

Multimedia

- Combined use of more content forms: text, graphics, audio, video, ...
 - Networks context: multimedia usually means that audio and/or video are used
- Only real-time multimedia of interest
 - Downloading a movie is not much different from downloading a large piece of software (but, note: it's large)
 - Here, "Real-time" means soft real-time
- Requirements differ:
 - one-way streaming media: compensate network fluctuations by buffering;
 buffer size → initial delay + time lag (can be bad for live TV broadcasts...)
 - interactive application: buffer size → delay during usage
 - Often, <u>timely</u> is more important than <u>reliable</u> delivery → avoid retransmissions

Characterizing multimedia streams

Quality of Service (QoS)

- How to support multimedia bandwidth / delay requirements:
 - use special network mechanisms that can do it (QoS)
 - or dimension the network accordingly
- Both approaches cost money
 - Dimensioning: usually less. It's also less risky...
 - Internet QoS was once a big thing (because of notion:
 "value-added services" = more money), but is now a history lesson
 - So we end it here ☺ and assume a non-QoS-Internet from now on
 - Note: perfectly dimensioned networks are also not assumed:
 not very interesting (and not always possible e.g. WiFi)
 - Remember, multimedia content is large; there is never a "good enough"

Transmission modes

Multicast issues

- Required for applications with multiple receivers only
 - video conferences, real-time stream transmission (e.g. radio, TV), ...
- Issues:
 - group management
 - protocol required to dynamically join / leave group:
 Internet Group Management Protocol (IGMP)
 - state in routers: hard / soft (lost unless refreshed)?
 - who initiates / controls group membership?
 - congestion control
 - scalability (ACK implosion), dealing with receiver heterogeneity, fairness
- Multicast congestion control mechanism classification:

depends on content!

- sender- vs. receiver-based, single-rate vs. multi-rate (layered),
- reliable vs. unreliable, end-to-end vs. network-supported

Multimedia content fluctuates

- This is natural: sometimes we talk, sometimes we don't, sometimes we move, sometimes we don't.
 - exploited by compression schemes
 - Necessary to cope with size of multimedia content

Typical values:

Uncompressed

• video: 140 – 216 Mbit/s; audio (CD): 1.4 Mbit/s; speech: 64 Kbit/s

Compressed audio & video:

- VOD: down to 1.2 4 Mbit/s; Conf.: down to 128 Kbit/s
- Compressed speech: down to 6.2 Kbit/s

Example: MPEG-1

- International Standard: Moving Pictures Expert Group
 - Compression of audio and video for playback (1.5 Mbit/s), real-time decoding
- Sequence of I-, P-, and B-Frames

Matching stream and network rates

Matching stream and network rates /2

Matching stream and network rates /3

(ii) Network rate

Time

- "Adaptive Multimedia Application"
- Smoother network bandwidth would facilitate matching

Adaptive multimedia: the user experience

Studied by several research groups

 Automatically evaluate "user experience" by judging received content based on knowledge about users

Study heartbeat etc. of users who test adaptive multimedia; surveys

 $\alpha = 1.3125,$ $\beta = 0.125$

Consistent result: users do not like fluctuations

 $\alpha = 1$.

 $\beta = 0.5$

 $\alpha = 0.31$.

 $\beta = 0.875$

Resulting transport layer problem

- How to be fair towards TCP ("TCP-friendly") and have a relatively stable ("smooth") rate
 - Several ways to do this
 - Well known example: TCP-Friendly Rate Control (TFRC)
 - Determines sending rate by calculating how much TCP would send under similar conditions
 - Note: TFRC is not a protocol (only a congestion control mechanism)

$$T = \frac{S}{R\sqrt{\frac{2p}{3} + t_{RTO}(3\sqrt{\frac{3p}{8}})p(1 + 32p^2)}}$$

s: packet size

R: rtt

t_{RTO}: TCP retransmit timeout p: steady-state loss event rate

Datagram Congestion Control Protocol (DCCP)

- Motivation: provide unreliable, timely delivery
 - e.g. VoIP: significant delay = \odot , but some noise = \odot
 - UDP: no congestion control
 - unresponsive applications endanger others (congestion collapse) and may hinder themselves (queuing delay, loss, ..)
- DCCP realizes congestion control in the OS, where it belongs

DCCP/2

- Roughly:
 - DCCP = TCP (bytestream semantics, reliability)= UDP + (congestion control w/ ECN, handshakes, ACKs)
- Main specification does not contain congestion control mechanisms
 - CCID definitions (e.g. TCP-like, TFRC, TFRC for VoIP)

IETF standard – but not used much (up to now?) 15

One-way streaming over TCP

- Assumption: buffering (delay) doesn't matter
 ⇒ no need for a smooth rate!
- Little loss case: TCP retransmissions won't hurt
- Heavy loss case:
- DCCP: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...
- TCP: (assume window = 3): 1, $\frac{2}{2}$, $\frac{3}{2}$, 2, $\frac{3}{2}$, 4, 3, 4, $\frac{5}{2}$, 4...
 - Application would detect: 4 out of 10 expected packets arrived
 ⇒ should reduce rate
 - Is receiving 1, 4, 7, 10 instead of 1, 2, 3, 4 really such a big benefit?
 Or is it just a matter of properly reacting?
 In RealPlayer and MediaPlayer, TCP can be used for streaming...
 seems to work well (also in YouTube!)

Real-time Transport Protocol (RTP)

- Designed for requirements of (soft!) real-time data transport
 - NOT a transport protocol
 - Two Components: RTP and RTP Control Protocol (RTCP)
- Provides several important functions
 - sequencing and loss detection (sequence numbers)
 - synchronization (timestamps)
 - payload identification (RTP profiles)
 - (via RTCP) QoS feedback and session information
 - scalable multicast support (...)
 - mixers and translators to adapt to bandwidth limitations
 - support for changing codecs on the fly, encryption

RTP Packet Format

- Relatively long header (>40 bytes)
 - overhead carrying possibly small payload
 - header compression
 - other means to reduce bandwidth (e.g. silence suppression)
- Header extensions for payload specific fields possible
 - Specific codecs
 - Error recovery mechanisms
- RTP can be used over any transport protocol usually UDP

Profiles and Payload Types

- Profiles define codecs used to encode the payload data and their mapping to payload format codes ("Payload Type" header field)
- Each profile is accompanied by several payload format specifications
 - e.g. audio: G.711, G.723, G.726, G.729, GSM, QCELP, MP3, DTMF etc.,
 and video: H.261, H.263, H.264, MPEG
- A complete specification of RTP for a particular application usage requires a profile and/or payload format specification(s)

Example profiles

- Profile for Audio and video conferences with minimal control defines
 - a set of static payload type assignments
 - mechanism for mapping between payload formats
 - and a payload type identifier (in header) using the Session Description Protocol (SDP)
 - mapping can be dynamic, i.e. per-session
- Secure Real-time Transport Protocol (SRTP) = profile that provides cryptographic services for the transfer of payload

RTP Control Protocol (RTCP)

- Monitoring
 - of QoS / application performance
- Feedback to members of a group about delivery quality, loss, etc.
 - Sources may adjust data rate
 - Receivers can determine if QoS problems are local or network-wide
- Loose session control
 - Convey information about participants and session relationships
- Automatic adjustment to overhead
 - report frequency based on RTP sending rate and participant count

RTCP Sender / Receiver Reports

- Sender report
 - Sender Information
 - Timestamps, Packet Count, Byte Count
 - List of statistics per source
- Receiver report
 - For each source
 - Loss statistics
 - Inter-arrival jitter
 - Timestamp of last SR
 - Delay between reception of last SR and sending of RR
- Analysis of reports
 - Cumulative counts for short and long time measurements
 - NTP timestamp for encoding- and profile independent monitoring

Header
Sender Information
Reception Report
Reception Report
Profile Specific Extensions

RTP Quality Adaptation

- Component interoperations for control of quality
- Evaluation of sender and receiver reports
- Modification of encoding schemes and parameters
- Adaptation of transmission rates
- Hook for possible retransmissions (outside RTP)

RTP Mixer

- Reconstructs constant spacing generated by sender
- Translates audio encoding to a lower-bandwidth
- Mixes reconstructed audio streams into a single stream
- Resynchronizes incoming audio packets
 - New synchronization source value (SSRC) stored in packet
 - Incoming SSRCs are copied into the contributing synchronization source list (CSRC)
- Forwards the mixed packet stream
- Useful in conference bridges

RTP Translator

- Translation between protocols
 - e.g., between IP and ST-2
 - Two types of translators are installed
- Translation between encoding of data
 - e.g. for reduction of bandwidth without adapting sources
- No resynchronization in translators
 - SSRC and CSRC remain unchanged

Signaling Protocols

- Control of media delivery by sender or receiver
 - Sender and receiver "meet" before media delivery
- Signaling should reflect different needs
 - Media-on-demand
 - Receiver controlled delivery of content; explicit session setup
 - Internet telephony and conferences:
 - Bi-directional data flow, live sources; (mostly) explicit session setup, mostly persons at both ends
 - Internet broadcast
 - Sender announces multicast stream; no explicit session setup

Real-Time Streaming Protocol (RTSP)

- Internet media-on-demand
 - Select and playback streaming media from server
 - Similar to VCR (start, stop, pause, ..), but
 - Potentially new functionality
 - Integration with Web
 - Security
 - Varying quality
- RTSP is also usable for
 - Near video-on-demand (multicast)
 - Live broadcasts (multicast, restricted control functionality)
 - **—** ...

RTSP Approach

- In line with established Internet protocols
 - Similar to HTTP 1.1 in style
 - Uses URLs for addressing:
 rtsp://video.server.com:8765/videos/themovie.mpg
 - Range definitions
 - Proxy usage
 - Expiration dates for RTSP DESCRIBE responses
 - Other referenced protocols from Internet (RTP, SDP)
- Functional differences from HTTP
 - Data transfer is separate from RTSP connection; typically via RTP
 - Server maintains state setup and teardown messages
 - Server as well as clients can send requests

RTSP Features

- Rough synchronization
 - Media description in DESCRIBE response
 - Timing description in SETUP response
 - Fine-grained through RTP sender reports
- Aggregate and separate control of streams possible
- Virtual presentations: synchronized streams from multiple servers
 - Server controls timing for aggregate sessions
 - RTSP Server may control several data (RTP) servers
- Load balancing through redirect at connect time
 - Use REDIRECT at connect time
- Caching
 - Only RTSP caching so far

RTSP Methods

OPTIONS	$C \rightarrow S$	determine capabilities of server/client		
OPTIONS	C ← S			
DESCRIBE	$C \rightarrow S$	get description of media stream		
ANNOUNCE	$C \Leftrightarrow S$	announce new session description		
SETUP	$C \rightarrow S$	create media session		
RECORD	$C \rightarrow S$	start media recording		
PLAY	$C \rightarrow S$	start media delivery		
PAUSE	$C \rightarrow S$	pause media delivery		
REDIRECT	C ← S	redirection to another server		
TEARDOWN	$C \rightarrow S$	immediate teardown		
SET_PARAMETER	C ↔ S	change server/client parameter		
GET_PARAMETER	C ↔ S	read server/client parameter		

RTSP Integration

Session Initiation Protocol (SIP)

- Lightweight generic signaling protocol
- Internet telephony and conferencing
 - call: association between number of participants
 - signaling association as signaling state at endpoints (no network resources)
- Several "services" needed
 - Name translation, user location, feature negotiation, call control

SIP Basics

- Establish calls between users
 - directly or forwarding (manual and automatic)
 - re-negotiate call parameters
 - terminate and transfer calls
- Supports personal mobility (change of terminal)
 - through proxies or redirection
- Control, location and media description (via SDP)
- Extensible
 - IMS Internet Multimedia Subsystem the next generation of telecoms' service gateways

SIP - Methods

Basic Methods:

- INVITE: session setup like RTSP SETUP and DESCRIBE in one
- ACK: like RTSP ACK
- OPTIONS: like RTSP OPTIONS
- BYE: end a session
- CANCEL: terminate an ongoing session setup operation
- REGISTER: register a user in a location server, update location, ...
- Additional Methods (partially standardized):
 - INFO: carry information between User Agents
 - REFER: ask someone to send an INVITE to another participant
 - SUBSCRIBE: request to be notified of specific event
 - NOTIFY: notification of specific event

SIP Operation – Proxy Mode

- Proxy forwards requests
 - possibly in parallel to several hosts
 - cannot accept or reject call
 - useful to hide location of callee

SIP Operation – Redirect Mode

PSTN: SS7 / SIGTRAN

(PSTN = Public Switched Telephone Network)

- SS7: telephony signaling protocols
 - mainly call setup and teardown
 - international standard + national variants
 - services such as call forwarding (busy and no answer), voice mail, call waiting, conference calling, calling name and number display, ...
- SIGTRAN: IETF standards, most importantly SCTP
 - <u>efficiently</u> transferring such data over the Internet

SCTP services: SoA TCP + extras

•	Services/Features	SCTP	TCP	UDP
•	Full-duplex data transmission	yes	yes	yes
•	Connection-oriented	yes	yes	no
•	Reliable data transfer	yes	yes	no
•	Unreliable data transfer	yes	no	yes
•	Partially reliable data transfer	yes	no	no
•	Ordered data delivery	yes	yes	no
•	Unordered data delivery	yes	no	yes
•	Flow and Congestion Control	yes	yes	no
•	ECN support	yes	yes	no
•	Selective acks	yes	yes	no
•	Preservation of message boundaries (ALF)	yes	no	yes
•	PMTUD	yes	yes	no
•	Application data fragmentation	yes	yes	no
•	Multistreaming	yes	no	no
•	Multihoming	yes	no	no
•	Protection agains SYN flooding attack	yes	no	n/a

Application Level Framing (ALF)

- Concept applied in RTP and SCTP
 - Byte stream (TCP) inefficient when packets are lost
 - Application may want logical data units ("chunks")

- ALF: app chooses packet size = chunk size packet 2 lost: no unnecessary data in packet 1, use chunks 3 and 4 before retrans. 2 arrives
- 1 ADU (Application Data Unit) = multiple chunks \ ALF still more efficient!

Unordered delivery & multistreaming

- Decoupling of reliable and ordered delivery
 - Unordered delivery: eliminate Head-Of-Line blocking delay

TCP receiver buffer

App waits in vain!

- Support for multiple data streams (per-stream ordered delivery)
 - Stream sequence number (SSN) preserves order within streams
 - no order preserved *between* streams

Multihoming

- ...at transport layer! (i.e. transparent for apps, such as FTP)
- TCP connection ⇔ SCTP association
 - 2 IP addresses, 2 port numbers ⇔ 2 sets of IP addresses, 2 port numbers
- Goal: robustness (not load balancing yet?)
 - automatically switch hosts upon failure
 - eliminates effect of long routing reconvergence time
- TCP: no "keepalive" messages when connection idle
- SCTP monitors reachability via ACKs of data chunks and heartbeat chunks

References

- Michael Welzl, "Network Congestion Control: Managing Internet Traffic", John Wiley & Sons, Ltd., August 2005, ISBN: 047002528X
- INF3190 2009 slides by Carsten Griwodz

