
SQLSQL--9999

Contains slides made by
Naci Akkøk, Pål Halvorsen, Arthur M. Keller, Vera Goebel

2
27.2.2007 – Naci Akkøk

OverviewOverview

• SQL-99
• user-defined types (UDTs)
• methods for UDTs
• declarations
• references
• operations

3
27.2.2007 – Naci Akkøk

SQL DevelopmentSQL Development
• SQL-86 SQL-89 (SQL1)
• SQL-92 (SQL2):

• executable DDL
• outer join
• cascaded update and delete
• temporary table
• set operations: union, intersection, difference
• domain definitions in schemes
• new built-in data types
• dynamic SQL via PREPARE and

EXECUTE statements
• transaction consistency levels
• deferred constraint locking
• scrolled cursors
• SQL diagnostics

• SQL-99 (SQL3): SQL-92 + extensions

SQL1
SQL2

SQL3

NOTE 2:NOTE 2:
we are focusing
on some of these
extensions today

NOTE 1:NOTE 1:
SQL-99 contains
the functions
from SQL-92

4
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
UserUser--Defined TypesDefined Types

• Relations are still the core abstraction.
Classes from ODL are “translated” into
User-Defined Types (UDTs).

• SQL allows UDTs that play a dual role:
1. They can be the types of relations (tables), i.e.,

the type of their tuple (sometimes called a row type).
2. They can be the type of an attribute in a relation.

5
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Defining Defining UDTsUDTs

• UDTs are analogous to ODL class declarations, but
• key declarations are not part of the UDT – it is part of the table

declaration
• relationships are not properties – it must be represented by own tables

• A simple form of UDTs consists of
• keyword CREATE TYPE
• name
• keyword AS
• a parenthesized, comma-separated list of attribute-type pair
• a comma-separated list of methods including argument and return type

• Syntax: CREATE TYPE T AS(< list of attribute-type pairs>
)
< list of methods>;

6
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
BarBar––BeerBeer––Sell (BBS) Example: Defining Sell (BBS) Example: Defining UDTsUDTs

CREATE TYPE BarType AS
(

name CHAR(20),
addr CHAR(20)

);

CREATE TYPE BeerType AS
(

name CHAR(20),
manf CHAR(20)

);

NOTE 1:NOTE 1:
keyword CREATE TYPE

NOTE 2:NOTE 2:
a name of the UDT

NOTE 3:NOTE 3:
keyword AS

NOTE 4:NOTE 4:
parenthesized, comma-separated list
of attribute-type pair

NOTE 5:NOTE 5:
additionally we may have methods
(will be added later)

7
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Creating Tables Creating Tables –– II

• UDTs do not declare relations, but we might declare one (or more)
relations whose tuples are the type of an UDT.

• A simple form of relations defined from a UDT consists of
• keyword CREATE TABLE
• name
• keyword OF
• name of UDT

• Syntax: CREATE TABLE S OF T

• A relation must declare a key as keys are not part of the UDT
• Syntax: CREATE TABLE S OF T (

PRTIMARY KEY(<list of key attributes>)
);

8
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
BBS Example: Creating TablesBBS Example: Creating Tables

CREATE TYPE BarType AS
(name CHAR(20),

addr CHAR(20)
);
CREATE TYPE BeerType AS
(name CHAR(20),

manf CHAR(20)
);
CREATE TABLE Bars OF BarType
(PRIMARY KEY (name)
);
CREATE TABLE Beers OF BeerType
(PRIMARY KEY (name)
);

NOTE 1:
keyword OF and name of UDTs are used in
place of element lists in CREATE TABLE
statements

NOTE 2:
primary key is defined by the keywords
PRIMARY KEY followed by a
parenthesized, comma-separated list of key
attributes

NOTE 3:
other elements of a table declaration may be
added similarly, e.g., foreign keys, tuple
based constrains, etc., which apply to this
table only, not UDT

NOTE 4:
usually we have one relation per UDT, but
we may have several

9
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
References References –– II

• If a table is created using a UDT, we may have a reference column serving as an
identity

• it can serve as a primary key
• can be a system generated, unique value

• To refer to tuples in a table with a reference column, an attribute may have as type a
reference to another type.

• If T is a UDT, then REF(T) is the type of a reference to a T object.
• Unlike OODBS, references are values that can be seen by queries.

10
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
References References –– IIII

• For a reference attribute to be able to refer to a relation, the
relation must be referenceable.

• A table is made referenceable by including a clause in the
table declaration (this not part of the UDT).

• Syntax: REF IS <attribute name> <generated>
• The <attribute name> will serve as the object identifier
• The <generated> is telling how the id is generated, either:

1. SYSTEM GENERATED, the DBMS maintains a unique
value in this column for each tuple

2. DERIVED, the DBMS uses the primary key of the
relation to produce unique values for each tuple

11
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
BBS Example: References BBS Example: References –– II

CREATE TYPE BarType AS (
name CHAR(20),
addr CHAR(20),
bestSeller REF(BeerType) SCOPE Beers

);
CREATE TYPE BeerType AS (

name CHAR(20),
manf CHAR(20)

);
CREATE TABLE Bars OF BarType (

PRIMARY KEY (name)
);
CREATE TABLE Beers OF BeerType (

REF IS beerID SYSTEM GENERATED
PRIMARY KEY (name)

);

NOTE 1:NOTE 1:
bestSeller is a reference
to a BeerType object

NOTE 2:NOTE 2:
bestSeller must refer to
objects in the Beers relation
whose type is BeerType

NOTE 3:NOTE 3:
the relation Beers must be
referenceable

NOTE 4:NOTE 4:
the “ID” is system generated

NOTE 5:NOTE 5:
only single references is
possible this way, not set

12
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
BBS Example: References BBS Example: References –– IIII

CREATE TYPE BarType AS
(name CHAR(20),

addr CHAR(20)
);

CREATE TYPE BeerType AS
(name CHAR(20),

manf CHAR(20)
);

CREATE TYPE MenuType AS
(bar REF(BarType),

beer REF(BeerType)
);

NOTE 1:
Bars sell beers (and beers are sold at bars), but
we cannot directly represent this SET
relationship in type bar and beer as in ODL

NOTE 3:
if the relationship has properties as price, we
even in ODL we must have a separate class

NOTE 2:
we need a separate relation to represent such
sets, with references to the two types (possibly
with a scope)

Bars BeersSell

price

Sell

13
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
References References –– IIIIII

• References may be given a scope, i.e., the name of the relation
to whose tuples are referred to

• Syntax: S REF(T) SCOPE R -- (an attribute S of type
REF(T) referring to a tuple in relation R)

• If no scope is given, the reference can go to tuples of any
relation of type T

• Example

CREATE TYPE MenuType AS (
bar REF(BarType) SCOPE Bars,
beer REF(BeerType) SCOPE Beers,
price FLOAT

);

NOTE:NOTE:
Bars and Beers are
relations defined using the
BarType and
BeerType, respectively

14
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Methods Methods –– II

• UDTs can have associated methods. They work on objects
whose type is the UDT (applied on tuples)

• Similar to Persistent Stored Modules (PSM), which are general
purpose functions allowed to be stored together with the
schema and used in SQL (described in Chapter 8), but methods
are

• declared in the UDT using a METHOD clause
• defined separately in a CREATE METHOD statement

15
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Methods Methods –– II II

• There is a special tuple variable SELF that refers to that object
to which the method is applied, i.e.,
can use SELF.a to access the object attribute a

• In the method declaration, arguments need a mode, like IN,
OUT, or INOUT, but the mode does not appear in the definition.

• Many methods will take no arguments (relying on SELF)
• All methods must return a value of some type
• A method is applied using “dot”, e.g.,
t.updatePrice(...)

16
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Methods: DeclarationMethods: Declaration

• A declaration of a method for a UDT consists of
• keyword METHOD
• name of the method
• keyword RETURNS
• the return type

• Declaration syntax:
METHOD <name> RETURNS <return type>;

17
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
Methods: Definitions Methods: Definitions

• A definition of a method for a UDT consists of
• keywords CREATE METHOD
• name of the method including arguments and their type
• keyword RETURNS and the return type
• keyword FOR and the name of the UDT in which the

method is declared
• body of the method (as PSM functions)

• Definition syntax (body):
CREATE METHOD <name> RETURNS <return type> FOR <name of UDT>
BEGIN

<method body>
END

18
27.2.2007 – Naci Akkøk

SQLSQL--99 Example Methods:99 Example Methods:
Declarations and Definitions Declarations and Definitions –– I I

• Example:
CREATE TYPE MenuType AS
(bar REF(BarType) SCOPE Bars,

beer REF(BeerType) SCOPE Beers,
price FLOAT

)
METHOD updatePrice
(IN p float
)
RETURNS BOOLEAN;

CREATE METHOD updatePrice
(p float
)
RETURNS BOOLEAN FOR MenuType
BEGIN

<body>
END;

NOTE 1:
Declaration in UDT

NOTE 2:
Definition separately, outside the UDT

NOTE 3:
parameters, mode only in declaration

NOTE 4:
the body is written in the same
language as the PSM functions, e.g.,
SQL/PSM used in the book

NOTE 5:
can use built-in SELF

NOTE 6:
p necessary, as it is used to change the
value of the price attribute, e.g., p is
added to SELF.price

19
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
New OperationsNew Operations

• All appropriate SQL operations applying to tables defined
using UDTs are allowed, but there are also some new features:

• using references
• accessing UDT attributes
• creating UDT objects
• order relationships

20
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Following References Following References –– II

• If x is a value of type REF(T), then x refers to some tuple t of
type T

• The attributes of tuple t can be obtained by using
the -> operator

• essentially as in C
• if x is a reference to tuple t and a is an attribute in t,

then x->a is the value if attribute a in t
• Example: Find the beers served at “Joe’s”

SELECT beer->name
FROM Sells
WHERE bar->name = 'Joe''s';

NOTE 1:
Sells is a table with
MenuType as type

NOTE 3:
single-quoted strings

NOTE 2:
the attributes of a tuple
is accessed using the
-> operator

21
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Following References Following References –– IIII

• The tuple t can be obtained by using the DEREF operator if x
is a reference

• Example:
Find the bars (all attributes) serving “Bud”

SELECT DEREF(bar)
FROM Sells
WHERE beer->name = 'Bud';

NOTE 1:
Bar is reference to a
tuple in table Bars

NOTE 2:
DEREF(bar) gets the
referenced tuples

NOTE 3:
SELECT bar, without DEREF, would return only
system-generated values serving as the IDs of the
tuples – not the information in the tuples themselves

SELECT bar
From Sells
Where beer->name = ‘Bud’;

22
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Accessing UDT AttributesAccessing UDT Attributes

• A tuple defined by a UDT is analogous to an object – not a list of
components corresponding to the attributes of a UDT

• Example:
the relation bars is defined using the UDT barType

• this UDT has two attributes, i.e., name and addr,
• a tuple t in bars has only one component, i.e., the object itself

• Every UDT has implicitly defined observer methods for each attribute.
• x() is the name of the observer method for an attribute x
• returns the value of attribute x in the UDT
• is applied as all other methods on this UDT, i.e., using “dot”
• if t is of UDT type T and x is an attribute of T, then t.x() is the

value of x in t

23
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Creating Data ElementsCreating Data Elements

• Generator methods create objects of UDT type T:
• same name as the UDT itself, i.e., T()
• takes no arguments
• invoked without being applied to objects
• returns an object of type T with no values in the various

components

24
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Updating Data ElementsUpdating Data Elements

• Mutator methods update attributes in objects of UDT type T:
• for each attribute x in T, there is a mutator method x(v)
• when applied to an object T, x(v) changes the value of x

to v
• Note: both mutator (x(v)) and observer (x()) methods have

the same name, but only a mutator method has a parameter

25
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations Example:New Operations Example:
Creating and Updating Data ElementsCreating and Updating Data Elements

• Example:
PSM procedure inserting new bars into the
Bars relation
CREATE PROCEDURE insertBar (

IN n CHAR(20),
IN a CHAR(20)

)
DECLARE newBar BarType;
BEGIN

SET newBar = BarType();
newBar.name(n);
newBar.addr(a);
INSERT INTO Bars VALUES(newBar);

END;

NOTE 2:NOTE 2:
declaration of a variable of type
BarType

NOTE 3:NOTE 3:
newBar is assigned a value of an
empty BarType object using the
BarType() generator method

NOTE 4:NOTE 4: we apply mutator methods for
the attributes in BarType UDT, i.e,

and , on the name(n) addr(a) newBar
object using “dot” notation

NOTE 5:NOTE 5: we insert the object newBar of
type BarType into the table Bars. NB!
Simpler ways may exist to insert objects

NOTE 1:NOTE 1:
the UDT BarType has two
attributes, i.e., name and addr,
which are parameters

26
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Comparing Objects Comparing Objects –– II

• There are no operations to compare two objects whose type is
some UDT by default, i.e, we cannot

• eliminate duplicates
• use WHERE clauses
• use ORDER BY clauses

• SQL-99 allows to specify comparison or ordering using
CREATE ORDERING statements for UDTs

27
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Comparing Objects Comparing Objects –– II II

• Equality for an UDT named T:
CREATE ORDERING FOR T EQUALS ONLY BY STATE
(equal if all corresponding components have the same value)

• Apply all comparison operators for an UDT named T:
CREATE ORDERING FOR T ORDERING FULL BY RELATIVE
WITH F
(all comparison operators - <, <=, >, >=, =, and <> - may be applied on two
objects using an integer function F which must be implemented separately)

Example: < : F(x1, x2) < 0 if x1 < x2
> : F(x1, x2) > 0 if x1 > x2
= : F(x1, x2) = 0 if x1 = x2
etc.

28
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
UDTs UDTs (revisited) (revisited) –– Type of a ColumnType of a Column

• A UDT can also be the type of a column.
• Example:

Let’s create an address type to use in bars (replacing the string)

CREATE TYPE AddrType AS (
street CHAR(30),
city CHAR(20),
zip INTEGER

);

CREATE TYPE BarType AS (
name CHAR(20),
addr AddrType

);

• Problem: how can we sort all bars alphabetically?
• Need a way to compare the objects

NOTE 1:NOTE 1:
the addr attribute of the
UDT BarType has changed
to an own UDT – composite
types

29
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations:New Operations:
Comparing Objects (revisited) Comparing Objects (revisited) –– lexicographicallexicographical orderingordering

• First, the UDT AddrType:
CREATE ORDERING FOR AddrType
ORDER FULL BY RELATIVE WITH AddrComp;

CREATE FUNCTION AddrComp (
IN x1 AddrType,
IN x2 AddrType

) RETURNS INTEGER
IF x1.city() < x2.city() THEN RETURN(-1)
ELSEIF x1.city() > x2.city() THEN RETURN(1)
ELSEIF x1.street() < x2.street() THEN RETURN(-1)
ELSEIF x1.street() > x2.street() THEN RETURN(1)
ELSERETURN(0)
END IF;

NOTE 1:NOTE 1:
all comparison operators
may be applied
NOTE 2:NOTE 2:
comparison is performed in
function AddrComp
NOTE 3:NOTE 3:
we first compare city, if
equal we look at street

NOTE 4:NOTE 4: if x1.a > x2.a return 1

NOTE 5:NOTE 5: if x1.a < x2.a return -1
NOTE 6: if all x1.a = x2.a return 0
NOTE 7:NOTE 7: has to use observer methods to get value

30
27.2.2007 – Naci Akkøk

SQLSQL--99 99 –– New Operations: New Operations:
Comparing Objects (revisited) Comparing Objects (revisited) –– lexicographicallexicographical orderingordering

• Second, the UDT BarType:
CREATE ORDERING FOR BarType
ORDER FULL BY RELATIVE WITH BarComp;

CREATE FUNCTION BarComp (
IN x1 BarType,
IN x2 BarType

) RETURNS INTEGER
IF x1.name() < x2.name() THEN RETURN(-1)
ELSEIF x1.name() > x2.name() THEN RETURN(1)
ELSEIF x1.addr() < x2.addr() THEN RETURN(-1)
ELSEIF x1.addr() > x2.addr() THEN RETURN(1)
ELSERETURN(0)
END IF;

NOTE 1:NOTE 1:
all comparison operators
may be applied

NOTE 2:NOTE 2:
we first compare name, if
equal we look at addr

NOTE 3:NOTE 3:
as the addr itself is a UDT, it will again use
the its own comparison function AddrComp

31
27.2.2007 – Naci Akkøk

SQLSQL--99 BBS Example: Using Methods 99 BBS Example: Using Methods –– I I

NOTE 1:NOTE 1:
tip is given in percent

NOTE 2:NOTE 2:
the value returned is the
price, found by using SELF,
increased by p percent
(FLOAT)

NOTE 3:NOTE 3:
create table sells from
UDT MenuType

• Example:
add method for retrieving price including tip
CREATE TYPE MenuType AS (

bar REF(BarType) SCOPE Bars,
beer REF(BeerType) SCOPE Beers,
price FLOAT

)
METHOD priceTip (IN p float)
RETURNS FLOAT;

CREATE METHOD priceTip (p float)
RETURNS FLOAT FOR MenuType
BEGIN

RETURN (1 + p) * SELF.price;
END;
CREATE TABLE Sells OF MenuType;

32
27.2.2007 – Naci Akkøk

SQLSQL--99:99:
BBS Example: Using Methods BBS Example: Using Methods –– IIII

NOTE 1:NOTE 1:
Renaming
allowed

11

NOTE 2:NOTE 2:
since beer and bar are
references we have to use

22

22

NOTE 3:NOTE 3:
bar is a reference to an object whose
type is a UDT. However, the value

33

44

44
44 55

• Example:
find beers and price with and without tip on “Joe’s” bar
SELECT s.beer->name(),s.price(),s.priceTip(0.15)
FROM Sells s
WHERE s.bar->name() = ‘Joe’’s’

the -> operator returned by the name() observer
method is a text string. Thus, NO
comparison operators have to be defined
– use only traditional text comparison

NOTE 4:NOTE 4:
since Sells objects have a UDT type
and beer and bar are references to
objects whose types are UDTs, we must
use observer methods to retrieve the
attribute values

NOTE 5:NOTE 5:
methods are applied using “dot”
notation

	SQL-99
	Overview
	SQL Development
	SQL-99:� User-Defined Types
	SQL-99:� Defining UDTs
	SQL-99:� Bar–Beer–Sell (BBS) Example: Defining UDTs
	SQL-99:� Creating Tables – I
	SQL-99:� BBS Example: Creating Tables
	SQL-99:�References – I
	SQL-99:� References – II
	SQL-99:� BBS Example: References – I
	SQL-99:� BBS Example: References – II
	SQL-99:� References – III
	SQL-99:� Methods – I
	SQL-99:� Methods – II
	SQL-99:� Methods: Declaration
	SQL-99:� Methods: Definitions
	SQL-99 Example Methods:�Declarations and Definitions – I
	SQL-99:� New Operations
	SQL-99 – New Operations: �Following References – I
	SQL-99 – New Operations: �Following References – II
	SQL-99 – New Operations: �Accessing UDT Attributes
	SQL-99 – New Operations: �Creating Data Elements
	SQL-99 – New Operations: �Updating Data Elements
	SQL-99 – New Operations Example:�Creating and Updating Data Elements
	SQL-99 – New Operations: �Comparing Objects – I
	SQL-99 – New Operations: �Comparing Objects – II
	SQL-99:� UDTs (revisited) – Type of a Column
	SQL-99 – New Operations:�Comparing Objects (revisited) – lexicographical ordering
	SQL-99 – New Operations: �Comparing Objects (revisited) – lexicographical ordering
	SQL-99 BBS Example: Using Methods – I
	SQL-99:� BBS Example: Using Methods – II

