
1

1IKT

INF3120 –
Utvikling av store programsystemer

Arkitektur

Forelesning 6
14.09.2004

Jan Øyvind Aagedal

2IKT

Agenda
Terminology - IEEE
MDA investigated
The importance of “why”
Abstraction
MDA, metanivåer, UML profiler
Kvalitetsdimensjoner
Dokumenteringsråd

2

3IKT

Software Architecture

IEEE Std 1471-2000
Recommended Practice for Architectural Description

Adopted September 2000
For software-intensive systems

Architecture has too long been focussed on hardware-related
issues - IEEE strikes back!

Common frame of reference for architectural descriptions
Common terminology

architecture, architectural description, model, view, viewpoint, system,
stakeholder, concern, …

4IKT

Motivations

Change ctd.
Changes should have limited effects

Do not want to have unknown ripple
effects

Should define the envelope of change
What is allowed to change without
major consequences

Good, old SW engineering principles
still apply!

Loose coupling
High cohesion

Flexibility as a competitive advantage
AT&T vs Sprint

Complexity
SW systems become complex
The context becomes complex

Many usage scenarios
How to convey

Internal structure?
Applicability in different
contexts?

Change
Panta rei

Requirements, underlying
platform, competitors, market,
...

Two major motivations for explicit architecture
Change and Complexity

3

5IKT

Architecture of what?
Virtual
enterprise

Business

Software
system

Software
component

Software
object

Software
architecture

Enterprise
architecture

Decomposition

Bus1
Bus2 Bus3

Bus4

SW syst1
Actor1 Actor2

SW syst2

Decomposition

Comp1
Comp2 Comp3

Comp4

Decomposition

Decomposition

Object1
Object2 Object3

Object4

Datatype1
Datatype2 Operation1

Datatype3

6IKT

Concern

has 1..* identifies
1..*

used to cover
1..*

Viewpoint

Library
viewpoint

0..1has source

selects 1..*
conforms to

establishes methods for
1..*

Model
1..*

aggregates1..*consists of

1..*participates in

View

1..*organized by

participates in

Architectural
description1..*

identifies

1..*is addressed to

1..*
is important to Stakeholder

described byhas1..*

RationaleprovidesArchitecturehas aninfluences

inhabits
Environment System

1..*fulfills

Mission

Those interests which pertain the
system’s development, operation
and other aspects that are critical
or otherwise important to one or
more stakeholders.

Concern

The expression of a systems
architecture with respect to a
particular viewpoint. Addresses
one or more of the concerns of
the system stakeholder.

View

Determines the boundaries that
define the scope of the system of
interest relative to other systems.

Environment RationaleThe Rationale of the architecture.

Library
viewpoint

A viewpoint with
definition originated
elsewhere than in the
architectural description.

Developed using the methods
established by its viewpoint,
consisting of views expressing an
architectural description.

Model

Has interest in, or
concerns relative to the
system.

Stakeholder

Viewpoint

A specification of the
conventions of constructing and
using a view. A pattern or
template from which to develop
individual views.

A collection of products to
document an architecture.

Architectural
description

A collection of components
organized to accomplish a
specific function or set of
functions.

System Architecture

The fundamental organisation of
a system embodied in its
components, their relationships to
each other and to the
environment, and the principles
guiding its design and evolution.

A use or operation for which a
system is intended by one or
more stakeholders to meet some
set of objectives.

Mission

4

7IKT

described by

identifies

SystemEnvironment
influences

inhabits

Mission

Stakeholder

has

fulfills

Architecturehas an

Architectural
description

Concern

is important to

has identifies

ViewViewpointused to cover

is addressed to

selects organized by

conforms to

Modelestablishes methods for

participates in

consists of aggregates

participates in

Library
viewpoint

has source

Rationaleprovides

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

0..1

1..*

1..*

1..*

1..*

Conceptual
Model

8IKT

described by

identifies

SystemEnvironment
influences

inhabits

Mission

Stakeholder

has

fulfills

Architecturehas an

Architectural
description

Concern

is important to

has identifies

ViewViewpointused to cover

is addressed to

selects organized by

conforms to

Modelestablishes methods for

participates in

consists of aggregates

participates in

Library
viewpoint

has source

Rationaleprovides

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

0..1

1..*

1..*

1..*

1..*

IEEE Definitions

Architecture
The fundamental organisation of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and evolution.

Architecture description
A collection of products to document an architecture.

Concern
Those interests which pertain the system’s development, operation
and other aspects that are critical or otherwise important to one or
more stakeholders.

5

9IKT

described by

identifies

SystemEnvironment
influences

inhabits

Mission

Stakeholder

has

fulfills

Architecturehas an

Architectural
description

Concern

is important to

has identifies

ViewViewpointused to cover

is addressed to

selects organized by

conforms to

Modelestablishes methods for

participates in

consists of aggregates

participates in

Library
viewpoint

has source

Rationaleprovides

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

0..1

1..*

1..*

1..*

1..*

IEEE Definitions

Environment
Determines the boundaries that define the scope of the system of
interest relative to other systems.

Library viewpoint
A viewpoint with definition originated elsewhere than in the
architectural description.

Mission
A use or operation for which a system is intended by one or more
stakeholders to meet some set of objectives.

10IKT

described by

identifies

SystemEnvironment
influences

inhabits

Mission

Stakeholder

has

fulfills

Architecturehas an

Architectural
description

Concern

is important to

has identifies

ViewViewpointused to cover

is addressed to

selects organized by

conforms to

Modelestablishes methods for

participates in

consists of aggregates

participates in

Library
viewpoint

has source

Rationaleprovides

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

0..1

1..*

1..*

1..*

1..*

IEEE Definitions

Model
Developed using the methods established by its viewpoint,
consisting of views expressing an architectural description.

Rationale
The Rationale of the architecture.

Stakeholder
Has interest in, or concerns relative to the system.

6

11IKT

described by

identifies

SystemEnvironment
influences

inhabits

Mission

Stakeholder

has

fulfills

Architecturehas an

Architectural
description

Concern

is important to

has identifies

ViewViewpointused to cover

is addressed to

selects organized by

conforms to

Modelestablishes methods for

participates in

consists of aggregates

participates in

Library
viewpoint

has source

Rationaleprovides

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

0..1

1..*

1..*

1..*

1..*

IEEE Definitions

System
A collection of components organized to accomplish a specific
function or set of functions.

View
The expression of a systems architecture with respect to a
particular viewpoint. Addresses one or more of the concerns of the
system stakeholder.

Viewpoint
A specification of the conventions of constructing and using a
view. A pattern or template from which to develop individual views.

12IKT

Defines Evolutionary Envelope
Anticipates likely system changes

Other changes than the anticipated ones are often very
expensive and uncertain

D’Souza & Wills: “Architecture - The set of design decisions
about any system (or smaller component) that keeps its
implementors and maintainers from exercising needless creativity.”

What matters in your system?
You may want to apply relevant patterns to support your
concerns

Built for speed:

Built for extensibility: Mediator

7

13IKT

From Bran Selic at Summer
School on Software

Architecture, Turku, Finland,
August 2001

Architectural Description

14IKT

Why?

Understand the reason, the rationale, the “why” of having the system
you are about to develop. This is the only way that will lead you
towards the ability to discriminate between important and not-so-
important topics.
The “why” spreads over the design. Each part of it has to have a
reason for being the way it is.
Do not underestimate the “power of why”. You should be able to say,
at any stage of development, why did you develop it the way you did.
It is easy to do something just somehow - far more difficult to explain
the reasons for the design decision or to justify them
If you are not able to answer to your inner “why”, do not start to
implement.
You may trial a certain technical solution - it provides feedback for the
design. Try not to make it the basis of your design, however.

From Teemu Vaskivuo, VTT Electronics

8

15IKT

Software architecture is a discipline trying to advance good practices
in software development.

Good practices are such that help in creating good software

What is good software like? (functional, fast, secure, available,
reusable…?)
-> Software has more quality dimensions than just one “good or bad”

Reliability
Performance
Security
Reusability
Availability
Integrability etc…

Some of the dimensions can be improved only at some others’
expense

Why in SW architecture

From Teemu Vaskivuo, VTT Electronics

16IKT

SW architecture, what is it?

All software has an architecture
The architecture may be hidden or might be even unknown. Its final
(and only) complete instance is the compiled binary file running on its
dedicated HW.
A person cannot understand the architecture from the binary file or by
investigating the runtime instance of it. Abstraction is required.
Abstraction requires human intuition, it is difficult (nearly impossible)
to be automated effectively.

The designer is the best person to present an abstraction of his/her
design.
An expert is the best person to present an abstraction of the area of
his/her expertise.
SW developer has to often stretch to the both roles.
How to make a distinction between important and unimportant details?

Experience, practices
Try not to mix different levels of abstraction, if possible

From Teemu Vaskivuo, VTT Electronics

9

17IKT

Abstraction

A piece of software is a collection of abstract structures. The amount of
structures is practically infinite (since there are no limits for performing
abstraction)

It depends on the person creating the abstraction, how many structures he wants to
represent.
It depends on the application, how many structures are needed for a
comprehensive design.

Different structures:
data structures
structures of timely behavior
interaction structures
concurrency structures
transaction structures
component structure
….

None of the structures is THE Architecture. They all try to represent a different
view on it.
Run-time structures are not present until the software is executed, and they
usually exceed human understanding at lower levels, even in information
processing sense

From Teemu Vaskivuo, VTT Electronics

18IKT

Design Practices

Tools: Pen and paper, drawing tool, dedicated design SW
all do fine.
The documentation practice shouldn’t bound the design (I
cannot draw this -> I cannot do this = wrong thinking).
Standards (UML etc.) are for a large group to be able to
understand each other’s work. You don’t have to think in
UML.
Use abstraction, create components, minimise their
relationships.

From Teemu Vaskivuo, VTT Electronics

10

19IKT

Arkitekturer og meta-nivå
Architecture

The fundamental organisation of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and evolution.

20IKT

MDA: “Model driven” - a definition

A system development process is model driven if
the development is mainly carried out using conceptual models at
different levels of abstraction and using various viewpoints
it distinguishes clearly between platform independent and platform
specific models
models play a fundamental role, not only in the initial development
phase, but also in maintenance, reuse and further development
models document the relations between various models, thereby
providing a precise foundation for refinement as well as
transformation

11

21IKT

Metamodels

Metamodels are specifications
models are valid if no false statements according to metamodel
(i.e., well-formed)

Metametamodel
model of metamodels
reflexive metamodel, i.e., expressed using itself

ref. Kurt Gödel
minimal reflexive metamodel

can be used to express any statement about a model

22IKT

Meta levels in OMG

M0 – what is to be modelled (Das Ding an sich)
M1 – Models (Das Ding für mich)

May contain both class/type and instance models

M2 – Metamodels
M3 – The metametamodel

Interpretation (not instantiation!) crosses meta-layers,
theories reside in one layer (e.g., instance models can be
deduced from class models)

12

23IKT

Classification

Dog

Collie

Animal

Living
Being Four Legged

Object

Celebrity

Movie
Star

Lassie

24IKT

Classification Dimensions

Collie

Celebrity

Four Legged
Object

Animal

Dog

Movie Star

Model Element

Instance

Object

Ontological classification
(domain types)

Linguistic classification
(representation form)

13

25IKT

Kinds of metamodels

Two kinds of information of a set of models are modelled
in metamodels

Form (linguistic aspects)
OMG is predominantly occupied with this

Content (ontological aspects)

26IKT

Linguistic metamodelling

LassieCollie

Class Object

Class

represents represents

linguistic ”instance-of” linguistic ”instance-of”

linguistic ”instance-of” linguistic ”instance-of”

instance-of

ontological instance-of

ontological instance-of

L0 (called M0 in OMG)

L1 (called M1 in OMG)

L2 (called M2 in OMG)

L3 (called M3 in OMG)

14

27IKT

Ontological metamodelling

Lassie

Collie Class

Breed

represents linguistic instance-ofO0

O1

O2

O3

Object

Biological rank

ontological ”instance-of”

linguistic instance-of

linguistic instance-of
ontological
”instance-of”

ontological ”instance-of”

ontological ”instance-of”

L1 L2

28IKT

UML profiles

Define the meaning of modelling elements
interpretation, i.e., relate stereotyped classifiers to real world
concepts such as memory, process, resource

Mostly content (ontological), but must relate to form
(linguistic)
Poor expressional power – stereotypes

no relations between O 0/1/2 concepts
cast as form, but is really content

Breed

Class

15

29IKT

Resource model as a UML profile

<<ResourceInstance>>
0xFFFF:LocalCache

ResourceInstance

Class

Resource

represents

ontological
”instance-of”

linguistic
instance-of

00

O1

Object

linguistic
instance-of

Memory
represents

ontological
”instance-of”

L2

<<Memory>>
LocalCache

L1

30IKT

Architecture Description Techniques
ADLs (Architecture Description Languages)

Rapide, UniCon, Wright, Aesop, ArTek, SADL, Meta-H, C-2, ...
Lexical, research-oriented (not widely used)

Lessons learned from the ADL community
Connectors, Interfaces
Multiple representations

Refinement, PIM/PSM
Styles

Domain-specific vocabulary
Impose topology constraints

Visualisation
Domain-specific visual conventions

UML (Unified Modeling Language)
Graphical
Standard, widely used
No agreed set of diagrams to specify system architectures

16

31IKT

Quality of Service Support in
Software Architecture

Architecture defines evolutionary envelope within which
acceptable quality is maintained

But what kind of qualities are affected?

Qualities define the “goodness” of the system (or its
architecture)
Heaps of -ilities

Subjective vs. objective quality
Design-time vs. run-time qualities

32IKT

effectiveness productivity safety

quality in use

satisfaction

ISO 9126 - Software Product Quality

Quality in use - related to a specific context of use
effectiveness – the capability of the software product to enable users
to achieve specified goals with accuracy and completeness in a
specified context of use.
productivity – the capability of the software product to enable users to
expend appropriate amounts of resources in relation to the
effectiveness achieved in the specified context of use.
safety – the capability of the software product to achieve acceptable
levels of risk of harm to people, business, software, property or the
environment in a specified context of use.
satisfaction – the capability of the software product to satisfy users in
a specified context of use.

17

33IKT

ISO 9126 - External and Internal
Quality Metrics

Irrespective of
context of use

functionality reliability usability efficiency maintainability

external and internal quality

portability

suitability
accuracy
interoperability
security

functionality
compliance

maturity
fault tolerance
recoverability

reliability
compliance

understandability
learnability
operability
attractiveness

usability
compliance

time behaviour
resource utilisation

efficiency compliance

analysability
changeability
stability
testability

maintainability
compliance

adaptability
installability
co-existence
replaceability

portability
compliance

34IKT

Functionality

Suitability
The capability of the software
product to provide an
appropriate set of functions for
specified tasks and user
objectives.

Accuracy
The capability of the software
product to provide the right or
agreed results or effects with
the needed degree of
precision.

Interoperability
The capability of the software
product to interact with one or
more specified systems.

Security
The capability of the software
product to protect information
and data so that unauthorised
persons or systems cannot
read or modify them and
authorised persons or systems
are not denied access to them

Functionality compliance
The capability of the software
product to adhere to
standards, conventions or
regulations in laws and similar
prescriptions relating to
functionality.

The capability of the software product to provide functions which meet
stated and implied needs when the software is used under specified
conditions.

18

35IKT

Reliability

Maturity
The capability of the software
product to avoid failure as a
result of faults in the software.

Fault tolerance
The capability of the software
product to maintain a specified
level of performance in cases
of software faults or of
infringement of its specified
interface.

Recoverability
The capability of the software
product to re-establish a
specified level of performance
and recover the data directly
affected in the case of a
failure.

Reliability compliance
The capability of the software
product to adhere to
standards, conventions or
regulations relating to
reliability.

The capability of the software product to maintain specified level
of performance when used under specified conditions.

36IKT

Usability

Understandability
The capability of the software
product to enable the user to
understand whether the
software is suitable, and how it
can be used for particular
tasks and conditions of use.

Learnability
The capability of the software
product to enable the user to
learn its application.

Operability
The capability of the software
product to enable the user to
operate and control it.

Attractiveness
The capability of the software
product to be attractive to the
user.

Usability compliance
The capability of the software
product to adhere to
standards, conventions, style
guides or regulations relating
to usability.

The capability of the software product to be understood, learned,
used and attractive to the user, when used under specified
conditions.

19

37IKT

Efficiency

Time behaviour
The capability of the software
product to provide appropriate
response and processing times
and throughput rates when
performing its function, under
stated conditions.

Resource utilisation
The capability of the software
product to use appropriate
amounts and types of
resources when the software
performs its function under
stated conditions.

Efficiency compliance
The capability of the software
product to adhere to standards
or conventions relating to
efficiency.

The capability of the software product to provide appropriate
performance, relative to the amount of resources used, under
stated conditions.

38IKT

Maintainability

Analysability
The capability of the software
product to be diagnosed for
deficiencies or causes of
failures in the software, or for
the parts to be modified to be
identified.

Changeability
The capability of the software
product to enable a specified
modification to be
implemented.

Stability
The capability of the software
product to avoid unexpected
effects from modifications of
the software.

Testability
The capability of the software
product to enable modified
software to be validated.

Maintainability compliance
The capability of the software
product to adhere to standards
or conventions relating to
usability.

The capability of the software product to be modified.
Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and in
requirements and functional specifications.

20

39IKT

Portability

Adaptability
The capability of the software
product to be adapted for
different specified
environments without applying
actions or means other than
those provided for this purpose
for the software considered.

Installability
The capability of the software
product to be installed in a
specified environment.

Co-existence
The capability of the software
product to co-exist with other
independent software in a
common environment sharing
common resources.

Replaceability
The capability of the software
product to be used in place of
another specified software
product for the same purpose
in the same environment.

Portability compliance
The capability of the software
product to adhere to standards
or conventions relating to
portability.

The capability of the software product to be transferred from one
environment to another.

40IKT

Development-time qualities (from Catalysis)

Affected by architecture:
Modifiability- Can the system be modified efficiently?

E.g., low coupling and high cohesion
Reusability - Are there units in the system that can are candidates
for use elsewhere?

E.g., does the system use standards?
Portability - The ability to change platform

E.g., layering
Buildability - Is it easy to implement?

E.g., use existing frameworks
Testability - Can one easily define test scenarios?

E.g., precise requirement specifications

21

41IKT

Runtime qualities (from Catalysis)

Affected by architecture:
Functionality - does the system assist users in their tasks?
Usability - is it intuitive to use for all users?
Performance - does it perform adequately when running?

E.g., response time, transaction volume, ...
Security - does it prevent unauthorised access?
Reliability and availability - is it available and correct over time?
Scalability - can it cater for increased volume?
Upgradability - can it be upgraded at runtime?

Single key quality: Conceptual integrity of an architecture

42IKT

Quality of Service (QoS)

QoS is a general term that covers system performance,
rather than system operation (i.e., functionality)
Extra-functional properties

degrees of satisfaction as opposed to satisfied / not satisfied

Examples:
availability, reliability, precision, fault-tolerance, capacity,
throughput, delay, …

Most common for multimedia, command and control,
simulations, distributed systems, …
Less common for information systems

there are needs! (transaction-based, security aware, etc.)

22

43IKT

Seven Principles of Sound
Documentation (from Paul Clements, SEI, CMU)

Certain principles apply to all documentation, not just
documentation for software architectures.

1. Write from the point of view of the
reader.

2. Avoid unnecessary repetition.
3. Avoid ambiguity.
4. Use a standard organization.
5. Record rationale.
6. Keep documentation current but

not too current.
7. Review documentation for fitness of purpose.

44IKT

1. Write from the point of view
of the reader.

What will the reader want to know when reading a
document?

Make information easy to find!
Your reader will appreciate your effort
and be more likely to read your
document.

Signs of documentation written for the writer’s
convenience:

stream of consciousness: the order is that in which things occurred
to the writer
stream of execution: the order is that in which things occur in the
computer

23

45IKT

2. Avoid unnecessary repetition.

Each kind of information should be recorded in exactly
one place.

This makes documents easier to use and easier to
change.

Repetition often confuses, because the information is
repeated in slightly different ways. Which is correct?

Question: When is repetition OK?

46IKT

3. Avoid ambiguity.

Documentation is for communicating information and
ideas. If the reader misunderstands, the documentation
has failed.

Precisely-defined notations/languages help avoid whole
classes of ambiguity.

If your documentation uses a graphical language
always include a key
either point to the language’s formal definition or give the meaning
of each symbol. Don’t forget the lines!

24

47IKT

3. Avoid ambiguity (cont’d.)
Box-and-line diagrams are a very
common form of architectural
notation.
But what do they mean?

These do not show an
architecture, but only the beginning of one.

If you use one, always define precisely what the boxes are
and what the lines are.

If you see one, ask the owner what it means. The result is
usually very entertaining.

48IKT

4. Use a standard organization.

Establish it, make sure your documents follow it, and
make sure that readers know what it is.

A standard organization
helps the reader navigate and find information

helps the writer place information and measure work left to be
done

embodies completeness rules, and helps check for validation

25

49IKT

4. Use a standard organization
(cont’d.)

Corollaries:

Organize the documentation for ease of reference.
A document may be read once, if at all.
A successful document will be referred to hundreds or thousands of
times.
Make information easy to find.
Question: How?

Don’t leave incomplete sections blank; mark them “to be
determined”

Question: Why?

50IKT

5. Record rationale.

Why did you make certain design decisions the way you
did?

Next week, next year, or next decade, how will you
remember? How will the next designer know?

Recording rationale requires discipline, but saves
enormous time in the long run.

Record rejected alternatives as well.

26

51IKT

6. Keep documentation current but
not too current.

Keep it current:
Documentation that is incomplete, out of date, does not reflect
truth, and does not obey its own rules for form is not used.
Documentation that is kept current is used.
With current documentation, questions are most efficiently
answered by referring the questioner to the documentation.
If a question cannot be answered with a document, fix the
document and then refer the questioner to it.
This sends a powerful message.

52IKT

6. Keep documentation current but
not too current (cont’d.)

Don’t keep it too current
During the design process, decisions are considered and re-
considered with great frequency.
Revising the documentation every five minutes will result in
unnecessary expense.
Choose points in the development plan when documentation is
brought up to date
Follow a release strategy that makes sense for your project.,

27

53IKT

7. Review documentation
for fitness of purpose

Only the intended users of a document
can tell you if it

contains the right information
presents the information in a useful way
satisfies their needs

Plan to review your documents with representatives of the
groups for whom it was created.

Active design reviews are a good technique.

