + 4) = 310 byte

c2000dog5
a1998cat4

DCBA

c2002dog3
b2002cat2

1999cat a1

Relation R

A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

T(R) = 5

S(R) = 58

V(R,A) = 5
V(R,B) = 2
V(R,C) = 4
V(R,D) = 3

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 48

Size of a Select – I

A select (σ) reduces the number of tuples, but the size of each
tuple is the same:

sizeof[σX(R)] = T(σX(R)) * S(R), where X is the condition selecting tuples

how to estimate the number of tuples depends on
value distribution of attribute Y – we assume a uniform distribution where we
use V(R,Y) to estimate the number of tuples returned by the selection
condition upon which the tuples are selected

Equality selection, σA = c(R), for attribute A and constant c:
T(σA=c(R)) = T(R) / V(R, A)

Inequality selection, σA < c(R), for attribute A and constant c:
estimate the fraction of R having tuples satisfying the condition
usually the fraction is small – one third of all tuples frequently used
T(σA<c(R)) = T(R) / 3

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 49

Size of a Select – II

Not-equal selection, σA ≠ c(R), for attribute A and constant c:
rarely used
can usually use T(σA ≠ c(R)) = T(R) for simplicity
more accurately, subtract a fraction 1 / V(R,A)
T(σA ≠ c(R)) = T(R) * [(V(R,A) – 1) / V(R,A)]

Selection using several conditions with AND, σA AND B AND…(R)
treat selection as a cascade of several selections
estimated size is original size multiplied by the selectivity factor, often

1/3 for in-equality (<, >, ≤, ≥)
1 for non-equality (≠)
1 / V(R,A) for equality (=) on attribute A

T(σA AND B AND…(R)) = T(R) * selectivity factorA * selectivity factorB * ...

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 50

Size of a Select – III

Selection using several conditions with OR, σA OR B OR…(R)
assume no tuple satisfies more than one condition
1. approach: T(σA OR B OR…(R)) = T(σA(R)) + T(σB(R)) + ...
2. approach: T(σA OR B OR…(R)) = min(T(R), (T(σA(R)) + T(σB(R)) + ...))
3. approach:

assume m1 tuples satisfy first condition, m2 satisfy second condition, ...
1 – mx/T(R) then is the fraction of tuples not satisfied by x’th condition

T(σA OR B OR…(R)) = T(R) * [1 – (1 – m1/T(R)) * (1 – m2/T(R))]

Selection conditions with NOT, σNOT A(R)
T(σNOT A(R)) = T(R) - T(σA(R))

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 51

Size of a Select – IV

Example: number of tuples
T(σA = 3 (R)) = T(R) / V(R, A) = 5 / 5 = 1

T(σB = ‘cat’ (R)) = T(R) / V(R, B) = 5 / 2 = 2,5 ≈ 3

T(σA > 2 (R)) = T(R) / 3 = 5 / 3 = 1,67 ≈ 2

T(σB ≠ ‘cat’ (R)) = T(R) = 5

= T(R) * [(V(R,B) – 1) / V(R,B)] = 5 * ((2-1)/2) ≈ 3

c2000dog5
a1998cat4

DCBA

c2002dog3
b2002cat2

1999cat a1 A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

T(R) = 5

S(R) = 58

V(R,A) = 5
V(R,B) = 2
V(R,C) = 4
V(R,D) = 3

NOTE:
we have estimated the
number of tuples only.
The size is given by the
number of tuples
multiplied with the size
of the tuples –
S(R) * T(σ(R))

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 52

Size of a Select – V

Example: number of tuples
T(σC = 1999 AND A < 4 (R)) = T(R) * 1/V(R,C) * 1/3 = 5 * 1/4 * 1/3 ≈ 1

T(σNOT A = 3 (R)) = T(R) - T(σA = 3 (R)) = 5 – 1 = 4

T(σNOT C = 1999 AND A < 4 (R)) = T(R) * (1 - 1/V(R,C)) * 1/3

= 5 * (1 – 1/4) * 1/3) = 1.25 ≈ 2

c2000dog5
a1998cat4

DCBA

c2002dog3
b2002cat2

1999cat a1 A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

T(R) = 5

S(R) = 58

V(R,A) = 5
V(R,B) = 2
V(R,C) = 4
V(R,D) = 3

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 53

Size of a Select – VI

Example: number of tuples
T(σC = 1999 OR A < 4(R)) = T(σC = 1999(R)) + T(σA < 4 (R)) =

= T(R)/V(R,C) + T(R)/3 = 5/4 + 5/3 ≈ 2 + 2 = 4

= min[T(R), T(σC = 1999(R)) + T(σA < 4 (R))] = 4

= T(R) * [1 – (1 – m1/T(R)) * (1 – m2/T(R))]
= 5 * [1 – (1- 5/4 / 5)(1-5/3 / 5)] =

= 5 * [1 – 0,75*0,67] ≈ 2,5 ≈ 3

c2000dog5
a1998cat4

DCBA

c2002dog3
b2002cat2

1999cat a1 A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

T(R) = 5

S(R) = 58

V(R,A) = 5
V(R,B) = 2
V(R,C) = 4
V(R,D) = 3

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 54

Size of a Product

As with projections, we can exactly compute the size
of a cartesian product (x)

produces one tuple for each possible combination of each
tuple in relation R and S:
T(RxS) = T(R) * T(S)
the size of each new tuple is the sum of the size of each
original tuple:
S(RxS) = S(R) + S(S)

sizeof(R x S) = T(RxS) * S(RxS) = T(R) * T(S) * (S(R) + S(S))

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 55

Size of a Join – I

In our size estimations for join, we will look at natural join (⋈),
but other joins is managed similarly

equi-join as natural join
theta-joins as a cartesian product followed by a selection

Estimating the size of a join of R(x,y) and S(y,z) is a challenge,
because we do not know how the join attribute y relates in the
relations R and S, e.g.:

disjoint sets of y-values – empty join:
T(R ⋈ S) = 0
y is key in S, and a foreign key to R – each tuple in R joins with one
tuple in S:
T(R ⋈ S) = T(R)
Almost all tuples of R and S have the same y-value A – combine all
tuples of each relation:
T(R ⋈ S) = T(R) * T(S)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 56

Size of a Join – II

For our calculations, we will make two assumptions:

containment of value sets:
if attribute y appears in several relations, the values are chosen from
the front of a given list of values
thus, if V(R, y) ≤ V(S, y),
then every y-value in R will match a y-value in S
may certainly be violated, but holds in many cases, e.g., y is key in S,
and a foreign key to R

preservation of value sets:
non-join attributes will not lose any values from its set of possible
values
thus, V(R ⋈ S, y) = V(R, y)
is violated if there are “dangling tuples” in R

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 57

Size of a Join – III

The size of R(x, y) ⋈ S(y, z) in number of tuples can now be
estimated as follows:

assume V(R, y) ≤ V(S, y), i.e.,
every tuple t in R have a chance of 1/V(S, y) of joining with a given
tuple in S

S has T(S) tuples, i.e.,
the expected number of tuples the tuple t from R joins with is
T(S)/V(S, y) - number of tuples with same y-value

T(R ⋈ S) = T(R) * T(S) / V(S, y)

if V(S, y) ≤ V(R, y) T(R ⋈ S) = T(S) * T(R) / V(R, y)

in general, T(R ⋈ S) = T(S) * T(R) / max[V(R, y), V(S, y)]

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 58

Size of a Join – IV

Example:
find T(A ⋈ B ⋈ C)

T((A ⋈ B) ⋈ C):
T(A ⋈ B) = T(A) * T(B) / max[V(A, b), V(B, b)]

= 10000 * 2000 / max(1000, 100) = 20000
V(A ⋈ B, c) = V (B, c) = 1000 (preservation of value sets)

T((A ⋈ B) ⋈ C) = T(A ⋈ B) * T(C) / max[V(A ⋈ B, c), V(C, c)]
= 20000 * 5000 / max(1000, 100) = 100.000

T(A ⋈ (B ⋈ C)):
T(B ⋈ C) = T(B) * T(C) / max[V(B, c), V(C, c)]

= 2000 * 5000 / max(1000, 100) = 10000
V(B ⋈ C, b) = V (B, b) = 100 (preservation of value sets)

T(A ⋈ (B ⋈ C)) = T(B ⋈ C) * T(A) / max[V(B ⋈ C, b), V(A, b)]
= 10000 * 10000 / max(100, 1000) = 100.000

V(C, d) = 100V(B, c) = 1.000V(A, b) = 1.000

V(C, c) = 100V(B, b) = 100V(A, a) = 5.000

T(C) = 5.000T(B) = 2.000T(A) = 10.000

C(c, d)B(b, c)A(a, b)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 59

Size of a Join – V

If there are more than one join attribute,
R(x, y1, y2,…) ⋈ S(y1, y2,…, z), we must consider the probability
that all join tuples find a match in the other relation:

for all V(R, yx) ≤ V(S, yx), the probability for tuple t in R can be joined
with a certain tuple on the yx attribute in S is 1/V(S, yx)

likewise, for all V(S, yx) ≤ V(R, yx), the probability for tuple s in S can be
joined with a certain tuple on the yx attribute in R is 1/V(R, yx)

for each yx attribute that is common in R and S

max[V(R, y1), V(S, y1)] * max[V(R, y2), V(S, y2)] * …
T(S) * T(R)

T(R ⋈ S) =

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 60

Size of a Join – VI

Example:
find T(A ⋈ B)

join on b and c:
V(B, d) = 2.000V(A, c) = 200

V(B, c) = 1.000V(A, b) = 1.000

V(B, b) = 100V(A, a) = 5.000

T(B) = 2.000T(A) = 10.000

B(b, c, d)A(a, b, c)

max[V(A, b), V(B, b)] * max[V(A, c), V(B, c)]
T(A) * T(B)

T(A ⋈ B) =

max[1000, 100] * max[200, 1000]
10.000 * 2000

= = 20

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 61

Size of a Join – VII

The general case of a natural join, R1 ⋈ R2 ⋈ R3 ⋈ … ⋈ Rn:

an attribute A appear in k of the n relations

the probability for that all these k relations agreeing in attribute A is then

1 / v2 * v3 * … * vk

v1 = min(V(R1, A), V(R2, A), V(R3, A), …, V(Rk, A))

general formula for finding size of any join:

find the maximum number of tuples using the product of the number of
tuples in all relations – T(R1) * T(R2) * T(R3) * … * T(Rn)

then, for each attribute A appearing in more than one relation, divide the
above result by all, but the least V(R, A)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 62

Size of a Join – VIII

Example:
find T(A ⋈ B ⋈ C)

maximum number of tuples:
T(A) * T(B) * T(C) = 10000 * 2000 * 5000 = 100.000.000.000

for each attribute X appearing in more than one relation
b appear in all relations, V(A, b) = 1000, V(B, b) = 50, V(C, b) = 100

divide by 1000 * 100

c appear in all A and B, V(A, c) = 50, V(B, c) = 1000
divide by 1000

d appear in all B and C, V(B, d) = 200, V(C, d) = 100
divide by 200

V(C, e) = 100V(B, d) = 200V(A, c) = 50

V(C, d) = 100V(B, c) = 1.000V(A, b) = 1.000

V(C, b) = 100V(B, b) = 50V(A, a) = 5.000

T(C) = 5.000T(B) = 2.000T(A) = 10.000

C(b, d, e)B(b, c, d)A(a, b, c)

(1000 * 100) * (1000) * (200)

100.000.000.000
T(A ⋈ B ⋈ C) = = 5

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 63

Size of a Join – IX

So far, we have only calculated the number of tuples, but the
size of a join is given by

sizeof(A ⋈ B) = T(A ⋈ B) * S(A ⋈ B)

However, the size of the tuples from a join is dependent on
which kind of join we perform, e.g.,

in a natural join, the join attributes only appear once

in a theta-join, all attributes from all relations appear

thus, before calculating the total size in number of bytes,
we must find the correct size of each tuple

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 64

Size of a Union

The number of tuples of a union (∪) is dependent of
whether it is a set- or bag-version:

bag:
the result is exactly the sum of the tuples of all the
arguments - T(A ∪b B) =T(B) + T(B)

set:
as bag-version if disjoint relations
usually somewhere between sum of both and the number of the
larger relation:
may for example use: T(A ∪s B) = T(A) + T(B)/2
where B is the smaller relation

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 65

Size of an Intersection and a Difference

The number of tuples of an intersection (∩) can be
0 if disjoint relations
min(T(R), T(S)) if one relation contains only a subset of the
other
usually somewhere in-between –
may for example use average: min(T(R), T(S)) / 2

The number of tuples of a difference (–), R – S, is
T(R) if disjoint relations
T(R) – T(S) if all tuples in S also is in R
usually somewhere in-between –
may for example use: T(R) – T(S)/2

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 66

Size of a Duplicate Elimination

The number of tuples of a duplicate elimination (δ) is
the same as the number of distinct tuples

1 if all tuples are the same

T(R) if all tuples are different

one approach:
given V(R, ai) for all n attributes, the maximun number of different
tuples are V(R, a1) * V(R, a2) * … * V(R, an)
let estimated number of tuples be the smaller of this number and the
number of tuples in the relation

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 67

Size of a Grouping

The number of tuples of a grouping (γ) is the same as
the number of groups

1 if all tuples are the same

T(R) if all tuples are different

one approach:
given V(R, ai) for all n attributes, the maximun number of different
tuples are V(R, a1) * V(R, a2) * … * V(R, an)
let estimated number of tuples be the smaller of this number and the
number of tuples in the relation

Note that the size of each tuple can be different compared to
the argument tuples

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 68

Obtaining Estimates for Size Parameters

To estimate the size of the intermediate relations, we
have used parameters like T(R) and V(R, a)

The DBMS keeps statistics from previous operations to
be able to provide such parameters

However, computing statistics are expensive and
should be recomputed periodically only:

statistics usually have few changes over a short time
even inaccurate statistics are useful
statistics recomputation might be triggered after some
period of time or after some number of updates

Cost-Based
Plan Selection

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 70

Cost-Based Plan Selection

The query optimizer estimates the costs of all
generated plans

As before, we will use disk I/Os, but this number is
influenced by several factors:

which logical operators are chosen to implement the query
sizes of intermediate results
which physical operators are chosen to implement the logical
operators
order of operations
method of passing arguments between physical operators

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 71

Comparing Intermediate Sizes for LQPs – I

There may exist several LQPs for a given query, and
we compare them by the size of intermediate relations

estimate the intermediate size of each operator in the LQP

add the cost into the LQP tree

the cost of the LQP is the sum of all costs in the tree, except
the nodes not dependent on the LQP:

the root – the final result is given to the application
the leaves – data stored on disk

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 72

Comparing Intermediate Sizes for LQPs – II

Example:
StarsIn(title, year, starName)
MovieStar(name, address, gender, birthDate)

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthDate LIKE ‘%1960’);

StarsIn

σstarName = name

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

x
StarsIn

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

⋈starName = name

Statistics:
T(StarsIn) = 10.000
V(StarsIn, starName) = 500
S(StarsIn) = 60

T(MovieStar) = 1.000
V(MovieStar, name) = 1.000
V(MovieStar, birthDate) = 50
S(MovieStar) = 100

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 73

Comparing Intermediate Sizes for LQPs – III

Example:
A1 = σbirthDate LIKE ‘%1960’ (MS):

T(σ (MS)) = T(MS) / V(MS, birthDate) = 1000 / 50 = 20
sizeof(A1) = 20 * 100 = 2000

A2 = πname(A1):
T(π(A1)) = T(A1) = 20
assume attribute name is 20 byte
sizeof(A2) = 20 * 20 = 400

A3 = SI ⋈ A2:
T(SI ⋈ A2) =
T(SI)*T(A2) / max[V(SI, starName), V(A2, name)] =
10000 * 20 / max(500, 20) = 400
S(A2) = 20
sizeof(A3) = 400 * (60 + 20) = 32000

A4 = πtitle(A3):
T(π(A3)) = T(A3) = 400
assume title is 40 bytes
sizeof(A4) = 400 * 40 = 16000

StarsIn

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

⋈starName = name

Statistics:
T(SI) = 10.000
V(SI, starName) = 500
S(SI) = 60

T(MS) = 1.000
V(MS, name) = 1.000
V(MS, birthDate) = 50
S(MS) = 100

600.000

100.000

2.000

400

32.000

16.000

NOTE:
name is key in MS, and
we have 20 tuples left

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 74

16.000.000

Comparing Intermediate Sizes for LQPs – IV

Example:
A1 = σbirthDate LIKE ‘%1960’ (MS) as previous: 2000, T(σ (MS))=20

A2 = πname(A1) as previous: 400, T(A2) = T(A1) = 20

A3 = SI x A2:
T(SI x A2) =
T(SI) * T(A2) = 10000 * 20 = 200.000
S(A2) = 20
sizeof(A3) = 200.000 * (60 + 20) = 16.000.000

A4 = σstarName = name (A3):
T(σ (A3)) =
T(A3) / max(V(A3, name), V(SI, starName))
= 200.000 / max(20, 500) = 400
S(A4) = S(SI) + S(A3) = 60 + 20 = 80
sizeof(A4) = 400 * 80 = 32000

A5 = πtitle(A4) as previous: 400 * 40 = 16000

Statistics:
T(SI) = 10.000
V(SI, starName) = 500
S(SI) = 60

T(MS) = 1.000
V(MS, name) = 1.000
V(MS, birthDate) = 50
S(MS) = 100

600.000

100.000

2.000

400

16000

StarsIn

σstarName = name

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

x

32000NOTE:
does not match any of the rules we
have seen so far for select, but it is
equal to the join condition – use same

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 75

16.000.000

Comparing Intermediate Sizes for LQPs – V

Example:

600.000

100.000

2.000

400

16000

StarsIn

σstarName = name

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

x

32000

StarsIn

πtitle

MovieStar

σbirthDate LIKE ‘%1960’

πname

⋈starName = name

600.000

100.000

2.000

400

32.000

16.000

Total intermediate size:
2000 + 400 + 32000 = 34400

Total intermediate size:
2000 + 400 + 16000000 + 32000= 16034400

NOTE 2:
does not necessary have to be
equal – remember we are
estimating sizes and various
operators might be estimated
slightly different

NOTE 1:
we count only
intermediate node costs
only, not root or leaves

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 76

Conversion of a LQP to a PQP

When we shall convert a LQP to a PQP, there are a lot of
different factors that must be considered

Each different plan is given an estimated cost and the plan with
smallest costs is selected

There are many approaches to enumerate the cost estimates of
a PQP, i.e., finding the “cheapest” plan

exhaustive
heuristic
branch-and-bound
hill climbing
dynamic programming
Selinger-style optimizations

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 77

Plan Enumeration – I

Exhaustive:
consider all combinations of choices in a plan
estimate the cost of each plan
many plans, expensive

Heuristic
choose a plan according to heuristic rules, i.e., on earlier
experiences on efficient operators like

use index on operations like σA = 10(R)
use smallest relations first in a join of many relations
if arguments are sorted, use a sort-based operator
...

fast, but based on general rules only

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 78

Plan Enumeration – II

Branch-and-Bound:
find a plan using heuristic rules
then, consider small parts of this plan to see if it can be
optimized

Sellinger-style optimization:
keep for all sub-expressions the cost and expected kind of
result
thus, a operator might have a higher individual cost, but if
the result for example is sorted, later operators may use this

if considering intermediate sizes – no gain
if considering disk I/Os, one might save the first part of the sort-
based operation saving disk I/Os and a lot of CPU operations

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 79

Selection of Algorithms – I

After having determined the order of different
operators, we must choose which algorithm that
should implement an operator

Such a choice is dependent of several factors
storage
existence of indexes
conditions of the operator
available memory
...

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 80

Selection of Algorithms – II
Example: selection method

R(x, y, z), T(R) = 5000, B(R) = 200, V(R, x) = 100, V(R, y) = 500
indexes on all attributes, index on z is clustered
σx=1 AND y=2 AND z<5(R)

table-scan – read block-by-block:
cost: B(R) = 200 disk I/Os since R is clustered

index-scan with x-index – find tuples x=1 using index, then check y and z:
x-index is not clustered, worst-case all tuples on different blocks
cost: T(R) / V(R, x) = 5000 / 100 = 50 disk I/Os

index-scan with y-index – find tuples y=2 using index, then check x and z:
y-index is not clustered, worst-case all tuples on different blocks
cost: T(R) / V(R, y) = 5000 / 500 = 10 disk I/Os

index-scan with z-index – find tuples z<5 using index, then check x and y:
we have estimated selections like this as 1/3 of the tuples, R is sorted on z
cost: B(R) / 3 = 67 disk I/Os

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 81

Selection of Algorithms – III

Choosing join method if we are unaware of available
resources

chose one-pass hoping we have enough memory

chose sort join if...
... both arguments already is sorted
... joining three or more relations on same attribute

chose index join if one relation is small and have index on
other

chose hash-join otherwise as it requires less memory

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 82

Pipelining Versus Materialization - I

The last major question is how to pass intermediate
results between operators

Two ways:
pipelining –
pass result directly to new operator ,i.e., data remains in
memory, enabling operations to be interleaved

possibly more efficient
requires more memory – possibly again requiring more disk accesses

materializations –
store all intermediate results on disk until it is needed by
another operator

must store all intermediate data – write to disk and retrieve again
when needed
may allow easier algorithms as one operator may have more memory

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 83

Pipelining Versus Materialization - II

Unary operations, selection and projection, should be
pipelined as operations are performed on tuple-by-
tuple

Binary operations can be pipelined, but
the number of buffers needed for computation vary
the size of the result vary
choice of whether to pipeline the result depends on memory

Note: Example 16.36, page 864 – 867 is wrong
The first two-pass hash-join makes 100 buckets of 50 blocks

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 84

Pipelining Versus Materialization - III
Example: [R(w,x) ⋈ S(x,y)] ⋈ T(y,z)

B(R) = 5000, B(S) = 10.000, B(T) = 15.000, M = 151
use hash-join, one- or two-pass depending on memory

if B(R ⋈ S) = k, what is most useful for different values of k?

First, use two-pass hash-join on R and S as neither fits in memory
each bucket of the smaller relation must not exceed 150

assume partitioning R into 50 buckets give 100 blocks each
phase two – joining needs 101 blocks, 50 free for result
cost: 3B(R) + 3B(S)

o read and write R to partition into buckets: 2 * 5000 = 10.000
o read and write S to partition into buckets: 2 * 10000 = 20.000
o read buckets-pairs and join – each block one time: 5000 + 10.000 = 15.000
o total R ⋈ S cost: 45.000 disk I/Os

(assuming result in memory)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 85

Pipelining Versus Materialization - IV
Example: [R(w,x) ⋈ S(x,y)] ⋈ T(y,z)

B(R) = 5000, B(S) = 10.000, B(T) = 15.000, M = 151

if B(R ⋈ S) = k ≤ 50
keep result in memory
reuse 101 available blocks to read T and join tuple by tuple (one-pass)
cost:

o R ⋈ S: 45.000
o read all blocks of T: 15.000
o total R ⋈ S ⋈ T cost: 60.000 disk I/Os

using materialization – write intermediate result back to disk and reread
o total R ⋈ S ⋈ T cost: 60.000 + 2k disk I/Os

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 86

Pipelining Versus Materialization - V
Example: [R(w,x) ⋈ S(x,y)] ⋈ T(y,z)

B(R) = 5000, B(S) = 10.000, B(T) = 15.000, M = 151

if 50 < B(R ⋈ S) = k ≤ 7500
partition T into 50 buckets of 300 blocks
perform R ⋈ S, but use the 50 free blocks to make 50 buckets of the result –
write to disk
join result from R ⋈ S stored in 50 buckets with the 50 buckets from T
(read bucket from R ⋈ S result into 150 blocks, use 1 reminder for T-buckets)
cost:

o partition T: 30.000
o R ⋈ S: 45.000
o write result R ⋈ S to disk: k
o join buckets from T and from result from R ⋈ S : 15.000 + k
o total R ⋈ S ⋈ T cost: 90.000 + 2k disk I/Os

using materialization – write intermediate result back to disk and read again
o total R ⋈ S ⋈ T cost: 90.000 + 2k disk I/Os if storing buckets from R ⋈ S

(if not, add another 2k for partitioning)

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 87

Pipelining Versus Materialization - V
Example: [R(w,x) ⋈ S(x,y)] ⋈ T(y,z)

B(R) = 5000, B(S) = 10.000, B(T) = 15.000, M = 151

if 7500 < B(R ⋈ S) = k
cannot perform join on T with result from R ⋈ S in two passes, because each
of the 50 buckets from R ⋈ S will be larger than 150 blocks

can add another pass – add two accesses for each block 2 * (15.000 + k)
120.000 + 4k disk I/Os using pipelining

try materialization
compute R ⋈ S using two pass hash-join: 45.000
write result to disk: k
join T with result from R ⋈ S using another two-pass
(T can still be partitioned into 150 buckets regardless of k: 3 * (15.000 + k)
total R ⋈ S ⋈ T cost: 90.000 + 4k disk I/Os using materialization

INF3100 – 4.4.2006 – Ellen Munthe-Kaas Page 88

Summary

Parsing

Logical query plans (LQP) in relational algebra

Optimize LQP using algebraic laws

Estimate size of a intermediate relation

Consider physical query plans

