
The transport layer

INF 3190, Vår 2010

Michael Welzl

Where we are in the stack...

2

Ambiguities: bandwidth

Mirriam-Webster online (http://www.m-w.com):

• Main Entry: band*width, Pronunciation: 'band-"width
Function: noun, Date: circa 1937

– 1 : a range within a band of wavelengths, frequencies, or energies; especially : a range of radio
frequencies which is occupied by a modulated carrier wave, which is assigned to a service, or over
which a device can operate

– 2 : the capacity for data transfer of an electronic communications system <graphics consume more
bandwidth than text does>; especially : the maximum data transfer rate of such a system

• Unit: definition 1 - “Hz“, definition 2 - “bit/s“ (bps)

• Common interpretation in CN context:
How many bits/sec can be transferred (“how thick is the pipe”)

3

Traditional, “real“

definition!

“Information rate“

Ambiguities: bandwidth /2

• Various wooly “bandwidth“ terms
– Nominal bandwidth: Bandwidth of a link when there is no traffic

– Available bandwidth: (Nominal bandwidth - traffic) ... during a specific
interval

– Bottleneck bandwidth: smallest nominal bandwidth along a path, but
sometimes also smallest available bandwidth along a path

• Throughput: bandwidth seen by the receiver

• Goodput: bandwidth seen by the receiving application
(e.g. TCP: goodput != throughput)

4

Ambiguities: delay

• Latency - time to transfer an "empty" message
– also: “propagation delay”

– limit: speed of light!

• End2end delay = latency + msg_length / bottleneck bandwidth

+ queuing delay
– just a rough measure; e.g., processing delay can also

play a role, esp. in core routers (CPU = scarce resource!)

• Jitter - delay fluctuations, very critical for most real-time applications

• Round-trip time (RTT) - time a messages needs to go from sender to
receiver and back

More ambiguities

• mbit / mb / Mb / Mbit ... ?

• Latency: sometimes end2end-delay

• link: physical connection between one or more hosts or routers, or
link between IP routers (may consist of multiple physical links!)

• capacity: often physical capacity, but different if you talk about TCP

• In general:
make sure you know which layer you are talking about!

Addressing

7TSAPs, NSAPs and transport connections

Connection establishment

8

How a user process in host 1 could establish a connection with a

time-of-day server in host 2

The Internet transport layer

• Services are defined by two protocols

– UDP (connectionless): sends a “datagram”

– TCP (connection oriented): transfers a reliable bytestream

• Addressing: port numbers

– Choosing a service during connection establishment: well-known ports

9

Berkeley sockets:

TCP service primitives

Focus on the Internet

• The Internet is rather important...

• Its transport layer includes many necessary functions
– developed as “patches” over the years

– TCP has grown and grown and grown... should be robust against
everything!

– some complementary functions inside the net

• The Internet’s design has been criticized a lot
– especially recently: a lot of funding for “future Internet”

– but it’s very hard to change it now
10

Internet terminology

• PDU, SDU, etc.: OSI terminology

– Internet terminology: datagram, segment, packet

– they’re all the same

• Theoretically, 1 TCP segment could be split into
multiple IP packets

– hence different words used

• In practice, this is inefficient and not done

– hence segment = packet 11

Speaking of packet splitting...

• (IP) fragmentation = inefficient
– But small packets have large header overhead

• Path MTU Discovery: determine the largest packet that does
not get fragmented
– originally (RFC 1191, 1990): start large, reduce upon reception of ICMP

message  black hole problem if ICMP messages are filtered

– now (RFC 4821, 2007): start small, increase as long as transport layer
ACKs arrive  transport protocol dependent

• Network layer function with transport layer dependencies
12

UDP and UDP Lite

• UDP = IP + 2 features:

– Ports: identify communicating instances with similar IP address
(transport layer)

– Checksum: Adler-32 covering the whole packet

• checksum field = 0: no checksum at all! is this useful?

•  solution: UDP Lite (length := checksum coverage)

– advantage: e.g. video codecs can cope with bit errors, but UDP drops whole packet

– critical: app‘s depending on UDP Lite can depend on lower layers

– usefulness: often, link layers do not hand over corrupt data

• Usage of UDP: unreliable data transmission (DNS, SNMP, real-time streams, ..)

What TCP does for you (roughly)
• UDP features: multiplexing + protection against corruption

– ports, checksum

• connection handling
– explicit establishment + teardown

• stream-based in-order delivery
– segments are ordered according to sequence numbers

– only consecutive bytes are delivered

• reliability
– missing segments are detected (ACK is missing) and retransmitted

• flow control
– receiver is protected against overload (“sliding window“ mechanism)

• congestion control
– network is protected against overload (window based)

– protocol tries to fill available capacity

• full-duplex communication
– e.g., an ACK can be a data segment at the same time (piggybacking)

TCP Header

• Flags indicate connection setup/teardown, ACK, ..

• If no data: packet is just an ACK

• Window = advertised window from receiver (flow control)
– Field size limits sending rate in today‘s high speed environments; solution:

Window Scaling Option – both sides agree to left-shift the window value by N bit

TCP Connection Management

heavy solid line:
normal path for a client

heavy dashed line:
normal path for a server

Light lines:
unusual events

Host 1 Host 2

ACK

 SYN, ACK

SYN

Host 1 Host 2

ACK

FIN

FIN

ACK

Connection
setup teardown

Connection establishment

• Sequence number synchronization (“SYN”)

– avoid mistaking packets that carry the same sequence
number but don’t belong to the intended connection

• TCP SYN sets up state (“that was the number,
I sent a SYN/ACK, now I wait for a response”)

– exploited by SYN flood DoS attack

– Solution: put state in packets (“cookie”)

– Can be implemented without changing the protocol, by
encoding it in sequence numbers

17

Connection release

• No way to do it without timeouts...

18

Error control: Acknowledgement

• ACK (“positive” Acknowledgement)

• Purposes:
– sender: throw away copy of data held for retransmit

– time-out cancelled

– msg-number can be re-used

• TCP counts bytes, not segments; ACK carries “next expected byte“ (#+1)

• ACKs are cumulative
– ACK n acknowledges all bytes “last one ACKed” thru n-1

• ACKs should be delayed
– TCP ACKs are unreliable: dropping one does not cause much harm

– Enough to send only 1 ACK every 2 segments, or at least 1 ACK every 500 ms
(often set to 200 ms)

Error control: Timeout

• Go-Back-N behavior in response to timeout

• Retransmit Timeout (RTO) timer value difficult to determine:
– too long  bad in case of msg-loss; too short  risk of false alarms

– General consensus: too short is worse than too long; use conservative estimate

• Calculation: measure RTT (Seg# ... ACK#) , then:
original suggestion in RFC 793: Exponentially Weighed Moving Average (EWMA)

– SRTT = (1-) SRTT +  RTT

– RTO = min(UBOUND, max(LBOUND,  * SRTT))

• Depending on variation, result may be too small or too large; thus, final algorithm
includes variation (approximated via mean deviation)

– SRTT = (1-) SRTT +  RTT

–  = (1 - ) *  +  * [SRTT - RTT]

– RTO = SRTT + 4 * 

RTO calculation

• Problem: retransmission ambiguity
– Segment #1 sent, no ACK received  segment #1 retransmitted

– Incoming ACK #2: cannot distinguish whether original or retransmitted segment #1
was ACKed

– Thus, cannot reliably calculate RTO!

• Solution 1 [Karn/Partridge]: ignore RTT values from retransmits
– Problem: RTT calculation especially important when loss occurs; sampling theorem

suggests that RTT samples should be taken more often

• Solution 2: Timestamps option
– Sender writes current time into packet header (option)

– Receiver reflects value

– At sender, when ACK arrives, RTT = (current time) - (value carried in option)

– Problems: additional header space; facilitates NAT detection

Window management

• Receiver “grants“ credit (receiver window, rwnd)

– sender restricts sent data with window

• Receiver buffer not specified

– i.e. receiver may buffer reordered segments (i.e. with gaps)

Window

1 2 3 4 5 6 7 80

sent,

not ACKed
sent and

acknowledged
must wait until
window moves

can

be sent

9

Sender buffer

A simple router model

Queue 1

Queue 2

In 1

In 2

In 3

Switching
Fabric

Out 1

Out 2

• Switch(ing) fabric forwards a packet (dest. addr.)

if no special treatment necessary: “fast path“ (hardware)

• Queues grow when traffic bursts arrive
• low delay = small queues, low jitter = no queue fluctuations

• Packets are dropped when queues overflow (“DropTail queueing“)
• low loss ratio = small queues

Utilization: 2/3

Upgrade to

1 Mbit/s!

Global congestion collapse

Craig Partridge, Research Director for the Internet Research Department

at BBN Technologies:

Bits of the network would fade in and out, but usually only for TCP. You could ping. You could

get a UDP packet through. Telnet and FTP would fail after a while. And it depended on

where you were going (some hosts were just fine, others flaky) and time of day (I did a lot of

work on weekends in the late 1980s and the network was wonderfully free then).

Around 1pm was bad (I was on the East Coast of the US and you could tell when those

pesky folks on the West Coast decided to start work...).

Another experience was that things broke in unexpected ways - we spent a lot of time

making sure applications were bullet-proof against failures. (..)

Finally, I remember being startled when Van Jacobson first described how truly awful

network performance was in parts of the Berkeley campus. It was far worse than I was

generally seeing. In some sense, I felt we were lucky that the really bad stuff hit just where

Van was there to see it.

Internet congestion control: history

• around 1986: first congestion collapse

• 1988: "Congestion Avoidance and Control" (Jacobson)
Combined congestion/flow control for TCP
(also: variation change to RTO calculation algorithm)

• Idea: packet loss = congestion, so throttle the rate; increase otherwise

• Goal: stability - in equilibrum, no packet is sent into the network until
an old packet leaves
– ack clocking, “conservation of packets“ principle

– made possible through window based stop+go - behaviour

• Superposition of stable systems = stable 
network based on TCP with congestion control = stable

TCP Congestion Control: Tahoe

• Distinguish:
– flow control: protect receiver against overload

(receiver "grants" a certain amount of data ("receiver window" (rwnd)))

– congestion control: protect network against overload

("congestion window" (cwnd) limits the rate: min(cwnd,rwnd) used!)

• Flow/Congestion Control combined in TCP. Two basic algorithms:
– Slow Start: for each ack received, increase cwnd by 1 packet

(exponential growth) until cwnd >= ssthresh

– Congestion Avoidance: each RTT, increase cwnd by at most 1 packet
(linear growth - "additive increase“)

TCP Congestion Control: Tahoe /2

• If a packet or ack is lost
(timeout), set cwnd = 1,
ssthresh = cwnd / 2
(“multiplicative
decrease") -
exponential backoff

• Actually, “Flightsize/2“
instead of cwnd/2
because cwnd might
not always be fully used

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

time

b
a

n
d

w
id

th

Timeout

ssthresh

Slow Start

Congestion

Avoidance

User 1 Allocation x1

Fairness
Line

Efficiency
Line

U
s
e

r
2

A

ll
o
c
a

ti
o

n
 x

2

Starting
Point

AIMD

Desirable

Starting
Point

AIAD

MIMD

Underload

Overload

Background: AIMD

Connection startup

• Slow start: 3 RTTs for 3 packets =
inefficient for very short transfers

• Example: HTTP Requests

• Thus, initial window
IW = min(4*MSS, max(2*MSS, 4380 byte))
– why these values?

– worked well a long time ago; increasing them
is being discussed right now (March 2010)

Sender Receiver

1

0

ACK 1

2

ACK 2

ACK 3

4

5

3

.

.

.

6

Fast Retransmit / Fast Recovery
(Reno)

Reasoning: slow start = restart; assume that network is empty

But even similar incoming ACKs indicate that packets arrive at the receiver!

Thus, slow start reaction = too conservative.

1. Upon reception of third duplicate ACK (DupACK): ssthresh = FlightSize/2

2. Retransmit lost segment (fast retransmit);
cwnd = ssthresh + 3*SMSS
("inflates" cwnd by the number of segments (three) that have left the network and which the
receiver has buffered)

3. For each additional DupACK received: cwnd += SMSS
(inflates cwnd to reflect the additional segment that has left the network)

4. Transmit a segment, if allowed by the new value of cwnd and rwnd

5. Upon reception of ACK that acknowledges new data (“full ACK“):
"deflate" window: cwnd = ssthresh (the value set in step 1)

Tahoe vs. Reno

Multiple dropped segments
• Sender cannot detect loss of multiple

segments from a single window

• Insufficient information in DupACKs

• NewReno:

– stay in FR/FR when partial ACK arrives
after DupACKs

– retransmit single segment

– only full ACK ends process

• Important to obtain enough ACKs to
avoid timeout

– Limited transmit: also send new segment
for first two DupACKsSender Receiver

ACK 1

1

2

1 2 3 4 5

3

4

5

ACK 1

ACK 1

ACK 1

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

FR / FR

Non-Congestion Robustness (NCR)

• Assumption: 3 DupACKs clearly indicate loss

– Can be incorrect when packets are reordered

• Reordering is not rare

– And new mechanisms in the network could be devised if TCP was robust against
reordering (e.g. consider splitting a flow on multiple paths)

• Approach: Increase the number of DupACKs N to approx. 1 cwnd

• Extended Limited Transmit; 2 variants

– Careful Limited Transmit: send 1 new packet for every other DupACK until N is
reached (halve sending rate, but send new data for a while)

– Aggressive Limited Transmit: send 1 new packet for every DupACK until N is
reached (delay halving sending rate)

– Full ACK ends process

Selective ACKnowledgements (SACK)

• Example on NewReno slide: send ACK 1, SACK 3, SACK 5 in response to segment #4

• Better sender reaction possible
– Reno and NewReno can only retransmit a single segment per window

– SACK can retransmit more (RFC 3517 – maintain scoreboard, pipe variable)

– Particularly advantageous when window is large (long fat pipes)

• but: requires receiver code change

• Extension: DSACK informs the sender of duplicate arrivals

Spurious timeouts
• Common occurrence in wireless scenarios

(handover): sudden delay spike

• Can lead to timeout
 slow start
– But: underlying assumption: “pipe empty“ is wrong!

(“spurious timeout“)

– Old incoming ACK after timeout should be used to
undo the error

• Several methods proposed
Examples:

– Eifel Algorithm: use timestamps option to check:
timestamp in ACK < time of timeout?

– DSACK: duplicate arrived

– F-RTO: check for ACKs that shouldn't arrive after
Slow Start

Appropriate Byte Counting
• Increasing in Congestion Avoidance mode: common implementation

(e.g. Jan’05 FreeBSD code): cwnd += SMSS*SMSS/cwnd for every ACK
(same as cwnd += 1/cwnd if we count segments)

– Problem: e.g. cwnd = 2: 2 + 1/2 + 1/ (2+1/2)) = 2+0.5+0.4 = 2.9
thus, cannot send a new packet after 1 RTT

– Worse with delayed ACKs (cwnd = 2.5)

– Even worse with ACKs for less than 1 segment (consider 1000 1-byte ACKs)
 too aggressive!

• Solution: Appropriate Byte Counting (ABC)

– Maintain bytes_acked variable; send segment when threshold exceeded

– Works in Congestion Avoidance; but what about Slow Start?

• Here, ABC + delayed ACKs means that the rate increases in 2*SMSS steps

• If a series of ACKs are dropped, this could be a significant burst (“micro-
burstiness“); thus, limit of 2*SMSS per ACK recommended

Limited Slow Start

• Slow start problems:
– initial ssthresh = constant, not related to real network

this is especially severe when cwnd and ssthresh are very large

• Proposals to initially adjust ssthresh failed: must be quick and precise

– Assume: cwnd and ssthresh are large, and avail.bw. = current window + 1 packet?

• Next updates (cwnd++ for every ACK) will cause many packet drops

• Solution: Limited Slow Start
– cwnd <= max_ssthresh: normal operation; recommend. max_ssthresh=100 SMSS

– else K = int(cwnd/(0.5*max_ssthresh), cwnd += int(MSS/K)

– More conservative than Slow Start:
for a while cwnd+=MSS/2, then cwnd+=MSS/3, etc.

Active Queue Management
• Monitor queue, do not only drop upon overflow  more intelligent decisions

– Qavg = (1 - Wq) x Qavg + Qinst x Wq
(Qavg = average occupancy, Qinst = instantaneous occupancy,
Wq = weight - hard to tune, determines how aggressive RED behaves)

• Goals: eliminate phase effects, manage fairness
("punish" flows that are too aggressive)

– Aggressive flows have more packets in the queue; thus, dropping a random one is
more likely to affect such flows

– Also possible to differentiate traffic via drop function(s)

REDRED RED in "gentle" modeRED in "gentle" mode

Explicit Congestion Notification (ECN)
• Instead of dropping, set a bit

• Receiver informs sender about bit; sender behaves as if a packet was dropped
 actual communication between end nodes and the network

• Note: ECN = true congestion signal (i.e. clearly not corruption)

• Typical incentives:
– sender = server; efficiently use connection, fairly distribute bandwidth

• use ECN as it was designed

– receiver = client; goal = high throughput, does not care about others

• ignore ECN flag, do not inform sender about it

• Need to make it impossible for receiver to lie about ECN flag when it was set!
– Solution: nonce = random number from sender, deleted by router when setting ECN

– Sender believes „no congestion“ iff correct nonce is sent back

ECN in action

• Nonce provided by bit combination:
– ECT(0): ECT=1, CE=0; ECT(1): ECT=0, CE=1

• Nonce usage specification still experimental

Data packets

ACKs

Send packet with

ECT = 1, CE = 0,
nonce = random

ECT = 1, so don’t drop

update: CE = 1
nonce = 0

Set ECE = 1 in

subsequent ACKs
even if CE = 0

Reduce cwnd,

set CWR = 1
Only set ECE = 1

in ACKs again
when CE = 1

Sender Receiver

1 2 3

4 5

Congestion

TCP History

RFC 793

09 / 1981

RFC 1122

10 / 1989

RFC 1323

05 / 1992

RFC 2883
07 / 2000

RFC 2988

11 / 2000

RFC 2581

04 / 1999

RFC 3042

01 / 2001

RFC 3168

09 / 2001

RFC 3390

10 / 2002

RFC 3782

04 / 2004

RFC 2018

10 / 1996

RFC 3517

04 / 2003

Basics

Slow start + congestion avoidance,

SWS avoidance / Nagle,
RTO calculation, delayed ACK

Timestamps,

PAWS,
Window scaling

SACK

DSACK

ECN

NewReno

Limited Transmit

SACK-based
loss recovery

RTO

Larger initial

window

Full specification of
Slow start,

congestion avoidance,
FR / FR

Standards track TCP RFCs that

influence when a packet is sent

(status: October 2007)

References

• Michael Welzl, "Network Congestion Control: Managing Internet
Traffic", John Wiley & Sons, Ltd., August 2005, ISBN: 047002528X

• M. Hassan and R. Jain, "High Performance TCP/IP Networking:
Concepts, Issues, and Solutions", Prentice-Hall, 2003,
ISBN:0130646342

• M. Duke, R. Braden, W. Eddy, E. Blanton: "A Roadmap for TCP
Specification Documents", RFC 4614, September 2006

• NCR (Extended Limited Transmit): RFC 4653

• http://www.ietf.org/html.charters/tcpm-charter.html

