
26.2.2008 – Ragnar Normann

SQL-99SQL-99

The SThe Standard Language for antandard Language for an
ORDBMS (Object-Relational DBMS)ORDBMS (Object-Relational DBMS)

Contains slides made by
Naci Akkøk, Pål Halvorsen, Arthur M. Keller, Vera Goebel

Edited by Ragnar Normann

UNIVERSITETET
I OSLO

© Institutt for Informatikk

226.2.2008 – Ragnar Normann

Object-Relational Object-Relational Database SystemsDatabase Systems
(ORDBS)(ORDBS)

• Motivations
• Allow DBMS to deal with specialized types

 – maps, signals, images, etc.
 – with their own specialized methods

• Support specialized methods even on conventional
relational data

• Support structure more complex than “flat files”
• …

 Object-oriented ideas enter the relational world
• Keep the relation as the fundamental abstraction

whereas the OODBS use the class as the fundamental
abstraction

326.2.2008 – Ragnar Normann

ORDBS: New FeaturesORDBS: New Features

• Structured types
• Not only atomic types
• ODL-like type system

(Also: BLOB, CLOB, ADT, BFILE)
• Methods

Special operations can be defined for a type
• Identifiers

Allowing unique IDs for each tuple
• References

Pointers to tuples

426.2.2008 – Ragnar Normann

Nested Relations Nested Relations in an ORDBSin an ORDBS
• Attributes may have non-atomic types

• Nested-relational data models give up 1NF (atomic values)
• A relation’s type can be any schema consisting of one or more attributes

An attribute may even have an own schema as type
• Example:

moviestar(name, address(street,city), birth, movies(title,year))

8/8/1962Hamill

9/9/1950Fisher

moviebirthaddressname

New York5. Avenue

HollywoodMaple

citystreet

LASunset Bvld

citystreet

1980Empire

1977Star Wars

yeartitle

1983Return

1977Star Wars

yeartitle

526.2.2008 – Ragnar Normann

References References in an ORDBSin an ORDBS –– I I

8/8/1962Hamill

9/9/1950Fisher

moviebirthaddressname

New York5. Avenue

HollywoodMaple

citystreet

LASunset Blvd

citystreet

1980Empire

1977Star Wars

yeartitle

1983Return

1977Star Wars

yeartitle

• Non-normalized relation
• Introduce references to allow a tuple t refer to

a tuple s rather than including s in t

626.2.2008 – Ragnar Normann

References References in an ORDBSin an ORDBS –– II II

8/8/1962Hamil

9/9/1950Fisher

moviebirthaddressname

New York5. Avenue

HollywoodMaple

citystreet

LASunset Bvld

citystreet

1980Empire

1883Return

1977Star Wars

yeartitle

• If attribute A has a type that is a reference to a relation with
schema R, we denote A as A(*R)

• If A is a set of references, we denote A as A({*R})
• Example:

moviestar(name, address(street,city), birth, movie({*movies}))
movies(title,year)

726.2.2008 – Ragnar Normann

SQL DevelopmentSQL Development
• SQL-86  SQL-89 (SQL1)
• SQL-92 (SQL2):

• executable DDL
• outer join
• cascaded update and delete
• temporary table
• set operations: union, intersection, difference
• domain definitions in schemes
• new built-in data types
• dynamic SQL via PREPARE and

EXECUTE statements
• transaction consistency levels
• deferred constraint locking
• scrolled cursors
• SQL diagnostics

• SQL-99 (SQL3): SQL-92 + extensions

SQL1
SQL2

SQL3

NOTE 2:NOTE 2:
we are focusing
on some of these
extensions today

NOTE 1:NOTE 1:
SQL-99 contains
the functions
from SQL-92

826.2.2008 – Ragnar Normann

User-Defined TypesUser-Defined Types

• As in previous SQL-standards, relations are still the core
abstraction in SQL-99

• Classes from ODL are “translated” into
User-Defined Types (UDTs)

• SQL-99 allows UDTs to play a dual role:
1. They can be the types of relations (tables), i.e.,

the type of their tuple (sometimes called a row type)
2. They can be the type of an attribute in a relation

926.2.2008 – Ragnar Normann

Defining Defining UDTsUDTs

• UDTs are analogous to ODL class declarations, but
• key declarations are not part of the UDT –

they are part of the table declaration
• relationships are not properties –

they must be represented by their own tables
• A simple form of a UDT consists of

• keyword CREATE TYPE
• name
• keyword AS
• a parenthesized, comma-separated list of attribute-type pairs
• a comma-separated list of methods including argument and return type

• Syntax: CREATE TYPE T AS(< list of attribute-type pairs>)
< list of methods>;

1026.2.2008 – Ragnar Normann

BarBar––BeerBeer––Sell (BBS) Example: Defining Sell (BBS) Example: Defining UDTsUDTs

CREATE TYPE BarType AS
(

name CHAR(20),
addr CHAR(20)

);

CREATE TYPE BeerType AS
(

name CHAR(20),
manf CHAR(20)

);

NOTE 1:NOTE 1:
keyword CREATE TYPE

NOTE 2:NOTE 2:
a name of the UDT

NOTE 3:NOTE 3:
keyword AS

NOTE 4:NOTE 4:
parenthesized, comma-separated list
of attribute-type pair

NOTE 5:NOTE 5:
additionally we may have methods
(will be added later)

1126.2.2008 – Ragnar Normann

Creating Tables Creating Tables –– I I

• UDTs do not declare relations, but we might declare one (or more)
relations whose tuples are the type of an UDT

• A simple form of relations defined from a UDT consists of
• keyword CREATE TABLE
• name
• keyword OF
• name of UDT

• Syntax: CREATE TABLE S OF T

• A relation must declare a key as keys are not part of the UDT
• Syntax: CREATE TABLE S OF T (

PRIMARY KEY(<list of key attributes>)
);

1226.2.2008 – Ragnar Normann

BBS Example: Creating TablesBBS Example: Creating Tables

CREATE TYPE BarType AS
(name CHAR(20),

addr CHAR(20)
);
CREATE TYPE BeerType AS
(name CHAR(20),

manf CHAR(20)
);
CREATE TABLE Bars OF BarType
(PRIMARY KEY (name)
);
CREATE TABLE Beers OF BeerType
(PRIMARY KEY (name)
);

NOTE 1:
keyword OF and name of UDTs are used in
place of element lists in CREATE TABLE
statements

NOTE 2:
primary key is defined by the keywords
PRIMARY KEY followed by a
parenthesized, comma-separated list of key
attributes

NOTE 3:
other elements of a table declaration may be
added similarly, e.g., foreign keys, tuple
based constrains, etc., which apply to this
table only, not the UDT

NOTE 4:
usually we have one relation per UDT, but
we may have several

1326.2.2008 – Ragnar Normann

References References –– I I

• If a table is created using a UDT, we may have a reference
column serving as an identity
• it can serve as a primary key
• it can be a system generated, unique value

• To refer to tuples in a table with a reference column, an
attribute may have as type a reference to another type
• If T is a UDT, then REF(T) is the type of a reference to a
T object

• Unlike OODBS, references are values that can be seen by
queries

1426.2.2008 – Ragnar Normann

References References –– II II

• For a reference attribute to be able to refer to a relation, the
relation must be referenceable

• A table is made referenceable by including a clause in the table
declaration (this not part of the UDT)

• Syntax: REF IS <attribute name> <generated>
• The <attribute name> will serve as the object identifier
• The <generated> is telling how the id is generated, either:

• SYSTEM GENERATED, the DBMS maintains a unique
value in this column for each tuple

• DERIVED, the DBMS uses the primary key of the relation
to produce unique values for each tuple

1526.2.2008 – Ragnar Normann

BBS Example: References BBS Example: References –– I I

CREATE TYPE BarType AS (
name CHAR(20),
addr CHAR(20),
bestSeller REF(BeerType) SCOPE Beers

);
CREATE TYPE BeerType AS (

name CHAR(20),
manf CHAR(20)

);
CREATE TABLE Bars OF BarType (

PRIMARY KEY (name)
);
CREATE TABLE Beers OF BeerType (

REF IS beerID SYSTEM GENERATED
PRIMARY KEY (name)

);

NOTE 1:NOTE 1:
bestSeller is a reference
to a BeerType object

NOTE 2:NOTE 2:
bestSeller must refer to
objects in the Beers relation
whose type is BeerType

NOTE 3:NOTE 3:
the relation Beers must be
referenceable

NOTE 4:NOTE 4:
the “ID” is system generated

NOTE 5:NOTE 5:
only single references are
possible this way, not sets

1626.2.2008 – Ragnar Normann

BBS Example: References BBS Example: References –– II II

CREATE TYPE BarType AS
(name CHAR(20),

addr CHAR(20)
);

CREATE TYPE BeerType AS
(name CHAR(20),

manf CHAR(20)
);

CREATE TYPE MenuType AS
(bar REF(BarType),

beer REF(BeerType)
);

NOTE 1:
Bars sell beers (and beers are sold at bars),
but we cannot directly represent this SET
relationship in type bar and beer as in ODL

NOTE 3:
if the relationship has properties as price,
even in ODL we must have a separate class

NOTE 2:
we need a separate relation to represent such
sets, with references to the two types (possibly
with a scope)

Bars BeersSell

price

Sell

1726.2.2008 – Ragnar Normann

References References –– III III

• References may be given a scope, i.e., the name of the relation
to whose tuples are referred to

• Syntax: S REF(T) SCOPE R -
(an attribute S of type REF(T) refers to a tuple in relation R)

• If no scope is given, the reference can go to tuples of any
relation of type T

• Example

CREATE TYPE MenuType AS (
bar REF(BarType) SCOPE Bars,
beer REF(BeerType) SCOPE Beers,
price FLOAT

);

NOTE:NOTE:
Bars and Beers are
relations defined using the
BarType and
BeerType, respectively

1826.2.2008 – Ragnar Normann

Methods Methods –– I I

• UDTs can have associated methods.
They work on objects whose type is the UDT
(applied on tuples)

• They are similar to Persistent Stored Modules (PSM), which
are general purpose functions allowed to be stored together with
the schema and used in SQL (described in Chapter 8)

• There are two ways to define methods. They may be
• declared in the UDT using a METHOD clause
• defined separately in a CREATE METHOD statement

1926.2.2008 – Ragnar Normann

Methods Methods –– II II

• There is a special tuple variable SELF that refers to that object
to which the method is applied, i.e.,
can use SELF.a to access the object attribute a

• In the method declaration, arguments need a mode, like IN,
OUT, or INOUT, but the mode does not appear in the definition.

• Many methods will take no arguments (relying on SELF)
• All methods must return a value of some type
• A method is applied using “dot”, e.g.,
t.updatePrice(...)

2026.2.2008 – Ragnar Normann

Methods: DeclarationMethods: Declaration

• A declaration of a method for a UDT consists of
• keyword METHOD
• name of the method
• keyword RETURNS
• the return type

• Declaration syntax:
METHOD <name> RETURNS <return type>;

2126.2.2008 – Ragnar Normann

Methods: DefinitionsMethods: Definitions

• A definition of a method for a UDT consists of
• keywords CREATE METHOD
• name of the method including arguments and their type
• keyword RETURNS and the return type
• keyword FOR and the name of the UDT in which the

method is declared
• body of the method (as PSM functions)

• Definition syntax (body):
CREATE METHOD <name> RETURNS <return type> FOR <name of UDT>
BEGIN

<method body>
END

2226.2.2008 – Ragnar Normann

Methods: Declaration and DefinitionMethods: Declaration and Definition ExampleExample

CREATE TYPE MenuType AS (

bar REF(BarType) SCOPE Bars,
beer REF(BeerType) SCOPE Beers,
price FLOAT

)

METHOD updatePrice (IN p float)
RETURNS BOOLEAN;

CREATE METHOD updatePrice
(p float)

RETURNS BOOLEAN FOR MenuType
BEGIN

 <body>
END;

NOTE 1:
Declaration in UDT

NOTE 2:
Definition separately, outside the UDT

NOTE 3:
parameters, mode only in declaration

NOTE 4:
the body is written in the same
language as the PSM functions, e.g.,
SQL/PSM used in the book

NOTE 5:
can use built-in SELF

NOTE 6:
p necessary, as it is used to change the
value of the price attribute, e.g., p is
added to SELF.price

2326.2.2008 – Ragnar Normann

 New Operations in SQL-99 New Operations in SQL-99

• All appropriate SQL operations applying to tables defined
using UDTs are allowed, but there are also some new features:
• using references
• accessing UDT attributes
• creating UDT objects
• order relationships

2426.2.2008 – Ragnar Normann

Following References Following References –– I I

• If x is a value of type REF(T), then x refers to some tuple t of
type T

• The attributes of tuple t can be obtained by using
the -> operator
• essentially as in C
• if x is a reference to tuple t and a is an attribute in t,

then x->a is the value if attribute a in t
• Example: Find the beers served at “Joe’s”

SELECT beer->name
FROM Sells
WHERE bar->name = 'Joe''s';

NOTE 1:
Sells is a table with
MenuType as type

NOTE 3:
single-quoted strings

NOTE 2:
the attributes of a tuple
is accessed using the
-> operator

2526.2.2008 – Ragnar Normann

Following References Following References –– II II

• The tuple t can be obtained by using the DEREF operator if x
is a reference

• Example:
Find the bars (all attributes) serving “Bud”
 SELECT DEREF(bar)

FROM Sells
WHERE beer->name = 'Bud';

NOTE 1:
Bar is reference to a
tuple in table Bars

NOTE 2:
DEREF(bar) gets the
referenced tuples

NOTE 3:
SELECT bar, without DEREF, would return only
system-generated values serving as the IDs of the
tuples – not the information in the tuples themselves

SELECT bar
From Sells
Where beer->name = ‘Bud’;

2626.2.2008 – Ragnar Normann

Accessing UDT AttributesAccessing UDT Attributes
• A tuple defined by a UDT is analogous to an object – not a list

of components corresponding to the attributes of a UDT
• Example:

the relation bars is defined using the UDT barType
• this UDT has two attributes, i.e., name and addr,
• a tuple t in bars has only one component, i.e., the object

itself
• Every UDT has implicitly defined observer methods for each

attribute.
• x() is the name of the observer method for an attribute x
• returns the value of attribute x in the UDT
• is applied as all other methods on this UDT, i.e., using “dot”
• if t is of UDT type T and x is an attribute of T, then t.x()

is the value of x in t

2726.2.2008 – Ragnar Normann

Creating Data ElementsCreating Data Elements

• Generator methods create objects of UDT type T:
• same name as the UDT itself, i.e., T()
• takes no arguments
• invoked without being applied to objects
• returns an object of type T with no values in the various

components

2826.2.2008 – Ragnar Normann

Updating Data ElementsUpdating Data Elements

• Mutator methods update attributes in objects of UDT type T:
• for each attribute x in T, there is a mutator method x(v)
• when applied to an object T, x(v) changes the value of x

to v
• Note: the mutator (x(v)) and observer (x()) methods for an

attribute x have the same name, but only the mutator method
has a parameter

2926.2.2008 – Ragnar Normann

Creating and Updating Data ElementsCreating and Updating Data Elements

• Example:
PSM procedure inserting new bars into the
Bars relation
CREATE PROCEDURE insertBar (

IN n CHAR(20),
IN a CHAR(20)

)
DECLARE newBar BarType;
BEGIN

SET newBar = BarType();
newBar.name(n);
newBar.addr(a);
INSERT INTO Bars VALUES(newBar);

END;

NOTE 2:NOTE 2:
declaration of a variable of type
BarType

NOTE 3:NOTE 3:
newBar is assigned a value of an
empty BarType object using the
BarType() generator method

NOTE 4:NOTE 4: we apply mutator methods for
the attributes in BarType UDT, i.e,
name(n) and addr(a), on the newBar
object using “dot” notation

NOTE 5:NOTE 5: we insert the object newBar of
type BarType into the table Bars. NB!
Simpler ways may exist to insert objects

NOTE 1:NOTE 1:
the UDT BarType has two
attributes, i.e., name and addr,
which are parameters

3026.2.2008 – Ragnar Normann

Comparing Objects Comparing Objects –– I I

• There are no operations to compare two objects whose type is
some UDT by default, i.e, we cannot
• eliminate duplicates
• use WHERE clauses
• use ORDER BY clauses

• SQL-99 allows to specify comparison or ordering using
CREATE ORDERING statements for UDTs

3126.2.2008 – Ragnar Normann

Comparing Objects Comparing Objects –– II II

• Equality for an UDT named T:
CREATE ORDERING FOR T EQUALS ONLY BY STATE
(equal if all corresponding components have the same value)

• Apply all comparison operators for an UDT named T:
CREATE ORDERING FOR T ORDERING FULL BY RELATIVE
WITH F
(all comparison operators - <, <=, >, >=, =, and <> - may be applied on two
objects using an integer function F which must be implemented separately)

Example: < : F(x1, x2) < 0 if x1 < x2
 > : F(x1, x2) > 0 if x1 > x2

= : F(x1, x2) = 0 if x1 = x2
etc.

3226.2.2008 – Ragnar Normann

UDTs UDTs (revisited) (revisited) –– Type of a Column Type of a Column

• A UDT can also be the type of a column
• Example:

Let’s create an address type to use in bars (replacing the string)

CREATE TYPE AddrType AS (
street CHAR(30),
city CHAR(20),
zip INTEGER

);

CREATE TYPE BarType AS (
name CHAR(20),
addr AddrType

);

• Problem: how can we sort all bars alphabetically?
• We need a way to compare the objects

NOTE 1:NOTE 1:
the addr attribute of the
UDT BarType has changed
to an own UDT
– composite types

3326.2.2008 – Ragnar Normann

Comparing Objects Comparing Objects –– lexicographical ordering lexicographical ordering –– I I

• First, the UDT AddrType:
CREATE ORDERING FOR AddrType
ORDER FULL BY RELATIVE WITH AddrComp;

CREATE FUNCTION AddrComp (
IN x1 AddrType,
IN x2 AddrType

) RETURNS INTEGER
IF x1.city() < x2.city() THEN RETURN(-1)
ELSEIF x1.city() > x2.city() THEN RETURN(1)
ELSEIF x1.street() < x2.street() THEN RETURN(-1)
ELSEIF x1.street() > x2.street() THEN RETURN(1)
ELSERETURN(0)
END IF;

NOTE 1:NOTE 1:
all comparison operators
may be applied
NOTE 2:NOTE 2:
comparison is performed in
function AddrComp
NOTE 3:NOTE 3:
we first compare city, if
equal we look at street

NOTE 4:NOTE 4: if x1.a > x2.a return 1

NOTE 5:NOTE 5: if x1.a < x2.a return -1
NOTE 6: if all x1.a = x2.a return 0
NOTE 7:NOTE 7: has to use observer methods to get value

3426.2.2008 – Ragnar Normann

Comparing Objects Comparing Objects –– lexicographical ordering lexicographical ordering –– II II

• Second, the UDT BarType:
CREATE ORDERING FOR BarType
ORDER FULL BY RELATIVE WITH BarComp;

CREATE FUNCTION BarComp (
IN x1 BarType,
IN x2 BarType

) RETURNS INTEGER
IF x1.name() < x2.name() THEN RETURN(-1)
ELSEIF x1.name() > x2.name() THEN RETURN(1)
ELSEIF x1.addr() < x2.addr() THEN RETURN(-1)
ELSEIF x1.addr() > x2.addr() THEN RETURN(1)
ELSERETURN(0)
END IF;

NOTE 1:NOTE 1:
all comparison operators
may be applied

NOTE 2:NOTE 2:
we first compare name, if
equal we look at addr

NOTE 3:NOTE 3:
as the addr itself is a UDT, it will again use
the its own comparison function AddrComp

3526.2.2008 – Ragnar Normann

BBS Example: Using Methods BBS Example: Using Methods –– I I

NOTE 1:NOTE 1:
tip is given in percent

NOTE 2:NOTE 2:
the value returned is the
price, found by using SELF,
increased by p percent
(FLOAT)

NOTE 3:NOTE 3:
create table sells from
UDT MenuType

• Example:
add method for retrieving price including tip
CREATE TYPE MenuType AS (

bar REF(BarType) SCOPE Bars,
beer REF(BeerType) SCOPE Beers,
price FLOAT

)
METHOD priceTip (IN p float)
RETURNS FLOAT;

CREATE METHOD priceTip (p float)
RETURNS FLOAT FOR MenuType
BEGIN

RETURN (1 + p) * SELF.price;
END;
CREATE TABLE Sells OF MenuType;

3626.2.2008 – Ragnar Normann

BBS Example: Using Methods BBS Example: Using Methods –– II II

NOTE 1:NOTE 1:
Renaming
allowed

11

NOTE 2:NOTE 2:
since beer and bar are
references we have to use
the -> operator

22

22

NOTE 3:NOTE 3:
bar is a reference to an object whose
type is a UDT. However, the value
returned by the name() observer
method is a text string. Thus, NO
comparison operators have to be defined
– use only traditional text comparison

33

NOTE 4:NOTE 4:
since Sells objects have a UDT type
and beer and bar are references to
objects whose types are UDTs, we must
use observer methods to retrieve the
attribute values

44

44

NOTE 5:NOTE 5:
methods are applied using “dot”
notation

44 55

• Example:
find beers and price with and without tip on “Joe’s” bar
SELECT s.beer->name(),s.price(),s.priceTip(0.15)
FROM Sells s
WHERE s.bar->name() = ‘Joe’’s’

3726.2.2008 – Ragnar Normann

Data Models &Data Models &
Database System ArchitecturesDatabase System Architectures

- Chronological Overview -- Chronological Overview -

• Network Data Models (1964)
• Hierarchical Data Models (1968)
• Relational Data Models (1970)
• Object-oriented Data Models (~ 1985)
• Object-relational Data Models (~ 1990)
• Semistructured Data Models (XML 1.0) (~1998)

3826.2.2008 – Ragnar Normann

OODBS vs. ORDBS - IOODBS vs. ORDBS - I

Two ways to integrate object-orientation into DBS
Both directions (OODBS and ORDBS) are also reflected in the
standard developments

Several vendors:
commercial OODBS:
- GemStone
- O2 (now: Ardent)
- ObjectivityDB
- ObjectStore
- ONTOS
- POET
- Versant
- ...

commercial ORDBS:
- ORACLE
- Sybase
- Illustra
- UNISQL
- ...

3926.2.2008 – Ragnar Normann

OODBS vs. ORDBS - IIOODBS vs. ORDBS - II
• Objects/tuples:

Both objects and tuples are structs with components for attributes and
relationships

• Extents/relations:
Both may share the same declaration among several collections

• Methods:
Both has the same ability to declare and define methods associated with a type

• Type systems:
Both are based on atomic types and constructions of new types by structs and
collection types

• References/OID:
OODBS OID hidden – ORDBS ID visible (may be part of type)

• Backwards Compatibility:
Migrating existing applications to an OODBS require extensive rewriting, but
ORDBSes have maintained backward compatibility

4026.2.2008 – Ragnar Normann

OODBS vs. ORDBS - IIIOODBS vs. ORDBS - III
OODBS:

• simpler way for programmers to use
DBS (familiar with OOPLs)

• “seamlessness”, no “impedance
mismatch”

• OO functionality + DBS functionality
 higher performance for specific
applications

• “revolutionary” approach, no legacy
problems

• ...

ORDBS:
• substancial investment in SQL-based

relational DBSs
 evolutionary approach

• systems are more robust due to many
years of usage and experience

• application development tools

• transaction processing performance

• ...

Prediction: both kinds of systems will exist, used for different kinds of applications

