
INF3510 Information Security

Lecture 12:
Development and Operations Security

Audun Jøsang
University of Oslo
Spring 2014

Outline

• Software Development Security
– Malicious Software
– Attacks on applications
– Secure Development Lifecycle

• Operations Security

L12: Dev.Ops. Security 2 UiO INF3510 - Spring 2014

Malicious Software

L12: Dev.Ops. Security 3 UiO INF3510 - Spring 2014

How do computers get infected ?

Executing an attachment

Accessing a malicious or
infected website or starting
application from a website

Direct attacks from the network, as worms
or exploitation of application vulnerabilities
such as SQL injection or buffer overflows

L12: Dev.Ops. Security 4 UiO INF3510 - Spring 2014

Installing infected software Plugging in
external devices

Backdoor or Trapdoor

• secret entry point into a program
• allows those who know access bypassing usual security

procedures
• have been commonly used by developers for testing
• a threat when left in production programs allowing

exploited by attackers
• very hard to block in O/S
• requires good s/w development & update

L12: Dev.Ops. Security 5 UiO INF3510 - Spring 2014

Logic Bomb

• one of oldest types of malicious software
• code embedded in legitimate program
• activated when specified conditions met

– eg presence/absence of some file
– particular date/time
– particular user

• causes damage when triggered
– modify/delete files/disks, halt machine, etc

L12: Dev.Ops. Security 6 UiO INF3510 - Spring 2014

Trojan Horse

• program with hidden side-effects
• program is usually superficially attractive

– eg game, s/w upgrade etc
• performs additional tasks when executed

– allows attacker to indirectly gain access they do not
have directly

• often used to propagate a virus/worm or to install
a backdoor

• … or simply to destroy data

L12: Dev.Ops. Security 7 UiO INF3510 - Spring 2014

Mobile Code

 program/script/macro that runs unchanged
 on heterogeneous collection of platforms
 on large homogeneous collection (Windows)

 transmitted from remote system to local system & then
executed on local system

 often to inject Trojan horse, spyware, virus, worm,
 or to perform own exploits
 unauthorized data access, root compromise

L12: Dev.Ops. Security 8 UiO INF3510 - Spring 2014

Multiple-Threat Malware

 Malware may operate in multiple ways
 Multipartite virus infects in multiple ways
 eg. multiple file types

 Blended attack uses multiple methods of infection or
transmission
 to maximize speed of contagion and severity
 may include multiple types of malware
 eg. Nimda has worm, virus, mobile code
 can also use IM & P2P

L12: Dev.Ops. Security 9 UiO INF3510 - Spring 2014

Viruses

 piece of software that infects programs
modifying programs to include a copy of the virus
 so it executes secretly when host program is run

 specific to operating system and hardware
 taking advantage of their details and weaknesses

 a typical virus goes through phases of:
 dormant
 propagation
 triggering
 execution

L12: Dev.Ops. Security 10 UiO INF3510 - Spring 2014

Virus Structure

 components:
 infection mechanism - enables replication
 trigger - event that makes payload activate
 payload - what it does, malicious or benign

 prepended / postpended / embedded
 when infected program invoked, executes virus code

then original program code
 Virus defenses:
 Block initial infection (difficult)
 Block further propagation (with access controls)
 Detect and remove after infection
 Re-install OS + programs + data

L12: Dev.Ops. Security 11 UiO INF3510 - Spring 2014

Some virus types

 Boot sector virus
 File infector virus
 Macro virus
 Encrypted virus
 Stealth virus
 Uses techniques to hide itself

 Polymorphic virus
 Different for every system

 Metamorphic virus
 Different after every activation on same system

L12: Dev.Ops. Security 12 UiO INF3510 - Spring 2014

Worms

• Replicating program that propagates over net
– using email, remote exec, remote login

• Has phases like a virus:
– dormant, propagation, triggering, execution
– propagation phase: searches for other systems,

connects to it, copies self to it and runs
• May disguise itself as a system process
• Morris Worm, one of best know worms

– released by Robert Morris in 1988
– exploited vulnerabilities in UNIX systems
– brought the whole Internet (of 1988) to standstill

L12: Dev.Ops. Security 13 UiO INF3510 - Spring 2014

Worm Propagation Speed

L12: Dev.Ops. Security 14 UiO INF3510 - Spring 2014

Worm Technology

 Multiplatform
 Multi-exploit
 Ultrafast spreading
 Polymorphic
 Metamorphic
 Transport vehicles
 Zero-day exploits

L12: Dev.Ops. Security 15 UiO INF3510 - Spring 2014

Mobile Phone Worms

 first appeared on mobile phones in 2004
 target smartphone which can install s/w

 they communicate via Bluetooth or MMS
 to disable phone, delete data on phone, or send

premium-priced messages
 CommWarrior, launched in 2005
 replicates using Bluetooth to nearby phones
 and via MMS using address-book numbers

L12: Dev.Ops. Security 16 UiO INF3510 - Spring 2014

Worm Countermeasures

 overlaps with anti-virus techniques
 once worm on system A/V can detect
 worms also cause significant net activity
 worm defense approaches include:
 signature-based worm scan filtering
 filter-based worm containment
 payload-classification-based worm containment
 threshold random walk scan detection
 rate limiting and rate halting

L12: Dev.Ops. Security 17 UiO INF3510 - Spring 2014

What is a botnet ?
• A botnet is a collection of computers infected with

malicious software agents (robots) that can be controlled
remotely by an attacker.

• Owners of bot computers are typically unaware of infection.
• Botnet controller is called a "bot herder" or "bot master"
• Botnets execute malicious functions in a coordinated way:

– Send spam email
– Collect identity information
– Denial of service attacks

• A botnet is typically named after the malware used to infect
• Multiple botnets can use the same malware, but can still be

operated by different criminal groups

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 18

Botnet Architecture
Victims

Bots

L12: Dev.Ops. Security 19 UiO INF3510 - Spring 2014

Bot-herder

Distributed Denial of Service Attack

L12: Dev.Ops. Security 20 UiO INF3510 - Spring 2014

DDoS Countermeasures

• Three broad lines of defense:
1. attack prevention & preemption (before)
2. attack detection & filtering (during)
3. attack source traceback & ident (after)

• Huge range of attack possibilities
• Hence evolving countermeasures

L12: Dev.Ops. Security 21 UiO INF3510 - Spring 2014

DDoS
Flood
Types

L12: Dev.Ops. Security 22 UiO INF3510 - Spring 2014

Screen Injection by the Zeus bot

• Zeus is used to execute MitB
(man-in-the-browser) attacks

• Asks for Go Id Code (OTP)
which will be sent to attacker

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 23

Browser NOT infected by Zeus:

Browser infected by Zeus:

Zeus bot statistics 2010
• Criminals buy Zeus software to infect client computers
• Each attacker controls own set of infected computers

– Each set of infected computers is a separate Zeus botnet
• 784 Zeus botnets tracked by Zeus Tracker in 2010
• Estimated total of 1.6M bots in all Zeus botnets
• 1130 victim organisations targeted
• 960 financial organisations targeted (85%)
• Each of the top 5 US banks targeted by over 500 Zeus

botnets
• Norwegian banks attacked in February 2011

L12: Dev.Ops. Security 24 UiO INF3510 - Spring 2014

25

What is SQL?

• Structured Query Language: interface to relational
database systems.

• Allows for insert, update, delete, and retrieval of data in a
database.

• ANSI, ISO Standard, used extensively in web
applications.

• Example:
 select ProductName from products where
ProductID = 40;

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

26

SQL at back-end of websites

1. Take input from a web-form via HTTP methods such as
POST or GET, and pass it to a server-side application.

2. Application process opens connection to SQL database.
3. Query database with SQL and retrieve reply.
4. Process SQL reply and send results back to user.

Web
Server

Application
Server

Database
Server

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

1 2 3

3 4 4

SQL interface

27

What is SQL Injection?

• Misinterpretation of data input to database system
– Attacker disguises SQL commands as data-input
– Disguised SQL commands = ‘injected’ SQL commands

• With SQL injection, an attacker can get complete
control of database
– no matter how well the system is patched,
– no matter how well the firewall is configured,

• Vulnerability exists when web application fails to
sanitize data input before sending to it database

• Flaw is in web application, not in SQL database.
 L12: Dev.Ops. Security UiO INF3510 - Spring 2014

28

What is SQL Injection?

• For example, if user input is “40 or 1 = 1”
select ProductName from products where
ProductID = 40 or 1 = 1

• 1=1 is always TRUE so the “where” clause will always
be satisfied, even if ProductID ≠ 40.

• All product records will be returned.
• Data leak.

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

XKCD – Little Bobby tables

L12: Dev.Ops. Security 29 UiO INF3510 - Spring 2014

30

Prevention of SQL Injection

• Check and filter user input.
– Length limit on input (most attacks depend on

long query strings).
– Different types of inputs have a specific

language and syntax associated with them,
i.e. name, email, etc

– Do not allow suspicious keywords (DROP,
INSERT, SELECT, SHUTDOWN) as name for
example.

– Try to bind variables to specific types.

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

Stored XSS

Attacker

Web server
trusted by victim

Input to website in the
form of attack script
disguised as user content

1

Access web
page

3

Attack script hidden
in web page HTML,

4

Victim

Script
executes

5

Store and display
attack script

2

L12: Dev.Ops. Security 32 UiO INF3510 - Spring 2014

Stored XSS

• Stored, persistent, or second-order XSS.
• Data provided by users to a web application is stored

persistently on server (in database, file system, …)
and later displayed to users in a web page.

• Typical example: online message boards.
• Attacker uploads data containing malicious script to

server.
• Every time the vulnerable web page is visited, the

malicious script gets executed in client browser.
• Attacker needs to inject script just once.

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 33

XSS: Script Injection Demo

L12: Dev.Ops. Security 34 UiO INF3510 - Spring 2014

Reflected XSS

Attacker

Web server
trusted by victim

Script reflected
in web page

3

Attack script
hidden in URL

2

Phish email with
URL containing
attack script

1

Victim

Script
executes

4

L12: Dev.Ops. Security 35 UiO INF3510 - Spring 2014

Reflected XSS

• Data provided by client is used by server-side scripts to
generate results page for user.

• User tricked to click on attacker’s link for attack to be
launched; page contains a frame that requests page
from server with script as query parameter.

• If unvalidated user data is echoed in results page
(without HTML encoding), code can be injected into this
page.

• Typically delivered via email, containing an innocently
looking URL that contains a script.
– E.g., search engine redisplays search string on the result page;

in a search for a string that includes some HTML special
characters code may be injected.

36 L12: Dev.Ops. Security UiO INF3510 - Spring 2014

XSS – The Problem

• Ultimate cause of the attack: The client only
authenticates ‘the last hop’ of the entire page, but not the
true origin of all parts of the page.

• For example, the browser authenticates the bulletin
board service but not the user who had placed a
particular entry.

• If the browser cannot authenticate the origin of all its
inputs, it cannot enforce a code origin policy.

37 L12: Dev.Ops. Security UiO INF3510 - Spring 2014

Preventing SQL injection and XSS

• SCRUB Error handling
– Error messages divulge information that can be used by hacker
– Error messages must not reveal potentially sensitive information

• VALIDATE all user entered parameters

– CHECK data types and lengths
– DISALLOW unwanted data (e.g. HTML tags, JavaScript)
– ESCAPE questionable characters (ticks, --,semi-colon, brackets,

etc.)

L12: Dev.Ops. Security 38 UiO INF3510 - Spring 2014

Login to website
to access service

1

CSRF (Cross-Site Request Forgery)

Attacker

Web server
trusted by user

Provide service, and
let user stay logged-in

2

Victim user
trusted by

web server

Forged request
from attacker via
logged-in user

5

Access malicious
website, e.g.
because it looks
attractive, or via
phishing email

3

Web page with
forged request
disguised as image
request or iframe

4
Request
fulfilled 6

L12: Dev.Ops. Security 39 UiO INF3510 - Spring 2014

CSRF – Problem and Fix
• Users stay logged-in at websites even when not using them

– Can be exploited by attackers sending fake requests via users
• Forged HTTP requests for a specific website that requires

user login are hidden on attacker’s webpage in the form of
fake image requests, iframes or other elements.

• Browser accesses webpage and forwards forged requests.
• Preventing CSRF usually requires the inclusion of an

unpredictable reference token (e.g. a random number) with
each HTTP request to websites requiring login. Request
tokens should at a minimum be unique per user session.

• Because the request token is unpredictable, the attacker is
unable to create a forged request that will be accepted and
fulfilled by the web server.

L12: Dev.Ops. Security 40 UiO INF3510 - Spring 2014

Login to website
to access service

1

Broken Authentication and Session Mgmt

Cheshire Cat

Web server
trusted by
user

Provide service, and
let user stay logged-in

2

Alice

Email info about
website, including
URL containing
session Id

3 Access website
as Alice and
request service

4

Request
fulfilled 5

L12: Dev.Ops. Security 41 UiO INF3510 - Spring 2014

Broken Authentication and Session Mgmnt
Problem and Fix

• User authentication does not necessarily provide continuous
authentication assurance
– User authentication is only at one point in time

• Easy for developers to implement session control with a
simple session Id which is passed in the URL
– Unfortunately this can be misused

• Recommendations for session Id must be followed
– E.g friom OWASP

• Examples of controls for session Id:
– Link session Id to e.g. IP address, TLS session Id

• .

L12: Dev.Ops. Security 42 UiO INF3510 - Spring 2014

OWASP
The Open Web Application Security Project

• Non-profit organisation
– Local chapters in most countries, also in Norway

• OWASP promotes security awareness and security
solutions for Web application development.

• OWASP Top-10 security risks identify the most critical
security risks of providing online services
– The Top 10 list also recommends relevant security solutions.

• OWASP ASVS (Application Security Verification Standard)
specifies requirements for application-level security.

• Provides and maintains many free tools for scanning and
security vulnerability fixing

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 43

Top-10 Web Application Risks

1. Injection
2. Broken Authentication and Session Management
3. Cross-Site Scripting (XSS)
4. Insecure Direct Object References
5. Security Misconfiguration
6. Sensitive Data Exposure
7. Missing Function Level Access Control
8. Cross-Site Request Forgery (CSRF)
9. Using Components with Known Vulnerabilities
10.Unvalidated Redirects and Forwards

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 44

45

SDLC: Software Development Life Cycle
 SDLC model contains 6 basic stages:

1. Requirements Specification
2. Design
3. Implementation
4. Testing
5. Deployment
6. Maintenance

 Each SDLC model organises/integrates these
basic stages in a specific way
 XP (Extreme Programming), waterfall, etc.

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

46

Secure SDLC

• SDL – Secure Development Lifecycle
– Used along with traditional/current software development

lifecycle/techniques in order to introduce security at every stage
of software development

• Three essential elements of secure SDLC
1. Include security related tasks in each stage of the SDLC
2. Security education for system engineers
3. Metrics and accountability to assess security of system

L12: Dev.Ops. Security UiO INF3510 - Spring 2014

Security Related Tasks of SDLC

1. Requirements Specs.
– Risk analysis
– Security Requirements

2. Design
– Follow security design

standards
– Security Use Cases

3. Implementation
– Follow secure coding

practice

4. Testing
– Penetration testing
– Code review
– Fuzzing

5. Deployment
– Follow secure

deployment practice
6. Maintenance

– Analyse security incidents
– Implement patches
– Fix vulnerabilities

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 47

Fuzzing
• Malformed input should be handled in a consistent way by

software and systems
– Should be rejected with/without appropriate error message

• A software bug can lead to system to crash when
processing malformed input

• Fuzzing is to generate many forms of malformed input and
then to analyse resulting system crashes
– The software location of a crash points to the location of the bug

• Some crashes can be exploited by attackers
– Then the bug is a security vulnerability

• Developers and attackers use fuzzing to find vulnerabilities
• Infinitely many different malformed inputs

– Impossible to test them all ⇒ impossible to find all vulnerabilities

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 48

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 49

Operations Security

Meaning of Operations Security

• Military Operations Security (OPSEC) is a process
that identifies critical information related to military
operations, and then executes selected measures that
eliminate or reduce adversary exploitation of this
information.

• Commercial Operations Security is to apply security
principles and practices to computer and business
operations.

This lecture focuses on commercial operations security

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 50

Privilege management

• Need to know / Least Privilege
– Access to only the information that required to perform duties.
– Reduces risk but causes overhead and a barrier to innovation

• Separation of duties
– High-risk tasks require different individuals to complete
– Examples: Provision privileged-access; Change a firewall rule

• Job rotation
– Move individual workers through a range of job assignments
– Rotation provides control and reduces likelihood of illegal actions

• Monitoring of special privileges
– Review activities of Network/System/ administrators

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 51

Patch management

1. Provide patch management infrastructure
– Requires procedures, staff end computing environment

2. Research newly released patches
– Compatibility issues, authenticity and integrity of patches

3. Test new patches on isolated platforms
– Patches often break functions, so better find out first

4. Provide procedures for rollback
– Always have the possibility to return to previous status

5. Deploy patches to production platforms
– Progressive , from least sensitive to most sensitive systems

6. Validate, log and report patching activities

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 52

Backups

• Protection against loss due to malfunctions, failures,
mistakes, and disasters

• Activities
– Data restoration when needed
– Periodic testing of data restoration
– Protection of backup media on-site
– Off-site storage of backup media, consider:
  distance,
  transportation,
  security and resilience of storage center

 L12: Dev.Ops. Security 53 UiO INF3510 - Spring 2014

Records Retention and Data Destruction

• Policies that specify how long different types of records
must be retained (minimums and maximums)

• Ensure that discarded information is truly destroyed and
not salvageable by either employees or outsiders

• Once information has reached the end of its need, its
destruction needs to be carried out in a manner
proportional to its sensitivity

– Zeroisation/wiping/shredding: Overwrite media with dummy data
– Degaussing: Strong magnetic field that reorients atoms on media
– Physical destruction: melting, wrecking of media

L12: Dev.Ops. Security 54 UiO INF3510 - Spring 2014

Incident Management

• Policy: Define procedures for incident handling
– Reporting: Who to tell ?
– Who is responsible ?
– Which systems can be taken offline ?

• Team: Define who is responsible
• Exercises: Red Team and Blue Team
• Incident response procedures:

– Triage: Sort the trivial from the serious
– Investigation and Containment
– Analysis and tracking
– Follow-Up

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 55

End of Lecture

L12: Dev.Ops. Security UiO INF3510 - Spring 2014 56

	INF3510 Information Security��Lecture 12:�Development and Operations Security
	Outline
	Malicious Software
	How do computers get infected ?
	Backdoor or Trapdoor
	Logic Bomb
	Trojan Horse
	Mobile Code
	Multiple-Threat Malware
	Viruses
	Virus Structure
	Some virus types
	Worms
	Worm Propagation Speed
	Worm Technology
	Mobile Phone Worms	
	Worm Countermeasures
	What is a botnet ?
	Botnet Architecture
	Distributed Denial of Service Attack
	DDoS Countermeasures
	DDoS�Flood Types
	Screen Injection by the Zeus bot
	Zeus bot statistics 2010
	What is SQL?
	SQL at back-end of websites
	What is SQL Injection?
	What is SQL Injection?
	XKCD – Little Bobby tables
	Prevention of SQL Injection
	Stored XSS
	Stored XSS
	XSS: Script Injection Demo
	Reflected XSS
	Reflected XSS
	XSS – The Problem
	Preventing SQL injection and XSS
	CSRF (Cross-Site Request Forgery)
	CSRF – Problem and Fix
	Broken Authentication and Session Mgmt
	Broken Authentication and Session Mgmnt�Problem and Fix
	OWASP�The Open Web Application Security Project
	Top-10 Web Application Risks
	SDLC: Software Development Life Cycle
	Secure SDLC
	Security Related Tasks of SDLC
	Fuzzing
	Operations Security
	Meaning of Operations Security
	Privilege management
	Patch management
	Backups
	Records Retention and Data Destruction
	Incident Management
	End of Lecture

