
ObjectObject Query Language (OQL)Query Language (OQL)

Contains slides made by
Naci Akkøk, Arthur M. Keller, Vera Goebel, Pål Halvorsen, Ragnar

Normann

2
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OverviewOverview

OQL
Queries/sub-queries
Return types
Quantifiers
Object creation
Aggregation
Using host languages
Operators on set or bag objects
Grouping with properties

3
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

Object Query Language (OQL)Object Query Language (OQL)

Motivation:
Relational languages suffer from impedance mismatch
when we try to connect them to conventional languages
like C or C++
The data models of C and SQL are radically different, e.g.,
C does not have relations, sets, or bags as primitive types

OQL is the query language in the ODMG standard
OQL is an attempt by the OO community to extend languages
like C++ with SQL-like imperatives and database functionality.

OQL is always used with a host language
Like SQL, OQL is a declarative (not procedural) language

4
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL uses ODLOQL uses ODL

OQL is designed to operate on data described in ODL:

For every class we can declare an extent = name for the current
set of objects of the class.

Remember to refer to the extent, not the class name, in queries.

5
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: ObjectOQL: Object-- and Valueand Value--EqualityEquality

Two mutable objects of the same type (instances of the same
class) cannot be equal, but they may have the same values

Example: Object O1 and O2 are instance of the of the same
class

The OQL expression O1 = O2 will always be FALSE
The OQL expression *O1 = *O2 can be TRUE if the two
objects have the same state, i.e., same value of all attributes

6
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: ComputationsOQL: Computations

Mutable objects are manipulated by executing defined methods
for this class

Select in OQL may have side effects, i.e., it can change the
state in the database (OQL does not have an own update
function in contrast to SQL)

Methods are called by navigating along paths; there is no
difference for addressing of attributes, relationships, or
methods.

7
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: TypesOQL: Types

Basic types: string, integer, float, boolean,
character, enumerations, etc.

Type constructors:
Struct for structures.
Collection types: set, bag, list, array.
(NOTE: dictionary is not supported)

Set(Struct()) and Bag(Struct()) play special roles akin to
relations.

8
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Path ExpressionsOQL: Path Expressions

We access components using dot-notations
Let x be an object of class C:

If a is an attribute of C, then x.a is the value of a in the x
object.
If r is a relationship of C, then x.r is the value to which x is
connected by r, i.e., could be an object or a collection of
objects, depending on the type of r
If m is a method of C, then x.m(…) is the result of applying
m to x.

We can form expressions with several dots (only last element
may be a collection)
OQL allows arrows as a synonym for the dot,
i.e, x–>a is equal to x.a, opposed to for example in C

9
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL:OQL:
The BarThe Bar--BeerBeer--Sell (BBS) Example ODLSell (BBS) Example ODL

class Bar (extent Bars)
{ attribute string name;

attribute string addr;
relationship Set<Sell> beersSold inverse Sell::bar;

}

class Beer (extent Beers)
{ attribute string name;

attribute string manf;
relationship Set<Sell> soldBy inverse Sell::beer;

}

class Sell (extent Sells)
{ attribute float price;

relationship Bar bar inverse Bar::beersSold;
relationship Beer beer inverse Beer::soldBy;
void raise_price(float price);

}

10
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL:OQL:
Path Expressions for BBS Example Path Expressions for BBS Example

Let s be a variable whose type is Sell
s.price is the price in the object s (the beer sold in this bar)
s.raise_price(x) raises the price of s.beer in s.bar with x
s.bar is a pointer to the bar mentioned in s
s.bar.addr is the address of the bar mentioned in s
Note: “cascade” of dots OK because s.bar is an object, not a collection

Let b be a variable whose type is Bar
b.name is the name of the bar
b.beersSold is a set of beers that this bar sells (set of pointers to Sell)
Illegal use of path expressions: b.beersSold.price
Note: illegal because b.beersSold is a set of objects, not a single object

Typical Usage:
If x is an object, you can extend the path expression,
like s is extended with s.beer and s.beer.name above
If x is a collection , like b.beersSold above, it can be used anywhere a
collection is appropriate (e.g., FROM), if you want to access attributes of x.

11
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: SelectOQL: Select--FromFrom--WhereWhere

Similar to SQL syntax:
SELECT <list of values>
FROM <list of collections and typical members>
WHERE <condition>

Collections in FROM can be:
1. Extents
2. Expressions that evaluate to a collection

Following a collection is a name for a typical member,
optionally preceded by the keyword AS
Note: there may be several different queries giving the same
answer

12
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: SelectOQL BBS Example: Select--FromFrom--WhereWhere

Get menu at “Joe’s” focusing on Sells objects:
SELECT s.beer.name, s.price
FROM Sells s
WHERE s.bar.name = "Joe's"

Notice double-quoted strings in OQL (SQL has single-quoted)

Get “Joe’s” menu, this time focusing on the Bar objects:
SELECT s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = "Joe's"

Notice that the typical object b in the first collection of FROM
is used to help define the second collection.

13
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Comparison OperatorsOQL: Comparison Operators

Values can generally be compared using operators:
= : equality
!= : different form
< : less than
> : greater than
<= : less or equal
>= : greater or equal

Additional text comparison operators
IN checks if a character is in a text string: <c> IN <text>
LIKE checks if two texts are equal: <text1> LIKE <text2>
<text2> may contain special characters:

_ or ? : one arbitrary character
* or % : any arbitrary text string

14
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL,BBS Example: Comparison OperatorsOQL,BBS Example: Comparison Operators

Example: find name and price of all bees at “Joe’s”
starting with “B” and
consisting of the text string “ud”

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's" AND
s.beer.name LIKE "B*" AND

s.beer.name LIKE "*ud*" AND

NOTE 1:NOTE 1:
The name of
the bar is equal
to “Joe’s”

NOTE 2:NOTE 2:
The beer name starts
with “B” followed by
arbitrary characters

NOTE 3:NOTE 3:
The beer name contains “ud”
starting with and followed by
arbitrary characters

15
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: QuantifiersOQL: Quantifiers

We can test whether all members, at least one member, some members, etc.
satisfy some condition
Boolean-valued expressions for use in WHERE-clauses.

All: FOR ALL x IN <collection> : <condition>
At least one: EXISTS x IN <collection> : <condition>

EXISTS x
Only one: UNIQUE x
Some/any: <collection> <comparison> SOME/ANY <condition>

where <comparison > = <, >, <=, >=, or =
The expression has value TRUE if the condition is true
NOT reverses the boolean value

16
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Quantifiers OQL BBS Example: Quantifiers -- II

Example:
Find all bars that sell some beer for more than €5

SELECT b.name
FROM Bars b
WHERE EXISTS s IN b.beersSold : s.price > 5.00

Example:
How would you find the bars that only sold beers for more than
€5?

SELECT b.name
FROM Bars b
WHERE FOR ALL s IN b.beersSold : s.price > 5.00

17
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Quantifiers OQL BBS Example: Quantifiers -- IIII

Example:
Find the bars such that the only beers they sell for
more than €5 are manufactured by “Pete’s”
SELECT b.name

FROM Bars b

WHERE FOR ALL be IN (SELECT s.beer

FROM b.beersSold s

WHERE s.price > 5.00) :

be.manf = "Pete's"

NOTE 1:NOTE 1:
find all beers in a bar where the price is

more than $5

NOTE 2:NOTE 2:
all these “expensive” beers must be
manufactured by “Pete’s”

18
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Type of the ResultOQL: Type of the Result

Default: bag of structs, field names taken from the ends of path
names in SELECT clause.
Example: menu at “Joe’s”:
SELECT s.beer.name, s.price

FROM Sells s

WHERE s.bar.name = "Joe's"

has result type:
Bag(Struct(name: string, price: real))

19
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Rename FieldsOQL: Rename Fields

The result type
Bag(Struct(name: string, price: real))

may not have appropriate names for the results’ attributes

Rename by prefixing the path with the desired name and a colon

Example: rename attributes of the menu at “Joe’s”:
SELECT beername: s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's“

has type:
Bag(Struct(beername: string, price: real))

20
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Change the Collection Type OQL: Change the Collection Type -- II

A bag of structs (default) returned by the SFW-statement is not
always appropriate

Use SELECT DISTINCT to get a set of structs

Example:
SELECT DISTINCT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's"

21
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Change the Collection Type OQL: Change the Collection Type -- IIII

Use ORDER BY clause to get a list of structs
Example:
joeMenu = SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's"

ORDER BY s.price ASC

ASC = ascending (default); DESC = descending
We can extract from a list as if it were an array, e.g.,
cheapest_beer = joeMenu[0].name;

22
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: OQL: SubqueriesSubqueries

Used where the result can be a collection type, i.e., mainly
in FROM clauses and
with quantifiers like EXISTS, FOR ALL, etc.

Example: subquery in FROM:
Find the manufacturers of the beers served at “Joe's”
SELECT DISTINCT b.manf

FROM (SELECT s.beer

FROM Sells s

WHERE s.bar.name = "Joe's"

) b

23
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL:OQL:
Assigning Values to HostAssigning Values to Host––Language VariablesLanguage Variables
Unlike SQL, which needs to move data between tuples and
variables, OQL fits naturally into a host language
Select-From-Where produces collections of objects
It is possible to assign any variable of proper type a value that
is a result from OQL expressions
Example (C++ like):
Name of bars that only sell beers for more than €5
Set<string> expensive_bars;
expensive_bars = SELECT DISTINCT b.name

FROM Bars b
WHERE FOR ALL s IN b.beersSold :

s.price > 5.00

24
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Extraction of Collection Elements OQL: Extraction of Collection Elements –– II

A collection with a single member:
Extract the member with ELEMENT.

Example:
Find the price “Joe’s” charges for “Bud” and put the result
in a variable p:

p = ELEMENT(SELECT s.price
FROM Sells s
WHERE s.bar.name = "Joe's" AND

s.beer.name = "Bud")

25
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Extraction of Collection Elements OQL: Extraction of Collection Elements –– IIII

Extracting all elements of a collection, one at a time:
1. Turn the collection into a list.
2. Extract elements of a list with <list_name>[i]

Example (C-like):
Print Joe's menu, in order of price, with beers of the same price
listed alphabetically
L = SELECT s.beer.name, s.price

FROM Sells s
WHERE s.bar.name = "Joe's"
ORDER BY s.price, s.beer.name;

printf("Beer\tPrice\n\n");

for(i=0; i<=COUNT(L); i++)
printf("%s\t%f\n", L[i].name, L[i].price);

NOTE 1:NOTE 1:
make a list

NOTE 2: NOTE 2: The ith element in L is
obtained from L[i-1]. The index
i starts at 0

26
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Creating New ObjectsOQL: Creating New Objects

A Select-From-Where statement allows us to create new objects whose type
is defined by the types returned in the SELECT statement

Example
SELECT beername: s.beer.name, s.price
FROM Bars b, b.beersSold s
WHERE b.name = "Joe's Bar"

NOTE: NOTE: Defines a new object
with type Bag<Struct(
beername: string, price:
integer)>

Constructor functions: create new instances
of a class or other defined type (details depend on host language)
Example: insert a new beer
newBeer = Beer(name: "XXX",

manf: "YYY“)

Effects:
Create a new Beer object, which becomes part of the extent Beers
The value of the host language variable newBeer is this object

27
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: AggregationOQL: Aggregation

The five operators avg, sum, min, max, and count
apply to any collection, as long as the operators make
sense for the element type.
Example:
Find the average price of beer at Joe’s.
x = AVG(SELECT s.price

FROM Sells s
WHERE s.bar.name = "Joe's");

Note: result of SELECT is technically a bag of 1-field structs,
which is identified with the bag of the values of that field.

28
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Union, Intersection, and DifferenceOQL: Union, Intersection, and Difference

We may apply union, intersection, and difference operators on any objects of
Set or Bag type

Use keywords UNION, INTERSECT, and EXCEPT, respectively

Result type is a Bag if at least one object is of type Bag; Set otherwise

Example:
Find the name of all beers served at “Joe’s” that are not served at “Steve’s”

NOTE 1:NOTE 1:
find all beers served at “Joe’s”

(SELECT s.beer.name
FROM Sells s
WHERE s.bar.name = "Joe's“)

NOTE 2:NOTE 2:
find all beers served at “Steve’s”

(SELECT s.beer.name
FROM Sells s
WHERE s.bar.name = "Steve's“)

NOTE 3:NOTE 3:
remove beers served at “Steve’s”
from beers served at “Joe’s”

EXCEPT

29
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Grouping OQL: Grouping –– I I

OQL supports grouping similar to SQL - some differences
Example in SQL: find average price of beers in all bars
SELECT bar.name, AVG(price)
FROM Sells
GROUP BY bar;

Is the bar value the “name” of the group, or the common
value for the bar component of all tuples in the group?
In SQL it doesn't matter, but in OQL, you can create groups
from the values of any function(s), not just attributes.

Thus, groups are identified by common values, not “name.”
Example: group by first letter of bar names (method
needed).

30
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Grouping OQL: Grouping –– IIII

General form:
GROUP BY f1: e1, f2: e2, ..., fn: en

Thus, made by the OQL clause:
Keywords GROUP BY
Comma separated list of partition attributes:

name
colon, and
expression

Example:
SELECT ...
FROM ...
GROUP BY barName: s.bar.name

31
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Grouping OutlineOQL: Grouping Outline

Initial collection: defined
by FROM, WHERE

NOTE 1:NOTE 1:
the selected objects (WHERE) from the
collection of objects in FROM,
but technically it is a Bag of structs

Intermediate collection: with
function values and partition

Group by values
of function(s)

NOTE 2:NOTE 2:
actual values returned from initial collection
when applying GROUP BY expressions:
Struct(f1:v1, ..., partition:P).
First fields indicate the group, P is a bag of
values belonging to this group

Output collection

Terms from
SELECT clause

NOTE 3:NOTE 3:
The SELECT clause may select from
intermediate collection, i.e., f1,f2,..,fn
and partition – values may only be
referred through aggregate functions on the
members of bag P.

32
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Grouping OQL BBS Example: Grouping –– I I

Example:
Find the average price of beer at each bar

SELECT barName, avgPrice: AVG(SELECT p.s.price

FROM partition p)

FROM Sells s

GROUP BY barName: s.bar.name

33
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Grouping OQL BBS Example: Grouping –– IIII

1. Initial collection: Sells
But technically, it is a bag of structs of the form
Struct(s: s1) where s1 is a Sell object.
Note, the lone field is named s. In general, there are fields
for all of the “typical objects” in the FROM clause.

SELECT barName,
avgPrice: AVG(SELECT p.s.price
FROM partition p)

FROM Sells s
GROUP BY barName: s.bar.name

34
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Grouping OQL BBS Example: Grouping –– IIIIII

2. Intermediate collection
One function: s.bar.name maps Sell objects s to the value of the
name of the bar referred to by s

Collection is a set of structs of type:
Struct{barName:string, partition:Bag<Struct{s:Sell}>}

For example:
Struct(barName = "Joe's",partition = {s1,…,sn})
where s1,…,sn are all the structs with one field, named s, whose value
is one of the Sell objects that represent Joe's Bar selling some beer.

SELECT barName, avgPrice: AVG(SELECT p.s.price
FROM partition p)

FROM Sells s
GROUP BY barName: s.bar.name

35
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Grouping OQL BBS Example: Grouping –– IVIV

3. Output collection: consists of beer-average price pairs, one for each struct
in the intermediate collection

Type of structures in the output:
Struct{barName: string, avgPrice: real}
Note that the subquery in the SELECT clause – variables in the partition
is referred through the AVG aggregate function
We let p range over all structs in partition. Each of these structs
contains a single field named s and has a Sell object as its value.
Thus, p.s.price extracts the price from one of the Sell objects
belonging to this particular bar.
Typical output struct - example:
Struct(barName = "Joe's", avgPrice = 2.83)

SELECT barName, avgPrice: AVG(SELECT p.s.price
FROM partition p)

FROM Sells s
GROUP BY barName: s.bar.name

36
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

Another OQL BBS Example: Grouping Another OQL BBS Example: Grouping –– I I

Example:
Find, for each beer, the number of bars that charge a “low” price (≤ 2.00)
and a “high” price (≥ 4.00) for that beer

Strategy: group by three things:
The beer name,
a boolean function that is true if the price is low,
and a boolean function that is true if the price is high.

SELECT beerName, low, high, count: COUNT(partition)
FROM Beers b, b.soldBy s
GROUP BY beerName: b.name,

low: s.price <= 2.00,
high: s.price >= 4.00

37
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL:OQL:
Another BBS Example: Grouping Another BBS Example: Grouping –– IIII

1. Initial collection: Pairs (b, s), where b is a Beer object, and s is
a Sell (b.soldBy) object representing the sale of that beer at
some bar

Type of collection members:
Struct{b: Beer, s: Sell}

SELECT bName, low, high, count: COUNT(partition)
FROM Beers b, b.soldBy s
GROUP BY bName: b.name,

low: s.price <= 2.00,
high: s.price >= 4.00

38
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL:OQL:

Another BBS Example: Another BBS Example: Grouping Grouping –– IIIIII

2. Intermediate collection:
Quadruples consisting of a beer name, booleans telling whether this
group is for high prices, low prices, and the partition for that group

The partition is a set of structs of the type:
Struct{b: Beer, s: Sell}

A typical partition value:
Struct(b:"Bud" object,s:a Sell object involving Bud)

SELECT bName, low, high, count: COUNT(partition)
FROM Beers b, b.soldBy s
GROUP BY bName: b.name,

low: s.price <= 2.00,
high: s.price >= 4.00

39
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

Another OQL BBS Example: Grouping Another OQL BBS Example: Grouping –– IVIV

2. Intermediate collection (continued):
Type of quadruples in the intermediate collection:
Struct{ bName: string,

low: boolean,
high: boolean,
partition: Set<Struct{b: Beer, s:Sell}>}

Typical structs in intermediate collection:
bName low high partition

Bud TRUE FALSE Slow

Bud FALSE TRUE Shigh

Bud FALSE FALSE Smid

… … … …

NOTE 2:NOTE 2:
Slow : price is low (≤ 2)

NOTE 1:NOTE 1:
SX are the sets of beer-sells
pairs (b, s)

NOTE 3:NOTE 3:
Shigh : price is high (≥ 4)

NOTE 4:NOTE 4:
Smid : medium price
(between 2 and 4)

NOTE 5:NOTE 5:
the partition with low = high = TRUE
must be empty and will not appear

40
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

Another OQL BBS Example: Grouping Another OQL BBS Example: Grouping –– VV

3. Output collection:

The first three components of each group's struct are copied to the
output
The last (partition) is counted

An example of the result:
bName low high count

Bud TRUE FALSE 27
Bud FALSE TRUE 14
Bud FALSE FALSE 36

SELECT bName, low, high, count: COUNT(partition)
FROM Beers b, b.soldBy s
GROUP BY bName: b.name,

low: s.price <= 2.00,
high: s.price >= 4.00

41
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL: Having OQL: Having

GROUP BY may be followed by HAVING to eliminate some of
the groups created by GROUP BY

The condition applies to the partition field in each structure
in the intermediate collection

If condition in HAVING clause is FALSE, the group does not
contribute to the output collection

42
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

OQL BBS Example: Having OQL BBS Example: Having

Example:
Find the average price of beers at each bar, but only in those
bars where the most expensive beer cost more than €10

NOTE 1:NOTE 1:
Same as above, finds average
price of beers in a bar

NOTE 2:NOTE 2:
Select only those groups where the
maximum price is larger than 10

SELECT barName,avgPrice: AVG(SELECT p.s.price

FROM partition p)

FROM Sells s

GROUP BY barName: s.bar.name

HAVING MAX(SELECT p.s.price
FROM partition p) > 10

43
INF3100 – 26.2.2007 – Naci AkkøkINF3100 – 26.2.2007 – Naci Akkøk

SummarySummary

OQL
Queries/subqueries – Select-From-Where
Return types – bags, sets, or lists
Quantifiers – for all, exists, etc.
Object creation –
both new elements and returned form queries
Aggregation – count, max, min, avg, sum
Using host languages – OQL fits naturally
Operators on set or bag objects –
union, intersect, except

Grouping with properties – group by with having

	Object Query Language (OQL)
	Overview
	Object Query Language (OQL)
	OQL uses ODL
	OQL: Object- and Value-Equality
	OQL: Computations
	OQL: Types
	OQL: Path Expressions
	OQL:�The Bar-Beer-Sell (BBS) Example ODL
	OQL:�Path Expressions for BBS Example
	OQL: Select-From-Where
	OQL BBS Example: Select-From-Where
	OQL: Comparison Operators
	OQL,BBS Example: Comparison Operators
	OQL: Quantifiers
	OQL BBS Example: Quantifiers - I
	OQL BBS Example: Quantifiers - II
	OQL: Type of the Result
	OQL: Rename Fields
	OQL: Change the Collection Type - I
	OQL: Change the Collection Type - II
	OQL: Subqueries
	OQL:�Assigning Values to Host–Language Variables
	OQL: Extraction of Collection Elements – I
	OQL: Extraction of Collection Elements – II
	OQL: Creating New Objects
	OQL: Aggregation
	OQL: Union, Intersection, and Difference
	OQL: Grouping – I
	OQL: Grouping – II
	OQL: Grouping Outline
	OQL BBS Example: Grouping – I
	OQL BBS Example: Grouping – II
	OQL BBS Example: Grouping – III
	OQL BBS Example: Grouping – IV
	Another OQL BBS Example: Grouping – I
	OQL:�Another BBS Example: Grouping – II
	OQL:�Another BBS Example: Grouping – III
	Another OQL BBS Example: Grouping – IV
	Another OQL BBS Example: Grouping – V
	OQL: Having
	OQL BBS Example: Having
	Summary

