
1ICT
INF3320, Vertex and fragment programs

Vertex and fragment programs

Jon Hjelmervik
email: jonmi@ifi.uio.no

2ICT
INF3320, Vertex and fragment programs

Fixed function transform and lighting

Each vertex is treated separately
Affine transformation transforms the vertex by matrix
multiplication
Lighting

Determines the color of each vertex.
Calculated using normal vector and light direction/position.
Can be manipulated by light parameters, light model, material
properties and position

Texture parameter(s) are transformed using texture
matrices.

3ICT
INF3320, Vertex and fragment programs

Advanced vertex transformations

Real time applications store vertex data on graphics
memory, therefore all vertex transformations must be done
at the graphics processor (GPU).
Animations of a human body need to modify vertices in a
non linear way depending on bones or control points.
Morphing is used for animation, and uses a convex
combination of two or more objects to create intermediate
objects.

Extending the fixed function API to handle all such
applications would lead to a too messy interface.

4ICT
INF3320, Vertex and fragment programs

Morphing at the CPU, using C++

Assuming we use a vector library, morphing could be
written as:

vec4 morphPosition(vec4 vertexPos1, float weight1,
vec4 vertexPos2, float weight2)

{
vec4 Pos=weight1*vertexPos1;
Pos+=weight2*vertexPos2;
return Pos;

}

5ICT
INF3320, Vertex and fragment programs

Morphing and lighting using openGL
shading language

attribute vec4 vertexPos1;
attribute vec4 vertexPos2;
uniform float weight1;
uniform float weight2;
void main(void)
{
vec4 Pos=weight1*vertexPos1;
Pos+=weight2*vertexPos2; // Morph position
vec3 Norm=weight1*vertexNorm1;
Norm+=weight2*vertexNorm2; // Morph normals
Norm=normalize(Norm); //normalize the morphed normal
vec4 ecPosition = gl_ModelViewMatrix * Pos; // Transform position to eyespace
vec3 tnorm = gl_NormalMatrix * Norm; // Transform normal
vec3 lightVec = normalize(gl_LightSource[0].position.xyz - vec3(ecPosition));
// calculate vector from light to vertex in eye space
gl_FrontColor.rgb=dot(tnorm,lightVec); // calculate color
gl_Position = gl_ModelViewProjectionMatrix * Pos;
// Transform position to window space

}

6ICT
INF3320, Vertex and fragment programs

Vertex shaders in OpenGL shading
language

OpenGL shading language is a C-like programming for
defining vertex shaders and fragment shaders.
Vertex shaders takes two types of input

Uniform variables are variables that are constant for the entire
triangle. Examples: modelview matrix and light position. Uniform
variables cannot be set between glBegin and glEnd.
Attribute variables that differs from vertex to vertex. Examples:
position, normal and texture coordinate.

Vertex shaders must return vertex position transformed to
window coordinates (ready to be projected).

7ICT
INF3320, Vertex and fragment programs

Vertex shaders in OpenGL shading
language (2)

A vertex shader acts on one vertex at the time and is
responsible for the T&L part of the rendering pipeline, this
includes:

Transforming the vertex into window space
Transforming the normal, and normalization
Lighting and calculating the color of the vertex
Generating/transforming texture coordinates

8ICT
INF3320, Vertex and fragment programs

Matrix and vector data types

The GPU is a vector processor, which uses vectors of length 4.
vectors:

vec2, vec3 and vec4 are two, three and four component vectors
respectively.

The name of the components are given by one letter
Three naming conventions can be used {x,y,z,w} {r,g,b,a}
{s,t,p,q} where x, r and s is the first component in a vector.
Swissling

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.rrgg; // dup = (1.0, 1.0, 2.0, 2.0)
pos.yx = vec2(1.0, 0.0); // pos = (0.0, 1.0, 3.0, 4.0)
vec3 tmp = pos.xrs; // not valid

mat2, mat3 and mat4 are 2x2, 3x3 and 4x4 matrices respectively.

9ICT
INF3320, Vertex and fragment programs

Commonly used built-in uniform variables

Built-in variables are set by standard openGL calls.
uniform mat4 gl_ModelNiewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_NormalMatrix;

uniform glLightSourceParameters gl_LightSource[gl_MaxLights];
// array of structs containing light parameters

10ICT
INF3320, Vertex and fragment programs

Commonly used built-in attributes

built in attributes are set by standard openGL calls, such
as glVertex() and glNormal()
attribute vec4 gl_Color; // The color of the vetex
attribute vec4 gl_Normal; // Vertex normal
attribute vec4 gl_Vertex; // Vertex position
attribute gl_MultiTexCoord0; // texture coordinate

11ICT
INF3320, Vertex and fragment programs

Vertex shaders can not

Any operation that requires knowledge about neighbors
Polygon clipping.
Generate new vertices or primitives.
Set global data.
Remove geometry (culling).

A GPU transforms (shades) several vertices in parallel,
therefore any operation requiring that the vertices are
transformed in a specific order is impossible.

12ICT
INF3320, Vertex and fragment programs

Morphing and lighting using openGL
shading language revisited

attribute vec4 vertexPos1;
attribute vec4 vertexPos2;
uniform float weight1;
uniform float weight2;
void main(void)
{
vec4 Pos=weight1*vertexPos1;
Pos+=weight2*vertexPos2; // Morph position
vec3 Norm=weight1*vertexNorm1;
Norm+=weight2*vertexNorm2; // Morph normals
Norm=normalize(Norm); //normalize the morphed normal
vec4 ecPosition = gl_ModelViewMatrix * Pos; // Transform position to eyespace
vec3 tnorm = gl_NormalMatrix * Norm; // Transform normal
vec3 lightVec = normalize(gl_LightSource[0].position.xyz - vec3(ecPosition));
// calculate vector from light to vertex in eye space
gl_FrontColor.rgb=dot(tnorm,lightVec); // calculate color
gl_Position = gl_ModelViewProjectionMatrix * Pos;
// Transform position to window space

}

13ICT
INF3320, Vertex and fragment programs

Fragment shaders

14ICT
INF3320, Vertex and fragment programs

Fixed function texturing

Simple openGL applications does one texture lookup
based on the texture coordinate, and either multiplies,
adds or replaces the input color by this value.
More complex methods for combining textures are
available using fixed functions, but the API is complex and
the functions are not flexible.

15ICT
INF3320, Vertex and fragment programs

Per pixel lighting and advanced texturing

High quality rendering of complex models we must either
calculate the lighting per pixel, or use many triangles.
Realistic car-paint rendering requires complex light
models, and per pixel lighting and reflection calculations.
Toon shading, makes the scene look like a part of a
cartoon.
Bump mapping uses a texture to augment the normal
vector, and uses the resulting vector for lighting
calculations.
Realistic skin rendering requires several texture lookups
per pixel and complex calculations to combine the results.

16ICT
INF3320, Vertex and fragment programs

Phong shading/normal map example

uniform sampler2D normalMap;
uniform vec3 lightVect; // Directional light, light vector in object
space

void main(void)
{
vec3 normal=texture2D(normalMap, gl_MultiTexCoord0,xy);
normal = normalize(normal);
gl_FragColor = gl_Color*dot(lightVect, normal);

}

17ICT
INF3320, Vertex and fragment programs

OpenGL fragment shader

A fragment shader is a programmable replacement for the
texturing in fixed function pipeline.
Fragment shaders takes two types of input

Uniform variables are variables that are constant for the entire
triangle. Examples: modelview matrix and light position. Uniform
variables cannot be set between glBegin and glEnd.
Varying variables are linearly interpolated between the vertices.
Examples: color and texture coordinate. Varying variables are
output from the vertices of the triangle, and therefore not
accessible from the application.

18ICT
INF3320, Vertex and fragment programs

Texture lookups in shader

Both fragment shaders and vertex shaders may use
texture lookups.
Texture lookups require information of which texture/
texture unit to use. This information is located in samplers.

sampler1D one-dimensional texture
sampler2D two-dimensional texture
sampler3D three-dimensional texture
samplerCube cube map is a special texture where a 3D vector is
used for texture lookups

19ICT
INF3320, Vertex and fragment programs

Returning information from a fragment
shader

A fragment shader can return the following elements
discard, when a shader calls discard the fragment will not update
the frame buffer.
gl_FragColor is the output color of the fragment.
gl_FragDepth, the fragment shader may change the depth value of
the fragment by writing to this variable.

20ICT
INF3320, Vertex and fragment programs

Input to a fragment shader

Special input variables
vec4 gl_FragCoord, holds the window coordinates of the fragment.
May be used to implement scissor test in a fragment shader.
bool gl_FronFacing is true for front facing triangles, and false for
back faceing triangles.

Commonly used built in varying variables
vec4 gl_Color
vec4 glTexCoord[gl_MaxTextureCoords]

21ICT
INF3320, Vertex and fragment programs

Phong shading/normal map revisited

uniform sampler2D normalMap;
uniform vec3 lightVect; // Directional light, light vector in object
space

void main(void)
{
vec3 normal=texture2D(normalMap, gl_MultiTexCoord0,xy);
normal = normalize(normal);
gl_FragColor = gl_Color*dot(lightVect, normal);

}

22ICT
INF3320, Vertex and fragment programs

Built-in functions

Trigonometric functions:
radians, degrees, sin, cos, tan, asin, acos, atan

Exponential functions :
pow, exp2, log2, sqrt, inversesqrt

Regular functions :
abs, sign, floor, ceil, fract, mod, min, max, clamp, mix, step, smoothstep

Geometrical functions :
length, distance, dot, cross, normalize, ftransform, faceforward, reflect

Matrix functions , vector relation functions , texture lookup functions , fragment
processing functions and noise functions .

23ICT
INF3320, Vertex and fragment programs

Branching using GeForce 6 series

There are three different types of branching, the compiler
chooses the type.
Compile time branching: The compiler resolves the
branch.
Dependent write: All possible branches are calculated,
and the result of the false ones are discarded (only used
for fragment shaders).
True branching: In a fragment shader true branching is
very expensive unless many neighboring fragments go
through the same branch.

24ICT
INF3320, Vertex and fragment programs

Numerical simulation at GPU

Simulation problem must be converted to a “geometric
problem”
Pro

More FLOPS per Dollar then CPU
Simulation at graphics hardware allows visualization embedded in
simulation

Cons
Less flexible than CPU
Less memory than CPU
Less bandwidth between “system” and GPU

25ICT
INF3320, Vertex and fragment programs

Explicit schemes

We have started investigating evolutionary PDEs, which
can be solved using explicit schemes.

When using explicit schemes the unknown(s) at each grid
point is updated from its neighbors at previous time steps.

Relatively simple to convert to a “geometric problem”.

26ICT
INF3320, Vertex and fragment programs

Heat Equation

Very simple scheme.
Implemented as a 1-pass algorithm.
Scheme is the same as the Gauss
filter used in image processing.
The PDE is given as

and is discredited by a standard
finite difference stencil to

r

r

r

r

1-4r

().4 ,1,1,,1,1,
1

,
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji UUUUUrUU −++++= +−−+
+

yyxxt uuu +=

27ICT
INF3320, Vertex and fragment programs

Implementation of heat equation

Implemented as a fragment program.
Uses two off screen pixel buffers, each with the same
dimensions as the area of the simulation.
Toggles drawing to one buffer, while reading the other as
a texture.
Render a quad covering the entire viewport.
Each fragment reads the color of the pixels at the same
position from the previous frame, and it’s neighbors.

28ICT
INF3320, Vertex and fragment programs

Heat equation

29ICT
INF3320, Vertex and fragment programs

Wave equation

30ICT
INF3320, Vertex and fragment programs

Shallow water equation

31ICT
INF3320, Vertex and fragment programs

References

OpenGL Shading Language by Randy J. Rost
www.opengl.org
Shader Designer www.typhoonlabs.com

32ICT
INF3320, Vertex and fragment programs

Bruk av shadere

1. Gi shader kildekode til OpenGL
2. Kompiler shader
3. Link sammen kompilerte shadere
4. Ta i bruk program

Merk: Kompilator ligger i driveren til grafikkortet.

33ICT
INF3320, Vertex and fragment programs

Shader-objekter

Lage et shader-objekt:

shaderId = glCreateShaderObjectARB(shaderType);

shaderType:
GL_VERTEX_SHADER_ARB
GL_FRAGMENT_SHADER_ARB

34ICT
INF3320, Vertex and fragment programs

Kildekode

Gi shader kildekode til OpenGL:

glShaderSourceARB(shaderId, numStr, strings, length);

length kan settes til NULL hvis strengene er null-terminert

35ICT
INF3320, Vertex and fragment programs

Kompilering

Shader objekter blir kompilert ved:

glCompileShaderARB(shaderId);
Setter status parameter til GL_TRUE hvis suksess.

Informasjon om kompilering kan fås tak i med:
glGetInfoLogARB(shaderId, bufferLen, strLen, buffer);

36ICT
INF3320, Vertex and fragment programs

Program objects

Et program object er en kontainer for shader objects.
Program objectet utgjør shaderene som må linkes
sammen ved bruk.
programId = glCreateProgramObjectARB();
glAttachObjectARB(programId, shaderId);
glDetachObjectARB(programId, shaderId);

37ICT
INF3320, Vertex and fragment programs

Sletting av objekter

Shader objects og program objects slettes med:

glDeleteObjectARB(objectId);

Data for et shader object blir ikke slettet før objektet er frakoblet et program
object.
Data for et program object blir ikke slettet mens det er i bruk.

38ICT
INF3320, Vertex and fragment programs

Linking

Shaderene i et program object linkes med:

glLinkProgram(programId);

Informasjon om linkingen kan fås tak i med:

glGetInfoLogARB(programId, bufferLen, strLen, buffer);

39ICT
INF3320, Vertex and fragment programs

Bruke programmer

For å ta i bruk et program kaller man:

glUseProgramObjectARB(programId);

Hvis et program object er gyldig så blir det en del av gjeldende rendering
modell.
For å returnere til fixed function rendering modell så kaller man
glUseProgramObjectARB(0);

40ICT
INF3320, Vertex and fragment programs

Generic attributes

Sette vertex attributes
glGetAttribLocationARB(programHandle_, name);
glVertexAttrib{1234}{fv}ARB(location, &attrib[0]);

Sette vertex attribute pointers
glGetAttribLocationARB(programHandle_, name);
glBindAttribLocationARB(programHandle_, location, name);
glVertexAttribPointerARB(location, size, type, normalized, stride, pointer);

Enable client state
glGetAttribLocationARB(programHandle_, name);
glEnableVertexAttribArrayARB(location);

41ICT
INF3320, Vertex and fragment programs

Uniforms

Sette uniforms
glGetUniformLocationARB(programHandle_, name);
glUniform{1234}{if}vARB(location, count, &constant[0]);
glUniformMatrix{234}fvARB(location, count, transpose, matrix)

