SQL-99

The Standard Language for an
ORDBMS (Object-Relational DBMS)

Contains slides made by
Naci Akkek, Pal Halvorsen, Arthur M. Keller, Vera Goebel
Edited by Ragnar Normann

26.2.2008 - Ragnar Normann © Institutt for Informatikk

Object-Relational Database Systems
(ORDBS)

« Motivations

- Allow DBMS to deal with specialized types
— maps, signals, images, etc.
— with their own specialized methods

« Support specialized methods even on conventional
relational data

« Support structure more complex than “flat files”

= Object-oriented ideas enter the relational world

- Keep the relation as the fundamental abstraction
whereas the OODBS use the class as the fundamental
abstraction

26.2.2008 - Ragnar Normann

ORDBS: New Features

Structured types
 Not only atomic types

« ODL-like type system
(Also: BLOB, CLOB, ADT, BFILE)

Methods
Special operations can be defined for a type

Identifiers
Allowing unique IDs for each tuple

References
Pointers to tuples

26.2.2008 - Ragnar Normann

Nested Relations in an ORDBS

Attributes may have non-atomic types
« Nested-relational data models give up 1NF (atomic values)

« A relation’s type can be any schema consisting of one or more attributes
An attribute may even have an own schema as type

Example:
moviestar (name, address(street,city), birth, movies(title, year))
name address birth movie
street city EVENE year
Star Wars 1977
Fisher iz R A 9/9/1950 . 1050
5. Avenue New York Tpire
title year
street city Star Wars 1977
Hamill Sunset Bvld LA 8/8/1962 Return 1983

26.2.2008 - Ragnar Normann

References in an ORDBS -1

« Non-normalized relation

- Introduce references to allow a tuple ¢ refer to
a tuple s rather than including s in ¢

name address birth movie
street city title year
Fisher Maple Hollywood 9/9/1950 Star Wars 1 9;75
5. Avenue New York Empire 1980
street city title year
Hamill Sunset Blvd LA 8/8/1962 Star Wars 1977 >
Return 1983

26.2.2008 - Ragnar Normann

References in an ORDBS — 11

If attribute 4 has a type that is a reference to a relation with

schema R, we denote 4 as A(*R)
If A 1s a set of references, we denote 4 as A({*R})
Example:

moviestar (name, address(street,city), birth, movie ({*movies}))

movies (title, year)

name address birth movie
street city]
title
: Maple Hollywood
Fisher p y 9/9/1950 Star Wars
5. Avenue New York ,
Empire
street city Return

Hamil Sunset Bvld LA 8/8/1962

year
1977
1980

1883

26.2.2008 - Ragnar Normann

. SQL-86 > SQL-89 (SQLI)
SQL 92 (SQL2):

SQL Development

executable DDL

SQL1

SQL2

outer join
cascaded update and delete

SQL3

temporary table

set operations: union, intersection, difference
domain definitions in schemes

new built-in data types

dynamic SQL via PREPARE and
EXECUTE statements

transaction consistency levels
deferred constraint locking
scrolled cursors

SQL diagnostics

SQL-99 (SQL3): SQL-92 + extensions

NOTE 1:
SQL-99 contains

the functions
from SQL-92

NOTE 2:

we are focusing
on some of these
extensions today

26.2.2008 - Ragnar Normann

User-Defined Types

As 1n previous SQL-standards, relations are still the core
abstraction in SQL-99

Classes from ODL are “translated” into
User-Defined Types (UDTs)

SQL-99 allows UDTs to play a dual role:

1. They can be the types of relations (tables), 1.¢.,
the type of their tuple (sometimes called a row type)

2. They can be the type of an attribute 1n a relation

26.2.2008 - Ragnar Normann

Defining UDT's

- UDTs are analogous to ODL class declarations, but

 key declarations are not part of the UDT —
they are part of the table declaration

- relationships are not properties —
they must be represented by their own tables

« A simple form of a UDT consists of
« keyword CREATE TYPE
« name
- keyword AS
- a parenthesized, comma-separated list of attribute-type pairs

« a comma-separated list of methods including argument and return type

« Syntax: CREATE TYPE T AS(< list of attribute-type pairs>)
< list of methods>;

26.2.2008 - Ragnar Normann

Bar—Beer—Sell (BBS) Example: Defining UDTs

CREATE TYPE BarType AS
(
name CHAR (20),
addr CHAR (20)

) ;

CREATE TYPE BeerType AS
(

name CHAR (20),

manf CHAR (20)
) ;

NOTE 1:
keyword CREATE TYPE

NOTE 2:
a name of the UDT

NOTE 3:
keyword AS

NOTE 4:
parenthesized, comma-separated list
of attribute-type pair

NOTE 5:
additionally we may have methods
(will be added later)

26.2.2008 - Ragnar Normann

10

Creating Tables — 1

UDTs do not declare relations, but we might declare one (or more)

relations whose tuples are the type of an UDT
A simple form of relations defined from a UDT consists of

- keyword CREATE TABLE

¢ name
- keyword OF

« name of UDT

Syntax: CREATE TABLE S OF T
A relation must declare a key as keys are not part of the UDT
Syntax: CREATE TABLE S OF T (

PRIMARY KEY (<list of key attributes>)
) ;

26.2.2008 - Ragnar Normann

11

BBS Example: Creating Tables

CREATE TYPE BarType AS

(name CHAR (20),
addr CHAR (20)

) ;

CREATE TYPE BeerType AS

(name CHAR(20),
manf CHAR (20)

) ;

CREATE TABLE Bars OF BarType

(PRIMARY KEY (name)

) ;

CREATE TABLE Beers OF BeerType

(PRIMARY KEY (name)

) ;

NOTE 1:
keyword OF and name of UDTs are used in
place of element lists in CREATE TABLE
statements

NOTE 2:

primary key is defined by the keywords
PRIMARY KEY followed by a
parenthesized, comma-separated list of key
attributes

NOTE 3:

other elements of a table declaration may be
added similarly, e.g., foreign keys, tuple
based constrains, etc., which apply to this
table only, not the UDT

NOTE 4:

usually we have one relation per UDT, but
we may have several

26.2.2008 - Ragnar Normann

12

References — 1

. If atable is created using a UDT, we may have a reference
column serving as an identity

. 1t can serve as a primary key
. 1t can be a system generated, unique value

. To refer to tuples in a table with a reference column, an
attribute may have as type a reference to another type

- If T 1sa UDT, then REF (T) 1is the type of a reference to a
T object

- Unlike OODBS, references are values that can be seen by
queries

26.2.2008 - Ragnar Normann

13

References — 11

For a reference attribute to be able to refer to a relation, the
relation must be referenceable

A table 1s made referenceable by including a clause in the table
declaration (this not part of the UDT)

Syntax: REF IS <attribute name> <generated>
The <attribute name> will serve as the object identifier

The <generated> is telling how the 1d 1s generated, either:

« SYSTEM GENERATED, the DBMS maintains a unique
value 1n this column for each tuple

- DERIVED, the DBMS uses the primary key of the relation
to produce unique values for each tuple

26.2.2008 - Ragnar Normann 14

BBS Example: References — 1

CREATE TYPE BarType AS
name CHAR (20),
addr CHAR (20),

bestSeller REF (BeerType)

) ;

CREATE TYPE BeerType AS
name CHAR (20),
manf CHAR (20)

) ;

CREATE TABLE Bars OF BarType

PRIMARY KEY (name)

) ;

CREATE TABLE Beers OF BeerType
REF IS beerID SYSTEM GENERATED

PRIMARY KEY (name)

) ;

(

(

SCOPE Beers

(

(

NOTE 1:
bestSeller is areference
to a BeerType object

NOTE 2:

bestSeller must refer to
objects in the Beers relation
whose type is BeerType

NOTE 3:
the relation Beers must be

referenceable

NOTE 4:
the “ID” 1s system generated

NOTE 5:
only single references are
possible this way, not sets

26.2.2008 - Ragnar Normann

15

BBS Example: References — 11

CREATE TYPE BarType AS

(name CHAR(20),
addr CHAR (20)

) ;

CREATE TYPE BeerType AS
(name CHAR(20),

manf CHAR (20)
) ;

CREATE TYPE MenuType AS
(bar REF (BarType) ,

beer REF (BeerType)
)

Bars Beers

NOTE 1:

Bars sell beers (and beers are sold at bars),
but we cannot directly represent this SET
relationship in type bar and beer as in ODL

NOTE 2:

we need a separate relation to represent such
sets, with references to the two types (possibly
with a scope)

NOTE 3:
if the relationship has properties as price,
even in ODL we must have a separate class

26.2.2008 - Ragnar Normann

16

References — 111

References may be given a scope, 1.€., the name of the relation
to whose tuples are referred to

Syntax: S REF (T) SCOPE R -
(an attribute S of type REF (T) refers to a tuple in relation R)

If no scope is given, the reference can go to tuples of any
relation of type T

Example

CREATE TYPE MenuType AS (NOTE:
bar REF (BarType) SCOPE Bars, B?rt_s "m‘(liBfeezS are .
reiations derine Sin C
beer REF (BeerType) SCOPE Beers, using

. oa BarType and
price BeerType, respectively

) ;

26.2.2008 - Ragnar Normann 17

Methods — 1

- UDTs can have associated methods.
They work on objects whose type is the UDT
(applied on tuples)

« They are similar to Persistent Stored Modules (PSM), which

are general purpose functions allowed to be stored together with
the schema and used in SQL (described in Chapter 8)

 There are two ways to define methods. They may be
. declared in the UDT using a METHOD clause
. defined separately in a CREATE METHOD statement

26.2.2008 - Ragnar Normann 18

Methods — 11

There 1s a special tuple variable SELF that refers to that object

to which the method 1s applied, 1.¢.,
can use SELF' . a to access the object attribute a

In the method declaration, arguments need a mode, like IN,

OUT, or INOUT, but the mode does not appear in the definition.

Many methods will take no arguments (relying on SELF)
All methods must return a value of some type

A method is applied using “dot”, e.g.,
t.updatePrice(...)

26.2.2008 - Ragnar Normann

19

Methods: Declaration

« A declaration of a method for a UDT consists of
- keyword METHOD

- name of the method
« keyword RETURNS
. the return type

 Declaration syntax:
METHOD <name> RETURNS <return type>;

26.2.2008 - Ragnar Normann

20

Methods: Definitions

« A definition of a method for a UDT consists of
- keywords CREATE METHOD
- name of the method including arguments and their type
- keyword RETURNS and the return type

- keyword FOR and the name of the UDT 1n which the
method 1s declared

« body of the method (as PSM functions)
« Definition syntax (body):

CREATE METHOD <name> RETURNS <return type> FOR <name of UDT>
BEGIN

<method body>
END

26.2.2008 - Ragnar Normann 21

Methods: Declaration and Definition Example

CREATE TYPE MenuType AS

bar REF (BarType) SCOPE Bars,
beer REF (BeerType) SCOPE Beers,

price FLOAT
)

METHOD updatePrice (IN p float

RETURNS BOOLEAN;

CREATE METHOD updatePrice

(p float)

RETURNS BOOLEAN FOR MenuType

BEGIN
<body>
END;

(

)

NOTE 1:
Declaration in UDT

NOTE 2:
Definition separately, outside the UDT

NOTE 3:

parameters, mode only in declaration

NOTE 4:

the body is written in the same
language as the PSM functions, e.g.,
SQL/PSM used in the book

NOTE 5:

can use built-in SELF

NOTE 6:

p necessary, as it is used to change the
value of the price attribute, e.g., p is
added to SELF .price

26.2.2008 - Ragnar Normann

22

New Operations in SQL-99

. All appropriate SQL operations applying to tables defined
using UDTs are allowed, but there are also some new features:

. using references
. accessing UDT attributes
. creating UDT objects

. order relationships

26.2.2008 - Ragnar Normann

23

Following References — 1

. If x1s a value of type REF (T), then x refers to some tuple ¢ of

type T

. The attributes of tuple t can be obtained by using

the —> operator

. essentially as in C

NOTE 1:
Sells is atable with
MenuType as type

. 1f x 1s a reference to tuple t and a is an attribute in ¢,

then x->a is the value if attribute a in ¢t

- Example: Find the beers served at “Joe’s”
SELECT beer->name
FROM Sells

WHERE bar->name = 'Joe''s';

NOTE 2:

the attributes of a tuple
1s accessed using the
—> operator

NOTE 3:
single-quoted strings

26.2.2008 - Ragnar Normann

24

Following References — 11

 The tuple t can be obtained by using the DEREF operator if x
1s a reference

- Example:
Find the bars (all attributes) serving “Bud”
SELECT DEREF (bar) NOTE 1:
FROM Sells Bar is reference to a
WHERE beer->name = 'Bud'; tuple in table Bars
SELECT bar NOTE 2:

“» From Sells DEREF (bar) gCtS the
Where beer->name = ‘Bud’ ; referenced tuples
NOTE 3:

SELECT bar, without DEREF, would return only

system-generated values serving as the IDs of the
tuples — not the information in the tuples themselves

26.2.2008 - Ragnar Normann 25

Accessing UDT Attributes

. A tuple defined by a UDT 1s analogous to an object — not a list
of components corresponding to the attributes of a UDT

- Example:
the relation bars 1s defined using the UDT barType

« this UDT has two attributes, 1.e., name and addr,

. atuple t in bars has only one component, 1.¢., the object
itself

- Every UDT has implicitly defined observer methods for each
attribute.

« x () 1s the name of the observer method for an attribute x
« returns the value of attribute x 1in the UDT
. 1s applied as all other methods on this UDT, 1.e., using “dot”

« 1f t 1s of UDT type T and x 1s an attribute of T, then £ . x ()
1s the value of x In t

26.2.2008 - Ragnar Normann 26

Creating Data Elements

« Generator methods create objects of UDT type T:
- same name as the UDT itself, 1.e., T ()
. takes no arguments
. invoked without being applied to objects

. returns an object of type T with no values 1n the various
components

26.2.2008 - Ragnar Normann

27

Updating Data Elements

« Mutator methods update attributes in objects of UDT type T:
« for each attribute x 1n T, there 1s a mutator method x (v)

- when applied to an object T, x (v) changes the value of x
to v

 Note: the mutator (x (v)) and observer (x ()) methods for an
attribute x have the same name, but only the mutator method
has a parameter

26.2.2008 - Ragnar Normann

28

Creating and Updating Data Elements

- Example:

PSM procedure inserting new bars into the

Bars relation NOTE 1:
the UDT BarType has two

attributes, 1.e., name and addr,
which are parameters

CREATE PROCEDURE insertBar (
IN n CHAR(20),
IN a CHAR(20)

) NOTE 2:
DECLARE newBar BarType; <« declaration of a variable of type
BEGIN BarType

SET newBar

~ Bartype 7 NOTE 3:
newBar .name (n) ; V\\\\\\\\\ . _
newBar.addr (a) ; newBar 1s assigned a value of an

INSERT INTO Bars VALUES (newBar); ¢mpty BarType object using the

END; BarType () generator method
NOTE 4: we apply mutator methods for
the attributes in BarType UDT, 1.e, NOTE 5: we insert the object newBar of
name (n) and addr (a), onthe newBar type BarType into the table Bars. NB!
object using “dot” notation Simpler ways may exist to insert objects

26.2.2008 - Ragnar Normann 29

Comparing Objects — 1

 There are no operations to compare two objects whose type 1s
some UDT by default, 1.e, we cannot

. climinate duplicates
« use WHERE clauses
« use ORDER BY clauses

« SQL-99 allows to specify comparison or ordering using
CREATE ORDERING statements for UDTs

26.2.2008 - Ragnar Normann

30

Comparing Objects — 11

« Equality for an UDT named T:
CREATE ORDERING FOR T EQUALS ONLY BY STATE

(equal if all corresponding components have the same value)

« Apply all comparison operators for an UDT named T:
CREATE ORDERING FOR T ORDERING FULL BY RELATIVE
WITH F
(all comparison operators - <, <=, >, >=, =, and <> - may be applied on two
objects using an integer function ¥ which must be implemented separately)

Example: < @ F(x, %) <0 1f x; < x,
> F(X,%,)>0 1f x; > x,
= F(x{,x,)=0 1if x; = x,
etc.

26.2.2008 - Ragnar Normann 31

UDTs (revisited) — Type of a Column

« A UDT can also be the type of a column

- Example:
Let’s create an address type to use in bars (replacing the string)

CREATE TYPE AddrType AS (
street CHAR(30),
city CHAR(20),
zip INTEGER

) ; NOTE 1:
the addr attribute of the
CREATE TYPE BarType AS (UDT BarType has changed
name CHAR(20), to an own UDT

addr AddrType «

— composite types

) ;
- Problem: how can we sort all bars alphabetically?
- We need a way to compare the objects

26.2.2008 - Ragnar Normann 32

Comparing Objects — lexicographical ordering — I

. First, the UDT AddrType: NOTE 1:
CREATE ORDERING FOR AddrType all comparison operators
ORDER FULL BY RELATIVE WITH AddrComp; Y beapplied
NOTE 2:
CREATE FUNCTION Add comparison is performed in
rComp (function AddrComp
IN x1 AddrType, NOTE 3:
IN x2 AddrType we first compare city, if
) RETURNS INTEGER equal we look at street
IF xl.city() < x2.city() THEN RETURN (-1)
ELSEIF xl.city () > x2.city () THEN RETURN (1)
ELSEIF THEN RETURN (1)
ELSERETURN (0) NOTE 5:if x1.a < x2.a return-1
END TIF; NOTE 6: ifall x1.a = x2.a return(

NOTE 7: has to use observer methods to get value

NOTE 4:1fx1.a > x2.areturnl

26.2.2008 - Ragnar Normann 33

Comparing Objects — lexicographical ordering — 11

« Second, the UDT BarType:

CREATE ORDERING FOR BarType ?ﬁ?TEl‘,
ORDER FULL BY RELATIVE WITH BarComp; all comparison operators
may be applied
CREATE FUNCTION BarComp (
NOTE 2:

IN x1 BarType,
IN x2 BarType
) RETURNS INTEGER

we first compare name, if
equal we look at addr

IF X1l.name () < x2.name () THEN RETURN(-1)
ELSETIF X1l.name () > x2.name () THEN RETURN(1)
ELSEIF _ THEN RETURN (-1)
ELSEIF THEN RETURN (1)

ELSERETURN (0)
END TIF; NOTE 3:

as the addr itself is a UDT, it will again use
the its own comparison function AddrComp

26.2.2008 - Ragnar Normann

34

BBS Example: Using Methods — 1

- Example:

add method for retrieving price including tip
CREATE TYPE MenuType AS (
bar REF (BarType) SCOPE Bars,
beer REF (BeerType) SCOPE Beers,
price FLOAT

) NOTE 1:
METHOD priceTip (IN p float) tip 1s given in percent
RETURNS FLOAT;
NOTE 2:

CREATE METHOD priceTip (p float) the value returned is the
RETURNS FLOAT FOR MenuType price, found by using SELF,
BEGIN increased by p percent

RETURN (1 + p) * SELF.price; (FLOAT)
END 7 NOTE 3:
CREATE TABLE Sells OF MenuType; create table se11s from

UDT MenuType

26.2.2008 - Ragnar Normann 35

BBS Example: Using Methods — 11

- Example:
find beers and price with and without tip on “Joe’s” bar

2 4 : .
SELECT s.beer->name(),s.price(),s.priceTip(0.15)
FROM Sells s ¢ >

2 4 3
WHERE s.bar->name () = ‘Joe’’s’
NOTE 1: NOTE 2: NOTE 3:
Renaming since beer and bar are bar 1s a reference to an object whose
allowed references we have to use type 1s a UDT. However, the value
the —> operator returned by the name () observer
NOTE 4: method 1s a text string. Thus, NO

comparison operators have to be defined

since Sells objects have a UDT type O :
— use only traditional text comparison

and beer and bar are references to

objects whose types are UDTs, we must NOTE 5:
use observer methods to retrieve the methods are applied using “dot”
attribute values notation

26.2.2008 - Ragnar Normann 36

Data Models &
Database System Architectures
- Chronological Overview -

Network Data Models (1964)
Hierarchical Data Models (1968)
Relational Data Models (1970)
Object-oriented Data Models (~ 1985)
Object-relational Data Models (~ 1990)

Semistructured Data Models (XML 1.0) (~1998)

26.2.2008 - Ragnar Normann 37

OODBS vs. ORDBS -1

Two ways to integrate object-orientation into DBS
Both directions (OODBS and ORDBY) are also reflected in the
standard developments

Several vendors:

commercial OODBS: commercial ORDBS:
- GemStone - ORACLE

- O2 (now: Ardent) - Sybase

- ObjectivityDB - [llustra

- ObjectStore - UNISQL

- ONTOS - ...

- POET

- Versant

26.2.2008 - Ragnar Normann

38

OODBS vs. ORDBS - 11
Objects/tuples:

Both objects and tuples are structs with components for attributes and
relationships

Extents/relations:
Both may share the same declaration among several collections

Methods:

Both has the same ability to declare and define methods associated with a type

Type systems:
Both are based on atomic types and constructions of new types by structs and
collection types

References/OID:
OODBS OID hidden — ORDBS ID visible (may be part of type)

Backwards Compatibility:
Migrating existing applications to an OODBS require extensive rewriting, but
ORDBSes have maintained backward compatibility

26.2.2008 - Ragnar Normann 39

OODBS vs. ORDBS - 111
OODBS: ORDBS:

. simpler way for programmers to use substancial investment in SQL-based

DBS (familiar with OOPLs) relational DBSs
—> evolutionary approach

. “seamlessness”, no “impedance

mismatch” - systems are more robust due to many

years of usage and experience

. OO functionality + DBS functionality
—> higher performance for specific

applications - transaction processing performance

- application development tools

. “revolutionary” approach, no legacy
problems

Prediction: both kinds of systems will exist, used for different kinds of applications

26.2.2008 - Ragnar Normann 40

