
XML Query Languages:XML Query Languages:
XQUERYXQUERY

Contains slides made by
Naci Akkøk, Pål Halvorsen, Arthur M. Keller, Vera Goebel

Page 2
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Querying XML DataQuerying XML Data

• “The goal of the XML Query WG is to produce a data model for XML documents, a
set of query operators on that data model, and a query language based on these query
operators.“

• XML query languages: XPATH, XPOINTER, and XQUERY

• XQUERY (see: http://www.w3.org/TR/xquery/):

• is an emerging standard for querying XML documents

• strongly influenced by OQL

• XQUERY is a functional language in which a query is represented as an
expression (opposed to OQL and SQL which are declarative)

• XQUERY expressions can be nested

• filters can strip out fields

• grouping

Page 3
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY XQUERY –– I I
• XQUERY provides a FLWR expression:

• F – FOR: associates with variables, creating an ordered
sequence of tuples drawn form the cartesian product of the
variables. It iterates through a sequence of individual nodes
out of the selected collection, in order, one at a time

• L – LET: binds a variable directly to an entire expression
– to the set of nodes in the selected collection

• W – WHERE: predicates used on bound variables, used as a
filter for the tuples generated by the FOR and LET clauses

• R – RETURN: contains an expression that is used to
construct the result from the whole FLWR expression.
Invoked for every tuple generated by the FOR and LET
clauses, but after eliminating any tuples in the WHERE
clause

Page 4
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
FLWR expressions FLWR expressions –– I I

• FLWR expressions:
(FORexpr | LETexpr)+ WHEREclause? RETURNexpr

• FORexpr: FOR variable IN expression (, variable IN expression)*
• LETexpr: LET variable := expression (, variable := expression)*
• WHEREexpr: WHERE expression
• RETURNexpr: RETURN expression

NOTE 1:NOTE 1:
FOR and / or LET appear
one or more times

NOTE 2:NOTE 2:
WHERE clauses
are optional

NOTE 3:NOTE 3:
a RETURN clause is
always present

Page 5
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
FLWR Examples FLWR Examples –– I I

• Example 1:
LET $a := (1, 2, 3)
RETURN <out>{$a}</out>

• Example 2:
FOR $a IN (1, 2, 3)
RETURN <out>{$a}</out>

Output:
<out>1 2 3</out>

Output:
<out>1</out>
<out>2</out>
<out>3</out>

NOTE 1a:NOTE 1a:
the variable $a is bound to the expression
(1, 2, 3). LET clause generates one
tuple containing the variable binding of $a

NOTE 1b:NOTE 1b:
one might add tags in the output, i.e., in the
RETURN clause

NOTE 2:NOTE 2:
the variable $a is associated with the
expression (1, 2, 3)from which the
variable bindings of $a will be drawn, i.e.,
$a will be processed in such a way that the
value of $a will be bound for each element
in the expression – in this case three times

Page 6
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
FLWR Examples FLWR Examples –– II II

• Example 3:
FOR $a IN (1, 2),

$b IN (a, b)
RETURN <out>

<a>{$a} {$b}
</out>

Output:
<out>

<a>1 a
<a>1 b
<a>2 a
<a>2 b

</out>

NOTE 3a:NOTE 3a:
we may have multiple FOR clauses, each
variable associated with an expression

NOTE 3b:NOTE 3b:
the tuples are drawn from the cartesian
product of the sequence returned in FOR,
i.e., cartesian product of $a and $b.

NOTE 3c:NOTE 3c:
the order of the tuples are the order of
which they were formed – from left to
right and variable $a before $b

Page 7
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
FLWR expressions FLWR expressions –– IIII

• FOR and LET clauses operate on sets
• Sets of elements can be described by paths, consisting of:

1. URL or file name, e.g.,
$ba IN document(“bars.xml”) – “bars.xml” contain data for
$ba

2. elements forming a path in the semi-structured data graph, e.g.,
//BAR/NAME – start at any BAR node and go to a NAME child

3. ending condition of the form the path
[<sub-elements conditions, @attributes, and values>], e.g.,
//BAR/BEER/[NAME = “Bud”] – beer elements in a bar where
there is a beer named “Bud”
//BAR[@TYPE = “Sports”] – bar elements whose attribute
named type has value “Sports”

4.

Page 8
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
BBS Example BBS Example –– II

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars SYSTEM "bar.dtd">

<BARS>
<BAR type = "sports">

<NAME>Joe's</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR type = "sushi">

<NAME>Homma's</NAME>
<BEER><NAME>Sapporo</NAME>

<PRICE>4.00</PRICE></BEER>
</BAR> ...

</BARS>

Page 9
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
BBS Example BBS Example –– IIII

• Example:
find the names of “sports bars” serving “Bud”

• FLWR Query:
FOR $ba IN document(“bars.xml”)//BAR[@type = "sports"],
WHERE $ba/BEER/[NAME = “Bud”]

RETURN <out>$ba/NAME/text()</out>;

NOTE 1:NOTE 1:
$ba is assosiated with data
present in the “bars.xml”
file

NOTE 2:NOTE 2:
Start at BAR nodes, i.e.,
select only those
elements for $ba

NOTE 3:NOTE 3:
Further reduce the number of
elements to only those bars
which is a “sports” bar

NOTE 4:NOTE 4:
select only those bars from
the collection $ba that
have beer named “bud”

NOTE 5: NOTE 5:
return the name of the bar

NOTE 6: NOTE 6:
the text() function retrieves
the text (name) between the
name-tags inside the bar-tag

Page 10
INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XQUERY:XQUERY:
BBS Example BBS Example –– IIIIII

• Query: find the names of “sports bars” serving “Bud”
FOR $ba IN document(“bars.xml”)//BAR[@type = "sports"],
WHERE $ba/BEER/[NAME = “Bud”]
RETURN <out>$ba/NAME/text()</out>;

• XML-file containing data (bars.xml):
<?XML VERSION = "1.0" STANDALONE = "no"?>
<!DOCTYPE Bars SYSTEM "bar.dtd">
<BARS>

<BAR type = "sports">
<NAME>Joe's</NAME>
<BEER><NAME>Bud</NAME><PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME><PRICE>3.00</PRICE></BEER>

</BAR>
<BAR type = "sports">

<NAME>Mary's</NAME>
<BEER><NAME>Miller</NAME><PRICE>3.50</PRICE></BEER>

</BAR>
<BAR type = "sushi">

<NAME>Homma's</NAME>
<BEER><NAME>Sapporo</NAME><PRICE>4.00</PRICE></BEER>

</BAR> ...
</BARS>

11

11

11

22

22

33

Output:
<out>Joe’s</out>

33

